JP6380220B2 - Copper powder for paste - Google Patents

Copper powder for paste Download PDF

Info

Publication number
JP6380220B2
JP6380220B2 JP2015090243A JP2015090243A JP6380220B2 JP 6380220 B2 JP6380220 B2 JP 6380220B2 JP 2015090243 A JP2015090243 A JP 2015090243A JP 2015090243 A JP2015090243 A JP 2015090243A JP 6380220 B2 JP6380220 B2 JP 6380220B2
Authority
JP
Japan
Prior art keywords
copper
paste
copper powder
oxide film
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015090243A
Other languages
Japanese (ja)
Other versions
JP2016204722A (en
Inventor
須藤 真悟
真悟 須藤
亮 富樫
亮 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015090243A priority Critical patent/JP6380220B2/en
Publication of JP2016204722A publication Critical patent/JP2016204722A/en
Application granted granted Critical
Publication of JP6380220B2 publication Critical patent/JP6380220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、ペースト用銅粉末に関し、より詳しくは、例えばチップ型電子部品の内部電極や外部電極等に用いられる焼成電極に使用される導電銅ペーストを形成するための銅粉末に関する。   The present invention relates to a copper powder for paste, and more particularly to a copper powder for forming a conductive copper paste used for a fired electrode used for, for example, an internal electrode or an external electrode of a chip-type electronic component.

一般に、電子部品の内部電極や外部電極等の電極を形成するにあたっては、銀ペーストやニッケルペーストの代わりに銅ペーストを使用して安価に形成したいという要求がある。ニッケルの比抵抗率は銀や銅よりも高く、また銀の価格はニッケルや銅よりも高いため、電気的特性が良好であって安価な銅を使用したいというのがこの要求の理由である。   In general, when forming an electrode such as an internal electrode or an external electrode of an electronic component, there is a demand for forming it at low cost by using a copper paste instead of a silver paste or a nickel paste. The specific resistance of nickel is higher than that of silver and copper, and the price of silver is higher than that of nickel and copper. Therefore, it is desirable to use copper which has good electrical characteristics and is inexpensive.

電極として銅を使用して内部電極や外部電極を形成する技術は、例えば特許文献1や特許文献2に記載があるように古くから存在するが、銅は酸化しやすいため、銀粉を使用する銀ペーストやニッケル粉を使用するニッケルペーストが一般に使用されてきた。   A technique for forming an internal electrode and an external electrode using copper as an electrode has existed for a long time as described in, for example, Patent Document 1 and Patent Document 2, but since copper is easily oxidized, silver using silver powder is used. Nickel pastes using pastes or nickel powders have been generally used.

そのため、上述した要求を満たすためには、酸化しやすい銅粉を使用するにあたり、酸化防止剤あるいは還元剤等の有機物を添加しなければならず、銅粒子表面の酸化が進行しやすい場合には、その有機物の添加量を増やす、あるいは焼成温度を低くすることにより、銅の酸化を抑制することが必要となる。   Therefore, in order to satisfy the above-mentioned requirements, when using oxidizable copper powder, an organic substance such as an antioxidant or a reducing agent must be added, and the oxidation of the copper particle surface is likely to proceed. It is necessary to suppress copper oxidation by increasing the amount of the organic substance added or by lowering the firing temperature.

しかしながら、有機物を添加すると、粒子間にその有機物の残渣が炭素として残留したりし、焼結が効率的に進まなくなり、比抵抗が高くなるという新たな問題が生じてしまう。そのため、酸化防止あるいは還元効果の高い有機物を使用して添加量を削減することが考えられるが、環境負荷の少ない有機物の開発は現状では難しく、有効な解決策がないというのが実情である。   However, when an organic substance is added, a residue of the organic substance remains as carbon between the particles, and sintering does not proceed efficiently, resulting in a new problem that the specific resistance increases. For this reason, it is conceivable to reduce the addition amount by using an organic substance having a high antioxidant or reducing effect. However, it is difficult to develop an organic substance with a small environmental load at present, and there is no effective solution.

特開昭59−184511号公報JP 59-184511 A 特開昭61−2425号公報JP 61-2425 A

豊田中央研究所R&D レビュー,p.63,Vol.31 No.4(1996.12)Toyota Central R & D Review, p. 63, Vol. 31 No. 4 (1996.12)

本発明は、上述したような実情に鑑みてなされたものであり、銅の酸化を抑制し、一方で還元されやすく低温でも焼成できる焼成電極用のペースト用銅粉末を提供することを目的とする。   This invention is made | formed in view of the above situations, and it aims at providing the copper powder for pastes for a firing electrode which suppresses oxidation of copper and is easy to be reduced and can be fired even at a low temperature. .

本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、銅を主成分とする銅粉において、所定の割合でニッケルを含有させることによって、酸化を抑制することができ、また優れた還元特性を示すことを見出し、本発明を完成するに至った。すなわち、本発明は、以下のものを提供する。   The inventors of the present invention have made extensive studies in order to solve the above-described problems. As a result, it was found that the copper powder containing copper as a main component contains nickel at a predetermined ratio, so that oxidation can be suppressed and excellent reduction characteristics are exhibited, and the present invention has been completed. It was. That is, the present invention provides the following.

(1)本発明の第1の発明は、銅を主成分とし、ニッケルが0.01質量%以上0.8質量%以下含有され、その他の不純物元素の含有量が0.01質量%未満であることを特徴とするペースト用銅粉末である。   (1) 1st invention of this invention has copper as a main component, nickel is contained 0.01 mass% or more and 0.8 mass% or less, and content of other impurity elements is less than 0.01 mass%. It is a copper powder for paste characterized by being.

(2)本発明の第2の発明は、第1の発明において、電気化学測定での対極としてPt、参照電極として銀/塩化銀、及び作用電極として当該銅粉末からなる銅合金の3電極を用い、それぞれの電極を電解液であるホウ酸ナトリウム系緩衝溶液に浸漬させて電圧を印加したときのクロノポテンショメトリーによる電位変化曲線において、該銅合金における酸化膜の還元時間の長さが、無酸素銅を作用電極とした場合における酸化膜の還元時間よりも短いことを特徴とするペースト用銅粉末である。   (2) According to a second aspect of the present invention, in the first aspect, three electrodes of a copper alloy comprising Pt as a counter electrode in electrochemical measurement, silver / silver chloride as a reference electrode, and the copper powder as a working electrode are provided. In the potential change curve by chronopotentiometry when each electrode is immersed in a sodium borate buffer solution that is an electrolytic solution and a voltage is applied, the reduction time of the oxide film in the copper alloy is not long. The copper powder for paste is characterized by being shorter than the reduction time of the oxide film when oxygen copper is used as the working electrode.

本発明に係るペースト用銅粉末は、0.01質量%以上0.8質量%以下の割合でニッケルを含有し、その他の不純物元素の含有量が0.01質量%未満であることにより、銀よりも安価であって、無酸素銅よりも酸化膜厚が薄く、酸化しにくく還元しやすいという優れた特徴を有する。また、還元しやすいために酸素が放出しやすく、ペースト中の有機物を分解除去しやすいという特長も示す。   The copper powder for paste according to the present invention contains nickel in a proportion of 0.01% by mass or more and 0.8% by mass or less, and the content of other impurity elements is less than 0.01% by mass. It has a superior feature that it is cheaper, has a thinner oxide film thickness than oxygen-free copper, is less likely to be oxidized, and is easier to reduce. In addition, since it is easily reduced, oxygen is easily released, and the organic matter in the paste is easily decomposed and removed.

クロノポテンショメトリーによる銅合金の酸化膜の電位変化曲線を示す図である。It is a figure which shows the electric potential change curve of the oxide film of a copper alloy by chronopotentiometry. クロノポテンショメトリーでの電位変化曲線から酸化膜の還元時間を求めた一例を示す図である。It is a figure which shows an example which calculated | required the reduction | restoration time of the oxide film from the electric potential change curve in chronopotentiometry.

以下、本発明に係るペースト用銅粉の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。   Hereinafter, a specific embodiment of the copper powder for paste according to the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention.

≪1.ペースト用銅粉≫
本実施の形態に係るペースト用銅粉は、銅を主成分として構成される銅合金であり、ニッケルを所定の割合で添加成分として含有する。具体的に、この銅ペースト用銅粉は、銅を主成分として、ニッケルが0.01質量%以上0.8質量%以下の割合で含有され、その他の不純物元素の含有量が0.1質量%未満であることを特徴としている。なお、主成分とは、その含有割合が51質量%以上であることをいう。
<< 1. Copper powder for paste >>
The copper powder for paste according to the present embodiment is a copper alloy composed mainly of copper and contains nickel as an additive component at a predetermined ratio. Specifically, the copper powder for copper paste contains copper as a main component, nickel is contained in a proportion of 0.01% by mass or more and 0.8% by mass or less, and the content of other impurity elements is 0.1% by mass. It is characterized by being less than%. In addition, a main component means that the content rate is 51 mass% or more.

一般的に、銅は大気中で酸化して表面にCuOやCuOの酸化銅層(以下、「酸化膜」ともいう)を形成する。CuO層の形成が無く、またCuO層の膜厚が厚ければ還元しにくくなり、一方でその膜厚が薄ければ還元しやすくなる。 In general, copper is oxidized in the air to form a Cu 2 O or CuO copper oxide layer (hereinafter also referred to as “oxide film”) on the surface. If the CuO layer is not formed and the thickness of the Cu 2 O layer is large, the reduction is difficult. On the other hand, if the thickness is thin, the reduction is easy.

本実施の形態に係るペースト用銅粉では、上述したように、主成分である銅に所定の割合でニッケルが含有されてなり、その他の不純物元素の含有量がほとんど存在しないことにより、その合金の酸化層としてはCuOが主となり、またその厚みは薄くなり、容易に還元することができる。 In the copper powder for paste according to the present embodiment, as described above, nickel is contained at a predetermined ratio in copper as a main component, and the alloy contains almost no content of other impurity elements. As the oxide layer, Cu 2 O is mainly used, and the thickness thereof is reduced, so that it can be easily reduced.

具体的に、このペースト用銅粉では、上述したように、ニッケルを0.01質量%以上0.8質量%以下の範囲の割合で含有することによって、銅粉自体の表面酸化が抑制されるため、ペースト中に添加すべき酸化防止剤や還元剤の量を低減させることができ、また焼成温度を降温しなくとも焼結が進みやすいため、良好な銅粉ペーストとなる。   Specifically, in the copper powder for paste, as described above, the surface oxidation of the copper powder itself is suppressed by containing nickel in a proportion in the range of 0.01% by mass to 0.8% by mass. Therefore, the amount of the antioxidant and the reducing agent to be added to the paste can be reduced, and sintering can proceed without lowering the firing temperature, so that a good copper powder paste is obtained.

ニッケルの含有量に関して、ペースト用銅粉中のニッケルの含有量が0.01質量%未満であると、酸化膜厚が厚くなって還元しにくい銅粉となってしまう。また、酸化膜厚が無酸素銅並となり、ペースト中の酸化防止剤や還元剤の量を有効に低減させることができず、また還元されにくくなるため焼結が進みにくい。   Regarding the nickel content, if the nickel content in the copper powder for paste is less than 0.01% by mass, the oxide film becomes thick and the copper powder is difficult to reduce. In addition, the oxide film thickness is comparable to oxygen-free copper, and the amount of antioxidant and reducing agent in the paste cannot be effectively reduced, and it is difficult to reduce, so that sintering does not proceed easily.

一方で、ニッケルの含有量が0.8質量%を超えても、酸化膜厚が厚くなって還元しにくい銅粉となってしまうばかりか、合金として電気比抵抗が上昇する。また、酸化膜厚が無酸素銅並かそれ以上となり、ペースト中の酸化防止剤や還元剤の量を有効に低減させることができず、また還元されにくいために焼結もし難く、焼成後の合金自体の電気比抵抗も上昇することから高抵抗の電極膜となってしまう。   On the other hand, even if the nickel content exceeds 0.8% by mass, the oxide film thickness becomes thick and the copper powder is difficult to reduce, and the electrical resistivity increases as an alloy. In addition, the oxide film thickness is equal to or higher than that of oxygen-free copper, and the amount of antioxidant and reducing agent in the paste cannot be effectively reduced. Since the electrical specific resistance of the alloy itself also increases, it becomes a high resistance electrode film.

また、本実施の形態に係るペースト用銅粉は、ニッケル以外の不純物元素の含有量が0.01質量%未満である。このように、不純物元素の含有量が0.01質量%未満であることにより、上述した所定量のニッケルの添加による表面酸化が抑制作用を効果的に発揮させることができ、また焼結が進みやすくなり、良好な銅粉ペーストとなる。   Moreover, the copper powder for paste which concerns on this Embodiment has content of impurity elements other than nickel less than 0.01 mass%. Thus, when the content of the impurity element is less than 0.01% by mass, the surface oxidation due to the addition of the predetermined amount of nickel described above can effectively exert a suppressing action, and the sintering proceeds. It becomes easy and becomes a good copper powder paste.

ここで、図1に、表面に形成された酸化物の還元されやすさや酸化物層厚さを見積もることが可能なクロノポテンショメトリーによる電位変化曲線の一例を示す。この方法は、非特許文献1に記載された電気化学的還元電位測定を応用したものである。具体的には、酸化の加速試験として純度99.99%の銅板を大気中150℃で30分間加熱し、電解液としてホウ酸−ホウ酸ナトリウム系緩衝溶液(pH9.3)を、対極にPtを用いて、還元方向に定電流50μAを印加したときの銅板と参照電極(銀/塩化銀電極)間の電位の経時変化を測定したクロノポテンショメトリーの結果である。   Here, FIG. 1 shows an example of a potential change curve by chronopotentiometry capable of estimating the ease of reduction of the oxide formed on the surface and the thickness of the oxide layer. This method is an application of the electrochemical reduction potential measurement described in Non-Patent Document 1. Specifically, as an accelerated oxidation test, a 99.99% pure copper plate was heated in the atmosphere at 150 ° C. for 30 minutes, and a boric acid-sodium borate buffer solution (pH 9.3) was used as an electrolytic solution. Is a result of chronopotentiometry in which a change with time in potential between a copper plate and a reference electrode (silver / silver chloride electrode) when a constant current of 50 μA is applied in the reduction direction is measured.

図1に示されるように、定電流を還元方向に印加したときに−0.7Vに電位のプラトー領域が観察される。このプラトー領域は、還元され得る酸化物が試料表面に存在し、それが還元されるのに要した時間を示す。   As shown in FIG. 1, a plateau region having a potential of −0.7 V is observed when a constant current is applied in the reduction direction. This plateau region indicates the time required for the oxide that can be reduced to be present on the sample surface and reduced.

酸化膜が還元される時間は、プラトー領域を経て電位が減少していく傾きと、還元が終了して電位が一定に収束する傾きとの交点から求めることができる。図2に、無酸素銅のクロノポテンショメトリーを測定して酸化膜が還元される時間を求めた例を示す。図2中の交点Pに相当する時間が、酸化膜が還元される時間である。このように、純度99.99%の銅に対して種々の元素を添加した合金試料を作製し、クロノポテンショメトリーによる酸化膜の還元時間を比較することによって、酸化物層の厚みと還元しやすさとを推察することが可能となる。   The time during which the oxide film is reduced can be obtained from the intersection of the slope at which the potential decreases through the plateau region and the slope at which the potential is constant after the reduction is completed. FIG. 2 shows an example in which chronopotentiometry of oxygen-free copper is measured to determine the time during which the oxide film is reduced. The time corresponding to the intersection P in FIG. 2 is the time during which the oxide film is reduced. Thus, by preparing alloy samples in which various elements are added to copper having a purity of 99.99% and comparing the reduction time of the oxide film by chronopotentiometry, the thickness of the oxide layer and the reduction easily It is possible to infer.

図1に示す例は、無酸素銅(Cu)、0.11質量%の割合でニッケルを含有する銅合金(Cu−0.11Ni)、0.46質量%の割合でニッケルを含有する銅合金(Cu−0.11Ni)の3つの試料のクロノポテンショメトリーの測定結果である。この図1の結果に示されるように、主成分の銅にニッケルが0.01質量%以上0.8質量%以下の割合で含まれることで、クロノポテンショメトリーによる酸化膜の還元時間の長さが無酸素銅よりも短くなり、無酸素銅により生成される酸化膜よりも還元しやすい酸化膜となることが分かる。   The example shown in FIG. 1 is oxygen-free copper (Cu), a copper alloy containing nickel at a ratio of 0.11% by mass (Cu-0.11Ni), and a copper alloy containing nickel at a ratio of 0.46% by mass. It is a measurement result of the chronopotentiometry of three samples of (Cu-0.11Ni). As shown in the results of FIG. 1, the main component copper contains nickel in a proportion of 0.01% by mass or more and 0.8% by mass or less, so that the reduction time of the oxide film by chronopotentiometry is long. It can be seen that is shorter than oxygen-free copper and becomes an oxide film that is easier to reduce than an oxide film generated by oxygen-free copper.

このように、本実施の形態に係るペースト用銅粉では、銅粉自体の表面酸化が抑制されるため、ペースト中に添加すべき酸化防止剤や還元剤の量を低減させることができ、また焼成温度を降温しなくとも還元されやすいために焼結が進みやすく、抵抗の低い電極を得ることができる良好な銅粉ペーストとなる。   Thus, in the copper powder for paste according to the present embodiment, since the surface oxidation of the copper powder itself is suppressed, the amount of antioxidant and reducing agent to be added to the paste can be reduced, and Since it is easy to be reduced without lowering the firing temperature, sintering is likely to proceed, and a good copper powder paste can be obtained from which a low resistance electrode can be obtained.

≪2.ペースト用銅粉の製造方法≫
本実施の形態に係るペースト用銅粉の製造方法としては、特に限定されるものではなく、公知の方法により製造することができる。
≪2. Manufacturing method of copper powder for paste >>
It does not specifically limit as a manufacturing method of the copper powder for pastes concerning this Embodiment, It can manufacture by a well-known method.

具体的には、例えば、上述したような所定の組成の銅合金を、真空あるいは不活性雰囲気で溶解した後、溶湯を非酸化性雰囲気中に小径ノズルから流し、その溶湯流を高速のガス流によって粉化し凝固させるガスアトマイズ法により製造することができる。   Specifically, for example, after a copper alloy having a predetermined composition as described above is melted in a vacuum or an inert atmosphere, the molten metal is poured into a non-oxidizing atmosphere from a small-diameter nozzle, and the molten metal stream is flowed at high speed. It can be produced by a gas atomization method in which it is pulverized and solidified.

以下、本発明の実施例を比較例と共に示して、本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although the Example of this invention is shown with a comparative example and this invention is demonstrated further in detail, this invention is not limited to a following example at all.

≪実施例及び比較例≫
<銅合金の製造>
実施例及び比較例において、下記表1に示すような成分組成となるようにして銅合金溶湯を調製して銅合金試料を製造した。なお、表1に示すように、成分として各種の元素をそれぞれ所定の割合で含有する。
<< Examples and Comparative Examples >>
<Manufacture of copper alloy>
In Examples and Comparative Examples, a copper alloy molten metal was prepared so as to have a component composition as shown in Table 1 below, and a copper alloy sample was manufactured. In addition, as shown in Table 1, each element contains various elements as predetermined components.

具体的には、日新技研(株)製のアーク溶解炉を用いて、チャンバー内を0.005Pa以下まで真空引きした後、アルゴンガスを40000Paまで導入し、下記表1に示される成分組成を有する銅合金溶湯を銅製ハース鋳型内に流し込んで、直径約30mm、厚さ約6mmのボタン状鋳塊を作製した。添加元素を均一に分散させるために、溶解鋳造後に試料を反転させて再溶解するという方法で計5回の溶解鋳造を行い、鋳塊とした。そして、作製した鋳塊を、幅5mm、厚さ0.3mm、長さ15mmの短冊状に切り出して銅合金板試料とし、以下に示す評価に供した。   Specifically, using an arc melting furnace manufactured by Nisshin Giken Co., Ltd., the inside of the chamber was evacuated to 0.005 Pa or less, then argon gas was introduced to 40000 Pa, and the component composition shown in Table 1 below was set. The molten copper alloy was poured into a copper hearth mold to produce a button-shaped ingot having a diameter of about 30 mm and a thickness of about 6 mm. In order to uniformly disperse the additive elements, a total of five melt castings were performed by reversing the sample after melting and casting to obtain an ingot. And the produced ingot was cut out in the strip shape of width 5mm, thickness 0.3mm, and length 15mm, and it was set as the copper alloy board sample, and used for evaluation shown below.

<評価(酸化還元評価)及び評価結果>
試料における酸化膜の評価は、緩衝液としてホウ酸ナトリウム溶液を用いたクロノポテンショメトリーによって行った。測定においては、試料の5mm×5mmの面を露出させて緩衝液に浸漬させた。また、定電流印加と電位経時変化の測定は、Princeton Applied Reserch社製のポテンショガルバノスタットVersastat3を用いて行った。
<Evaluation (redox evaluation) and evaluation results>
Evaluation of the oxide film in the sample was performed by chronopotentiometry using a sodium borate solution as a buffer solution. In the measurement, a 5 mm × 5 mm surface of the sample was exposed and immersed in a buffer solution. Further, constant current application and measurement of potential change with time were performed using a potentiogalvanostat Versstat 3 manufactured by Princeton Applied Research.

また、試料の酸化を加速させるために、大気中150℃で30分間の酸化処理を行った。そして、還元時間が、無酸素銅の比較試料よりも短い場合を『良』とし、無酸素銅の比較試料と同等又はそれより長い場合を『不良』と評価した。   Further, in order to accelerate the oxidation of the sample, an oxidation treatment was performed in the atmosphere at 150 ° C. for 30 minutes. The case where the reduction time was shorter than the oxygen-free copper comparative sample was evaluated as “good”, and the case where the reduction time was equal to or longer than the oxygen-free copper comparative sample was evaluated as “bad”.

下記表1に、評価結果を示す。なお、表1には、上述したように、実施例1〜5、及び比較例1〜14における銅合金の成分組成についても併せて示す。また、金属価格として銅を700円/kg、銀を65円/g、ニッケルを1750円/kg、パラジウムを3,000円/g、アルミニウムを200円/kg、錫を2,300円/kg、亜鉛を250円/kg、マグネシウムを300円/kgとして計算し、1円単位に切り上げた1kgあたりの合金価格を示した。   Table 1 below shows the evaluation results. In addition, as above-mentioned in Table 1, the component composition of the copper alloy in Examples 1-5 and Comparative Examples 1-14 is also shown collectively. Metal prices are 700 yen / kg for copper, 65 yen / g for silver, 1750 yen / kg for nickel, 3,000 yen / g for palladium, 200 yen / kg for aluminum, and 2,300 yen / kg for tin. The alloy price per 1 kg calculated by rounding up to 1 yen unit was calculated with zinc as 250 yen / kg and magnesium as 300 yen / kg.

Figure 0006380220
Figure 0006380220

表1の結果に示すように、実施例1、2、3、4、5にて製造した銅合金については、その酸化膜の還元時間が無酸素銅の酸化膜の還元時間より短い結果を示し、評価結果は良を示した。すなわち、酸化しにくく還元しやすいと性質を示した。また、その合金価格は708円/kg以下であった。   As shown in the results of Table 1, for the copper alloys produced in Examples 1, 2, 3, 4, and 5, the reduction time of the oxide film is shorter than the reduction time of the oxygen-free copper oxide film. The evaluation result showed good. That is, it showed the property that it was difficult to oxidize and was easy to reduce. The alloy price was 708 yen / kg or less.

一方で、比較例では、比較例2〜14の合金組成の酸化膜の還元時間は、基準の比較例1(無酸素銅)よりも長くなり、無酸素銅よりも還元しにくいことが示された。   On the other hand, in the comparative example, the reduction time of the oxide film having the alloy composition of comparative examples 2 to 14 is longer than that of the reference comparative example 1 (oxygen-free copper) and is shown to be less likely to be reduced than oxygen-free copper. It was.

本実施の形態に係る銅ペースト用銅粉は、銅を主成分とし、ニッケルが0.01質量%以上0.8質量%以下含有されている。このような銅粉によれば、同じ条件下で発生する酸化膜が無酸素銅の酸化膜よりも容易に還元されるため、ペーストにした場合に酸化防止剤や還元剤の添加量を効果的に低減できる。そのため、焼成後の銅粒子間の残留炭素を低減でき、また銅粉表面の酸化膜が除去されやすいために焼結性が高まり、焼成後の電気抵抗が低い電極を形成することができる。   The copper powder for copper paste according to the present embodiment contains copper as a main component and contains nickel in an amount of 0.01% by mass to 0.8% by mass. According to such a copper powder, an oxide film generated under the same conditions is reduced more easily than an oxygen-free copper oxide film, so that the amount of addition of an antioxidant and a reducing agent is effective when it is made into a paste. Can be reduced. Therefore, residual carbon between the fired copper particles can be reduced, and an oxide film on the surface of the copper powder is easily removed, so that the sinterability is improved and an electrode having a low electrical resistance after firing can be formed.

また、焼成時には還元されやすいためにペースト中の有機物を分解除去しやすく、銅粒子間の有機物残渣を減少できる。さらに、銀やニッケルよりも金属価格が安価であり、電子部品業界での利用価値は極めて大きい。   Moreover, since it is easy to reduce | restore at the time of baking, the organic substance in a paste is easy to decompose and remove, and the organic substance residue between copper particles can be reduced. In addition, the metal price is cheaper than silver and nickel, and the utility value in the electronic component industry is extremely large.

Claims (2)

銅を主成分とし、ニッケルが0.01質量%以上0.8質量%以下含有され、銅含有率とニッケル含有率の合計が99.99質量%より大きい合金からなることを特徴とするペースト用銅粉末。 Copper as a main component, nickel is contained 0.8 wt% or less than 0.01 wt%, pastes total copper content and nickel content, characterized in Rukoto a 99.99 wt% greater than the alloy Copper powder. 電気化学測定での対極としてPt、参照電極として銀/塩化銀、及び作用電極として当該銅粉末からなる銅合金の3電極を用い、それぞれの電極を電解液であるホウ酸ナトリウム系緩衝溶液に浸漬させて電圧を印加したときのクロノポテンショメトリーによる電位変化曲線において、該銅合金における酸化膜の還元時間の長さが、無酸素銅を作用電極とした場合における酸化膜の還元時間よりも短いことを特徴とする請求項1に記載のペースト用銅粉末。   Three electrodes of Pt as the counter electrode in electrochemical measurement, silver / silver chloride as the reference electrode, and a copper alloy composed of the copper powder as the working electrode are immersed in a sodium borate buffer solution that is an electrolyte. In the potential change curve by chronopotentiometry when a voltage is applied, the reduction time of the oxide film in the copper alloy is shorter than the reduction time of the oxide film when oxygen-free copper is used as the working electrode. The copper powder for paste according to claim 1, wherein:
JP2015090243A 2015-04-27 2015-04-27 Copper powder for paste Expired - Fee Related JP6380220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015090243A JP6380220B2 (en) 2015-04-27 2015-04-27 Copper powder for paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015090243A JP6380220B2 (en) 2015-04-27 2015-04-27 Copper powder for paste

Publications (2)

Publication Number Publication Date
JP2016204722A JP2016204722A (en) 2016-12-08
JP6380220B2 true JP6380220B2 (en) 2018-08-29

Family

ID=57488889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015090243A Expired - Fee Related JP6380220B2 (en) 2015-04-27 2015-04-27 Copper powder for paste

Country Status (1)

Country Link
JP (1) JP6380220B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448962B2 (en) * 2003-01-14 2010-04-14 Dowaエレクトロニクス株式会社 Manufacturing method of nickel-coated fine copper powder

Also Published As

Publication number Publication date
JP2016204722A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
TWI582247B (en) Ag alloy sputtering target and method of producing ag alloy film
JP6100978B1 (en) Graphene reinforced copper-based composite contact material and method for producing the same
JP5156328B2 (en) Copper alloy powder for conductive material paste
CN102294485B (en) Composite electric contact material and preparation method thereof
JP6062070B2 (en) Solder alloy not containing Pb
JPWO2005015573A1 (en) Conductive paste
JP6278136B2 (en) Ag alloy sputtering target, method for producing Ag alloy sputtering target, and method for producing Ag alloy film
CN105575459B (en) A kind of copper-plated graphite alkene strengthens the preparation method of copper-based electrical contact material
JP2007039789A (en) Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF
JP6380220B2 (en) Copper powder for paste
JP5927744B2 (en) Ag alloy conductive film and sputtering target for film formation
JP5403707B2 (en) Cu-based infiltration powder
CN102102157A (en) Multicomponent composite copper alloy electrical contact material
JP2016219256A (en) Cu paste composition and thick film conductor
JP5088385B2 (en) High strength and high conductivity copper alloy
CN107527754B (en) Sintered electrical contact material
Song et al. Oxidation of liquid solders for die attachment
JP5281375B2 (en) Resistor paste, resistor film and resistor
RU2537622C1 (en) Composition of charge for manufacture of oxide-metal inert anode
JP5088384B2 (en) High strength and high conductivity copper alloy
JP5070772B2 (en) Cu-Ni-Si based copper alloy with excellent hot workability
Li et al. Erosion behavior and mechanism of Cu-B4C composites under arc discharge in different atmospheres
JP2015232160A (en) Powder for conductive filler
JP5876609B1 (en) Conductive filler powder
JP2017057426A (en) Method for producing electrode for electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6380220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees