JP2015021143A - Silver-coated copper alloy powder and method for producing the same - Google Patents

Silver-coated copper alloy powder and method for producing the same Download PDF

Info

Publication number
JP2015021143A
JP2015021143A JP2013147877A JP2013147877A JP2015021143A JP 2015021143 A JP2015021143 A JP 2015021143A JP 2013147877 A JP2013147877 A JP 2013147877A JP 2013147877 A JP2013147877 A JP 2013147877A JP 2015021143 A JP2015021143 A JP 2015021143A
Authority
JP
Japan
Prior art keywords
silver
alloy powder
copper alloy
coated
coated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013147877A
Other languages
Japanese (ja)
Other versions
JP6224933B2 (en
Inventor
井上 健一
Kenichi Inoue
健一 井上
江原 厚志
Atsushi Ebara
厚志 江原
彰宏 浅野
Akihiro Asano
彰宏 浅野
山田 雄大
Takehiro Yamada
雄大 山田
英幸 藤本
Hideyuki Fujimoto
英幸 藤本
孝造 尾木
Kozo Ogi
孝造 尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2013147877A priority Critical patent/JP6224933B2/en
Publication of JP2015021143A publication Critical patent/JP2015021143A/en
Application granted granted Critical
Publication of JP6224933B2 publication Critical patent/JP6224933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silver-coated copper alloy powder enabling a conductive film having a low volume resistivity and having an excellent storage stability (reliability) and migration resistance to be formed, and a method for producing the same.SOLUTION: The silver-coated copper alloy powder is obtained by: coating a copper alloy powder that has a composition containing at least one of 1 to 50 mass% of nickel and zinc, and the remainder comprising copper and inevitable impurities, with a 7 to 50 mass% silver-containing layer (layer comprising silver or silver compound) (with respect to the silver); then subjecting the copper alloy powder to heat treatment by heating it at 30 to 50°C for 10 to 120 minutes.

Description

本発明は、銀被覆銅合金粉末およびその製造方法に関し、特に、導電ペーストなどに使用する銀被覆銅合金粉末およびその製造方法に関する。   The present invention relates to a silver-coated copper alloy powder and a method for producing the same, and more particularly to a silver-coated copper alloy powder used for a conductive paste and the like and a method for producing the same.

従来、印刷法などにより電子部品の電極や配線を形成するために、銀粉や銅粉などの導電性の金属粉末に溶剤、樹脂、分散剤などを配合して作製した導電ペーストが使用されている。   Conventionally, in order to form electrodes and wiring of electronic parts by printing methods, etc., conductive pastes prepared by blending a conductive metal powder such as silver powder or copper powder with a solvent, resin, dispersant, etc. have been used. .

しかし、銀粉は、体積抵抗率が極めて小さく、良好な導電性物質であるが、貴金属の粉末であるため、コストが高くなる。一方、銅粉は、体積抵抗率が低く、良好な導電性物質であるが、酸化され易いため、銀粉に比べて保存安定性(信頼性)に劣っている。   However, although silver powder has a very small volume resistivity and is a good conductive material, it is a noble metal powder, and thus costs are high. On the other hand, copper powder has a low volume resistivity and is a good conductive material. However, since it is easily oxidized, it has poor storage stability (reliability) compared to silver powder.

これらの問題を解消するために、導電ペーストに使用する金属粉末として、銅粉の表面を銀で被覆した銀被覆銅粉(例えば、特許文献1〜2参照)や、銅合金の表面を銀で被覆した銀被覆銅合金粉が提案されている(例えば、特許文献3〜4参照)。   In order to solve these problems, as the metal powder used for the conductive paste, silver-coated copper powder (for example, see Patent Documents 1 and 2) in which the surface of the copper powder is coated with silver, or the surface of the copper alloy is silver. A coated silver-coated copper alloy powder has been proposed (see, for example, Patent Documents 3 to 4).

特開2010−174311号公報(段落番号0003)JP 2010-174411 A (paragraph number 0003) 特開2010−077495号公報(段落番号0006)JP 2010-077745 (paragraph number 0006) 特開平08−311304号公報(段落番号0006)JP 08-311304 A (paragraph number 0006) 特開平10−152630号公報(段落番号0006)JP-A-10-152630 (paragraph number 0006)

しかし、特許文献1〜2の銀被覆銅粉では、銅粉の表面に銀で被覆されていない部分が存在すると、その部分から酸化が進行してしまうため、保存安定性(信頼性)が不十分になり、耐マイグレーション性が悪いという問題がある。また、特許文献3〜4の銀被覆銅合金粉では、導電膜に使用した場合にその導電膜の体積抵抗率が高く(導電性が低く)なるという問題がある。   However, in the silver-coated copper powders of Patent Documents 1 and 2, if there is a part that is not coated with silver on the surface of the copper powder, oxidation proceeds from that part, and thus storage stability (reliability) is unsatisfactory. There is a problem that it becomes sufficient and the migration resistance is poor. Further, the silver-coated copper alloy powders of Patent Documents 3 to 4 have a problem that when used in a conductive film, the volume resistivity of the conductive film is high (conductivity is low).

したがって、本発明は、このような従来の問題点に鑑み、体積抵抗率が低く且つ保存安定性(信頼性)および耐マイグレーション性に優れた導電膜を形成することができる銀被覆銅合金粉末およびその製造方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention provides a silver-coated copper alloy powder capable of forming a conductive film having a low volume resistivity and excellent storage stability (reliability) and migration resistance, and It aims at providing the manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究した結果、1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を7〜50質量%の銀含有層により被覆した後、銀含有層で被覆した銅合金粉末を熱処理することにより、体積抵抗率が低く且つ保存安定性(信頼性)および耐マイグレーション性に優れた導電膜を形成することができる銀被覆銅合金粉末を製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that a copper alloy powder containing at least one of 1 to 50% by mass of nickel and zinc and having the balance of copper and inevitable impurities having a composition of 7 to 7 After coating with a 50% by mass silver-containing layer, the copper alloy powder coated with the silver-containing layer is heat-treated to produce a conductive film with low volume resistivity and excellent storage stability (reliability) and migration resistance. The inventors have found that a silver-coated copper alloy powder that can be formed can be produced, and have completed the present invention.

すなわち、本発明による銀被覆銅合金粉末の製造方法は、1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を7〜50質量%の銀含有層により被覆した後、銀含有層で被覆した銅合金粉末を熱処理することを特徴とする。   That is, the method for producing a silver-coated copper alloy powder according to the present invention comprises 7 to 50% by mass of a copper alloy powder having a composition comprising 1 to 50% by mass of nickel and zinc and the balance consisting of copper and inevitable impurities. After the coating with the silver-containing layer, the copper alloy powder coated with the silver-containing layer is heat-treated.

この銀被覆銅合金粉末の製造方法において、銀含有層が銀または銀化合物からなる層であるのが好ましく、熱処理が30〜50℃で好ましくは10〜120分間加熱することにより行われるのが好ましい。また、熱処理の前または後に、銀含有層で被覆した銅合金粉末を表面処理剤で表面処理するのが好ましく、この表面処理剤が脂肪酸であるのが好ましい。また、銅合金粉末をアトマイズ法により製造するのが好ましく、銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1〜15μmであるのが好ましい。 In this method for producing a silver-coated copper alloy powder, the silver-containing layer is preferably a layer made of silver or a silver compound, and the heat treatment is preferably performed by heating at 30 to 50 ° C., preferably for 10 to 120 minutes. . Moreover, it is preferable to surface-treat the copper alloy powder coat | covered with the silver containing layer with a surface treating agent before or after heat processing, and it is preferable that this surface treating agent is a fatty acid. Further, it is preferable to produce the copper alloy powder by an atomizing method, cumulative 50% particle diameter measured by a laser diffraction type particle size distribution apparatus of the copper alloy powder (D 50 diameter) is preferably a 0.1-15.

また、本発明による銀被覆銅合金粉末は、1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末が、7〜50質量%の銀含有層により被覆され、銀含有層の(111)面における結晶子径が40nm以下であることを特徴とする。   Further, the silver-coated copper alloy powder according to the present invention contains 1 to 50% by mass of nickel and zinc, and the copper alloy powder having a composition consisting of copper and inevitable impurities is 7 to 50% by mass of silver. The crystallite diameter in the (111) plane of the silver containing layer is 40 nm or less.

なお、本明細書中において、「銀含有層の(111)面における結晶子径」とは、銀含有層のX線回折パターンの(111)ピークの半価幅からシェラーの式を用いて算出した結晶子径をいう。   In the present specification, “crystallite diameter in the (111) plane of the silver-containing layer” is calculated from the half-value width of the (111) peak of the X-ray diffraction pattern of the silver-containing layer using the Scherrer equation. Crystallite diameter.

本発明によれば、体積抵抗率が低く且つ保存安定性(信頼性)および耐マイグレーション性に優れた導電膜を形成することができる銀被覆銅合金粉末およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the silver coating copper alloy powder which can form the electrically conductive film which is low in volume resistivity, and was excellent in storage stability (reliability) and migration resistance, and its manufacturing method can be provided.

本発明による銀被覆銅合金粉末の製造方法の実施の形態では、1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を(銀被覆銅合金粉末に対して)7〜50質量%の銀含有層(銀または銀化合物からなる層)により被覆して得られた銀被覆銅合金粉末を熱処理する。   In the embodiment of the method for producing a silver-coated copper alloy powder according to the present invention, a copper alloy powder having a composition comprising at least one of nickel and zinc at 1 to 50% by mass and the balance consisting of copper and inevitable impurities (silver coated) The silver-coated copper alloy powder obtained by coating with 7 to 50% by mass of a silver-containing layer (a layer made of silver or a silver compound) is heat-treated.

銅合金粉末中のニッケルおよび亜鉛の少なくとも一種の含有量は、1〜50質量%であり、1〜20質量%であるのが好ましい。ニッケルおよび亜鉛の少なくとも一種の含有量が1質量%未満では、銅合金粉末中の銅の酸化が著しく、耐酸化性に問題が生じるので好ましくない。一方、50質量%を超えると、銀被覆銅合金粉末の導電性に悪影響を及ぼすので好ましくない。   The content of at least one of nickel and zinc in the copper alloy powder is 1 to 50% by mass, and preferably 1 to 20% by mass. If the content of at least one kind of nickel and zinc is less than 1% by mass, copper in the copper alloy powder is significantly oxidized, which causes a problem in oxidation resistance. On the other hand, if it exceeds 50% by mass, the conductivity of the silver-coated copper alloy powder is adversely affected.

銀含有層の被覆量は、7〜50質量%であり、8〜45質量%であるのが好ましく、9〜40質量%であるのがさらに好ましい。銀含有層の被覆量が7質量%未満では、銀被覆銅合金粉末の導電性に悪影響を及ぼすので好ましくない。一方、50質量%を超えると、銀の使用量の増加によってコストが高くなるので好ましくない。   The coating amount of the silver-containing layer is 7 to 50% by mass, preferably 8 to 45% by mass, and more preferably 9 to 40% by mass. If the coating amount of the silver-containing layer is less than 7% by mass, the conductivity of the silver-coated copper alloy powder is adversely affected. On the other hand, if it exceeds 50 mass%, the cost increases due to an increase in the amount of silver used, which is not preferable.

銅合金粉末の粒子径は、(ヘロス法によって)レーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1〜15μmであるのが好ましく、0.3〜10μmであるのがさらに好ましく、1〜5μmであるのが最も好ましい。累積50%粒子径(D50径)が0.1μm未満では、銀被覆銅合金粉末の導電性に悪影響を及ぼすので好ましくない。一方、15μmを超えると、微細な配線の形成が困難になるので好ましくない。 Particle size of the copper alloy powder (by Heroes method) 50% cumulative particle diameter measured by a laser diffraction type particle size distribution apparatus (D 50 diameter) is preferably in the range of 0.1-15, in 0.3~10μm More preferably, it is most preferably 1 to 5 μm. The cumulative 50% particle diameter (D 50 diameter) of less than 0.1 [mu] m, since an adverse effect on the conductivity of the silver-coated copper alloy powder is not preferable. On the other hand, if it exceeds 15 μm, it is not preferable because formation of fine wiring becomes difficult.

銅合金粉末は、湿式還元法、電解法、気相法などにより製造してもよいが、合金成分を溶解温度以上で溶解し、タンディッシュ下部から落下させながら高圧ガスまたは高圧水を衝突させて急冷凝固させることにより微粉末とする、(ガスアトマイズ法、水アトマイズ法などの)所謂アトマイズ法により製造するのが好ましい。特に、高圧水を吹き付ける、所謂水アトマイズ法により製造すると、粒子径が小さい銅合金粉末を得ることができるので、銅合金粉末を導電ペーストに使用した際に粒子間の接触点の増加による導電性の向上を図ることができる。   The copper alloy powder may be manufactured by a wet reduction method, an electrolytic method, a gas phase method, etc., but the alloy components are dissolved at a melting temperature or higher and collided with high-pressure gas or high-pressure water while dropping from the lower part of the tundish. It is preferable to produce by a so-called atomizing method (such as a gas atomizing method or a water atomizing method) to obtain a fine powder by rapid solidification. In particular, copper alloy powder with a small particle size can be obtained by manufacturing by the so-called water atomization method in which high-pressure water is sprayed. Therefore, when copper alloy powder is used in a conductive paste, conductivity due to an increase in contact points between particles is obtained. Can be improved.

銅合金粉末を銀含有層で被覆する方法として、銅と銀の置換反応を利用した還元法や、還元剤を用いる還元法により、銅合金粉末の表面に銀または銀化合物を析出させる方法を使用することができ、例えば、溶媒中に銅合金粉末と銀または銀化合物を含む溶液を攪拌しながら銅合金粉末の表面に銀または銀化合物を析出させる方法や、溶媒中に銅合金粉末および有機物を含む溶液と溶媒中に銀または銀化合物および有機物を含む溶液とを混合して攪拌しながら銅合金粉末の表面に銀または銀化合物を析出させる方法などを使用することができる。   As a method of coating the copper alloy powder with the silver-containing layer, a method of depositing silver or a silver compound on the surface of the copper alloy powder by a reduction method using a substitution reaction between copper and silver or a reduction method using a reducing agent is used. For example, a method of precipitating silver or a silver compound on the surface of a copper alloy powder while stirring a solution containing the copper alloy powder and silver or a silver compound in a solvent, or a method of depositing a copper alloy powder and an organic substance in a solvent. A method of precipitating silver or a silver compound on the surface of a copper alloy powder while mixing and stirring a solution containing silver or a solution containing a silver compound and an organic substance in a solvent can be used.

この溶媒としては、水、有機溶媒またはこれらを混合した溶媒を使用することができる。水と有機溶媒を混合した溶媒を使用する場合には、室温(20〜30℃)において液体になる有機溶媒を使用する必要があるが、水と有機溶媒の混合比率は、使用する有機溶媒により適宜調整することができる。また、溶媒として使用する水は、不純物が混入するおそれがなければ、蒸留水、イオン交換水、工業用水などを使用することができる。   As this solvent, water, an organic solvent, or a solvent in which these are mixed can be used. When using a mixed solvent of water and organic solvent, it is necessary to use an organic solvent that becomes liquid at room temperature (20 to 30 ° C.). The mixing ratio of water and organic solvent depends on the organic solvent used. It can be adjusted appropriately. In addition, as water used as a solvent, distilled water, ion-exchanged water, industrial water, or the like can be used as long as there is no fear that impurities are mixed therein.

銀含有層の原料として、銀イオンを溶液中に存在させる必要があるため、水や多くの有機溶媒に対して高い溶解度を有する硝酸銀を使用するのが好ましい。また、銅合金粉末を銀含有層で被覆する反応(銀被覆反応)をできるだけ均一に行うために、固体の硝酸銀ではなく、硝酸銀を溶媒(水、有機溶媒またはこれらを混合した溶媒)に溶解した硝酸銀溶液を使用するのが好ましい。なお、使用する硝酸銀溶液の量、硝酸銀溶液中の硝酸銀の濃度および有機溶媒の量は、目的とする銀含有層の量に応じて決定することができる。   Since silver ions need to be present in the solution as the raw material for the silver-containing layer, it is preferable to use silver nitrate having high solubility in water and many organic solvents. In addition, in order to carry out the reaction of covering the copper alloy powder with the silver-containing layer (silver coating reaction) as uniformly as possible, silver nitrate was dissolved in a solvent (water, an organic solvent or a mixed solvent thereof) instead of solid silver nitrate. It is preferred to use a silver nitrate solution. The amount of silver nitrate solution used, the concentration of silver nitrate in the silver nitrate solution, and the amount of organic solvent can be determined according to the amount of the target silver-containing layer.

銀含有層をより均一に形成するために、溶液中にキレート化剤を添加してもよい。キレート化剤としては、銀イオンと金属銅との置換反応により副生成する銅イオンなどが再析出しないように、銅イオンなどに対して錯安定度定数が高いキレート化剤を使用するのが好ましい。特に、銀被覆銅合金粉末のコアとなる銅合金粉末は主構成要素として銅を含んでいるので、銅との錯安定度定数に留意してキレート化剤を選択するのが好ましい。具体的には、キレート化剤として、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ジエチレントリアミン、トリエチレンジアミンおよびこれらの塩からなる群から選ばれたキレート化剤を使用することができる。   In order to form the silver-containing layer more uniformly, a chelating agent may be added to the solution. As the chelating agent, it is preferable to use a chelating agent having a high complex stability constant with respect to copper ions or the like so that copper ions or the like by-produced by substitution reaction between silver ions and metallic copper do not reprecipitate. . In particular, since the copper alloy powder serving as the core of the silver-coated copper alloy powder contains copper as a main component, it is preferable to select a chelating agent while paying attention to the complex stability constant with copper. Specifically, a chelating agent selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, diethylenetriamine, triethylenediamine, and salts thereof can be used as the chelating agent.

銀被覆反応を安定かつ安全に行うために、溶液中にpH緩衝剤を添加してもよい。このpH緩衝剤として、炭酸アンモニウム、炭酸水素アンモニウム、アンモニア水、炭酸水素ナトリウムなどを使用することができる。   In order to perform the silver coating reaction stably and safely, a pH buffer may be added to the solution. As this pH buffering agent, ammonium carbonate, ammonium hydrogen carbonate, aqueous ammonia, sodium hydrogen carbonate, or the like can be used.

銀被覆反応の際には、銀塩を添加する前に溶液中に銅合金粉末を入れて攪拌し、銅合金粉末が溶液中に十分に分散している状態で、銀塩を含む溶液を添加するのが好ましい。この銀被覆反応の際の反応温度は、反応液が凝固または蒸発する温度でなければよいが、好ましくは10〜40℃、さらに好ましくは15〜35℃の範囲で設定する。また、反応時間は、銀または銀化合物の被覆量や反応温度によって異なるが、1分〜5時間の範囲で設定することができる。   In the silver coating reaction, before adding the silver salt, the copper alloy powder is put in the solution and stirred, and the solution containing the silver salt is added while the copper alloy powder is sufficiently dispersed in the solution. It is preferable to do this. The reaction temperature in the silver coating reaction may be a temperature at which the reaction solution is solidified or evaporated, but is preferably set in the range of 10 to 40 ° C, more preferably 15 to 35 ° C. Moreover, although reaction time changes with the coating amount of silver or a silver compound, and reaction temperature, it can set in the range of 1 minute-5 hours.

銀被覆銅合金粉末の熱処理は、銀被覆反応の際の反応温度より5〜20℃高いのが好ましく、好ましくは30〜50℃、さらに好ましくは35〜45℃で好ましくは10〜120分間、さらに好ましくは15〜90分間加熱することにより行われる。   The heat treatment of the silver-coated copper alloy powder is preferably 5 to 20 ° C. higher than the reaction temperature in the silver coating reaction, preferably 30 to 50 ° C., more preferably 35 to 45 ° C., preferably 10 to 120 minutes, Preferably it is performed by heating for 15 to 90 minutes.

この熱処理の前または後に、銀含有層で被覆した銅合金粉末を表面処理剤で表面処理するのが好ましく、この表面処理剤が脂肪酸であるのが好ましい。この脂肪酸として、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、エイコサジエン酸、エイコサトリエン酸、エイコサテトラエン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸などを使用することができるが、パルミチン酸、ステアリン酸またはオレイン酸を使用するのが好ましい。   Before or after the heat treatment, the copper alloy powder coated with the silver-containing layer is preferably surface-treated with a surface treatment agent, and the surface treatment agent is preferably a fatty acid. These fatty acids include butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, vaccenic acid , Linoleic acid, linolenic acid, arachidic acid, eicosadienoic acid, eicosatrienoic acid, eicosatetraenoic acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, serotic acid, montanic acid, melicic acid, etc. Although it is possible, it is preferred to use palmitic acid, stearic acid or oleic acid.

表面処理剤の添加量は、銀被覆銅合金粉末に対して0.1〜7質量%であるのが好ましく、0.3〜6質量%であるのがさらに好ましく、0.3〜5質量%であるのが最も好ましい。表面処理は、銀含有層で被覆した銅合金粉末と表面処理剤とを混合して行ってもよいし、銀含有層で被覆した銅合金粉末のスラリーに表面処理剤を添加して行ってもよい。このように銀被覆銅合金粉末を表面処理剤(好ましくは0.1〜7質量%の表面処理剤)で表面処理することにより、タップ密度を高めて分散性を向上させて、導電膜の体積抵抗率を低下させるとともに、耐酸化性を付与して、体積抵抗率の変化率を低下させることができる。   The addition amount of the surface treatment agent is preferably 0.1 to 7% by mass, more preferably 0.3 to 6% by mass, and 0.3 to 5% by mass with respect to the silver-coated copper alloy powder. Most preferably. The surface treatment may be performed by mixing the copper alloy powder coated with the silver-containing layer and the surface treatment agent, or by adding the surface treatment agent to the slurry of the copper alloy powder coated with the silver-containing layer. Good. In this way, by surface-treating the silver-coated copper alloy powder with a surface treatment agent (preferably 0.1 to 7% by mass of a surface treatment agent), the tap density is increased to improve dispersibility, and the volume of the conductive film is increased. The resistivity can be lowered and oxidation resistance can be imparted to reduce the rate of change in volume resistivity.

また、本発明による銀被覆銅合金粉末の実施の形態は、1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末が、7〜50質量%の銀含有層により被覆され、銀含有層の(111)面における結晶子径が40nm以下である。この結晶子径は、15〜40nmであるのが好ましく、18〜38nmであるのがさらに好ましい。   Further, in the embodiment of the silver-coated copper alloy powder according to the present invention, the copper alloy powder having a composition containing at least one of 1 to 50% by mass of nickel and zinc, and the balance of copper and inevitable impurities is 7 to 50%. The crystallite diameter on the (111) plane of the silver-containing layer is 40 nm or less. The crystallite diameter is preferably 15 to 40 nm, and more preferably 18 to 38 nm.

以下、本発明による銀被覆銅合金粉末およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the silver-coated copper alloy powder and the method for producing the same according to the present invention will be described in detail.

[実施例1]
銅7.2kgと亜鉛0.8kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、得られた合金粉末をろ過し、水洗し、乾燥し、解砕し、分級して、銅合金粉末(銅−亜鉛合金粉末)を得た。
[Example 1]
While dropping molten metal heated to 7.2 kg of copper and 0.8 kg of zinc from the bottom of the tundish, high pressure water is sprayed and rapidly solidified. The resulting alloy powder is filtered, washed with water, dried and crushed. Classification was performed to obtain a copper alloy powder (copper-zinc alloy powder).

このようにして得られた(銀被覆前の)銅合金粉末の組成および粒度分布を求めたところ、銅合金粉末中の銅の含有量は90.2質量%、亜鉛の含有量は9.8質量%であり、銅合金粉末はCu90Zn10合金の粉末であった。また、銅合金粉末の累積10%粒子径(D10)は0.6μm、累積50%粒子径(D50)は1.7μm、累積90%粒子径(D90)は3.2μmであった。なお、銅合金粉末中の銅および亜鉛の含有量は、銅合金粉末(約2.5g)を塩化ビニル製リング(内径3.2mm×厚さ4mm)内に敷き詰めた後、錠剤型の成型圧縮機(株式会社前川試験製作所製の型番BRE−50)により100kNの荷重をかけて、銅合金粉末のペレットを作製し、このペレットをサンプルホルダー(開口径3.0cm)に入れて蛍光X線分析装置(株式会社リガク製のRIX2000)内の測定位置にセットし、測定雰囲気を減圧下(8.0Pa)とし、X線出力を50kV、50mAとした条件で測定した結果から、装置に付属のソフトウェアで自動計算することによって求め、ナトリウム未満の軽元素を除いた成分の比率を算出した。また、銅合金粉末の粒度分布は、レーザー回折式粒度分布装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定して、累積10%粒子径(D10)、累積50%粒子径(D50)、累積90%粒子径(D90)を求めた。 When the composition and particle size distribution of the copper alloy powder thus obtained (before silver coating) were determined, the copper content in the copper alloy powder was 90.2 mass%, and the zinc content was 9.8. The copper alloy powder was Cu 90 Zn 10 alloy powder. The cumulative 10% particle size (D 10 ) of the copper alloy powder was 0.6 μm, the cumulative 50% particle size (D 50 ) was 1.7 μm, and the cumulative 90% particle size (D 90 ) was 3.2 μm. . The content of copper and zinc in the copper alloy powder was determined by placing the copper alloy powder (about 2.5 g) in a vinyl chloride ring (inner diameter: 3.2 mm × thickness: 4 mm) and then compressing the tablet mold. A copper alloy powder pellet was produced by applying a load of 100 kN using a machine (model number BRE-50 manufactured by Maekawa Test Co., Ltd.), and this pellet was placed in a sample holder (opening diameter: 3.0 cm) and subjected to fluorescent X-ray analysis. Software attached to the device from the measurement results set in the measurement position in the device (RIX2000 manufactured by Rigaku Co., Ltd.), the measurement atmosphere under reduced pressure (8.0 Pa), and the X-ray output of 50 kV and 50 mA. It calculated | required by calculating automatically and calculated | required the ratio of the component except the light element less than sodium. The particle size distribution of the copper alloy powder is measured by a laser diffraction type particle size distribution device (Hellos particle size distribution measuring device (HELOS & RODOS) manufactured by SYMPATEC), and the cumulative particle size is 10% (D 10 ) and the cumulative particle size is 50%. (D 50 ), cumulative 90% particle diameter (D 90 ) was determined.

また、EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA−2Na二水和物136.5gと炭酸アンモニウム68.2gを純水544gに溶解した溶液に、硝酸銀22.7gを純水70gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。   Further, a solution (solution 1) in which 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate were dissolved in 720 g of pure water, 136.5 g of EDTA-2Na dihydrate and 68.2 g of ammonium carbonate were purified. A solution obtained by adding a solution obtained by dissolving 22.7 g of silver nitrate in 70 g of pure water to a solution dissolved in 544 g of water was prepared (solution 2).

次に、窒素雰囲気下において、得られた銅合金粉末(銅−亜鉛合金粉末)130gを溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅合金粉末(銅−亜鉛合金粉末)が分散した溶液に溶液2を加えて1時間攪拌した後、毎分1℃の昇温速度で45℃まで昇温させ、45℃で15分間保持して熱処理を行い、その後、ろ過し、水洗し、乾燥して、銀被覆銅合金粉末(銀被覆銅−亜鉛合金粉末)を得た。   Next, 130 g of the obtained copper alloy powder (copper-zinc alloy powder) was added to the solution 1 in a nitrogen atmosphere, and the temperature was raised to 35 ° C. while stirring. After adding solution 2 to the solution in which the copper alloy powder (copper-zinc alloy powder) is dispersed and stirring for 1 hour, the temperature is raised to 45 ° C. at a rate of 1 ° C. per minute and held at 45 ° C. for 15 minutes. Then, it was filtered, washed with water, and dried to obtain a silver-coated copper alloy powder (silver-coated copper-zinc alloy powder).

次に、得られた銀被覆銅合金粉末80gとパルミチン酸0.24g(銀被覆銅合金粉末に対して0.3質量%)をカッターミルに入れ、20秒間の解砕を2回行うことによって、パルミチン酸で表面処理された銀被覆銅合金粉末を得た。   Next, 80 g of the obtained silver-coated copper alloy powder and 0.24 g of palmitic acid (0.3% by mass with respect to the silver-coated copper alloy powder) are put into a cutter mill, and pulverized for 20 seconds twice. A silver-coated copper alloy powder surface-treated with palmitic acid was obtained.

このようにして得られた銀被覆銅合金粉末の組成、粒度分布、BET比表面積、タップ密度、酸素含有量、炭素含有量および銀層の結晶子径を求めた。   The composition, particle size distribution, BET specific surface area, tap density, oxygen content, carbon content and silver layer crystallite diameter of the silver-coated copper alloy powder thus obtained were determined.

銀被覆銅合金粉末中の銅および亜鉛の含有量は、銀被覆前の銅合金粉末中の銅および亜鉛の含有量と同様の方法により、銀被覆銅合金粉末のペレットを作製して求めた。また、銀被覆銅合金粉末の断面を集束イオンビーム(FIB)加工観察装置(日本電子株式会社製のJEM−9310FIB)によって加工した後、電界放出形走査電子顕微鏡(FE−SEM)(日本電子株式会社製のJSM−6700F)によって観察したところ、銅合金粉末の表面が銀で被覆されていることが確認された。また、銀被覆銅合金粉末の銀の被覆量も、銀被覆銅合金粉末中の銅および亜鉛の含有量と同様の方法により求めた。その結果、銀被覆銅合金粉末の銀の被覆量は11.0質量%、銅の含有量は81.5質量%、亜鉛の含有量は7.5質量%であった。   The contents of copper and zinc in the silver-coated copper alloy powder were determined by preparing pellets of silver-coated copper alloy powder by the same method as the contents of copper and zinc in the copper alloy powder before silver coating. Further, after processing the cross section of the silver-coated copper alloy powder with a focused ion beam (FIB) processing observation apparatus (JEM-9310FIB manufactured by JEOL Ltd.), a field emission scanning electron microscope (FE-SEM) (JEOL Ltd.) Observation with JSM-6700F) made by the company confirmed that the surface of the copper alloy powder was coated with silver. The silver coating amount of the silver-coated copper alloy powder was also determined by the same method as the copper and zinc contents in the silver-coated copper alloy powder. As a result, the silver coating amount of the silver-coated copper alloy powder was 11.0% by mass, the copper content was 81.5% by mass, and the zinc content was 7.5% by mass.

銀被覆銅合金粉末の粒度分布は、銀被覆前の銅合金粉末の粒度分布と同様の方法により求めた。その結果、銀被覆銅合金粉末の累積10%粒子径(D10)は0.8μm、累積50%粒子径(D50)は2.3μm、累積90%粒子径(D90)は4.1μmであった。 The particle size distribution of the silver-coated copper alloy powder was determined by the same method as the particle size distribution of the copper alloy powder before silver coating. As a result, the silver-coated copper alloy powder has a cumulative 10% particle size (D 10 ) of 0.8 μm, a cumulative 50% particle size (D 50 ) of 2.3 μm, and a cumulative 90% particle size (D 90 ) of 4.1 μm. Met.

銀被覆銅合金粉末のBET比表面積は、BET比表面積測定装置(ユアサイオニクス株式会社製の4ソーブUS)を用いてBET法により求めた。その結果、銀被覆銅合金粉末のBET比表面積は0.54m/gであった。 The BET specific surface area of the silver-coated copper alloy powder was determined by the BET method using a BET specific surface area measuring apparatus (4 Sorb US manufactured by Yours IONICS Inc.). As a result, the BET specific surface area of the silver-coated copper alloy powder was 0.54 m 2 / g.

銀被覆銅合金粉末のタップ密度は、銀被覆銅合金粉末を内径6mmの有底円筒形の容器に充填して銀被覆銅合金粉末層を形成し、この銀被覆銅合金粉末層に上部から0.16N/mの圧力を加えた後、銀被覆銅合金粉末層の高さを測定し、この銀被覆銅合金粉末層の高さの測定値と、充填された銀被覆銅合金粉末の重量とから、銀被覆銅合金粉末の密度を求めて、銀被覆銅合金粉末のタップ密度とした。その結果、銀被覆銅合金粉末のタップ密度は4.2g/cmであった。 The tap density of the silver-coated copper alloy powder is such that the silver-coated copper alloy powder is filled into a bottomed cylindrical container having an inner diameter of 6 mm to form a silver-coated copper alloy powder layer. After applying a pressure of .16 N / m 2 , the height of the silver-coated copper alloy powder layer was measured, the measured value of the silver-coated copper alloy powder layer, and the weight of the filled silver-coated copper alloy powder From the above, the density of the silver-coated copper alloy powder was determined and used as the tap density of the silver-coated copper alloy powder. As a result, the tap density of the silver-coated copper alloy powder was 4.2 g / cm 3 .

銀被覆銅合金粉末中の酸素含有量は、酸素・窒素分析装置(LECO社製のTC−436型)により測定した。その結果、銀被覆銅合金粉末中の酸素含有量は0.14質量%であった。   The oxygen content in the silver-coated copper alloy powder was measured by an oxygen / nitrogen analyzer (TC-436 type manufactured by LECO). As a result, the oxygen content in the silver-coated copper alloy powder was 0.14% by mass.

銀被覆銅合金粉末中の炭素含有量は、炭素・硫黄分析装置(堀場製作所製のEMIA−220V)により測定した。その結果、銀被覆銅合金粉末中の炭素含有量は0.23質量%であった。   The carbon content in the silver-coated copper alloy powder was measured with a carbon / sulfur analyzer (EMIA-220V manufactured by Horiba, Ltd.). As a result, the carbon content in the silver-coated copper alloy powder was 0.23% by mass.

また、得られた銀被覆銅合金粉末の銀層について、X線回折装置(株式会社リガク製のRINT Ultima III)によりCo線源(40kV/30mA)で42〜47°/2θの範囲を測定して、X線回折(XRD)の評価を行った。このX線回折パターンから得られた銀層の(111)面の半価幅βを用いて、Scherrerの式D=(K・λ)/(β・cosθ)から結晶子径(Dx)を算出したところ、結晶子径(Dx)は22nmであった。なお、Scherrerの式において、Dは結晶子径(nm)、λは測定X線波長(nm)、βは結晶子による回折幅の広がり、θは回折角のブラッグ角、KはScherrer定数を示し、この式中の測定X線波長λを1.79nm、Scherrer定数Kを0.94とした。   Moreover, about the silver layer of the obtained silver covering copper alloy powder, the range of 42-47 degrees / 2 (theta) was measured with Co line source (40kV / 30mA) with the X-ray-diffraction apparatus (RINT Ultimate III by Rigaku Corporation). Then, X-ray diffraction (XRD) was evaluated. Using the half width β of the (111) plane of the silver layer obtained from this X-ray diffraction pattern, the crystallite diameter (Dx) is calculated from Scherrer's equation D = (K · λ) / (β · cos θ). As a result, the crystallite diameter (Dx) was 22 nm. In the Scherrer equation, D is the crystallite diameter (nm), λ is the measured X-ray wavelength (nm), β is the diffraction width spread by the crystallite, θ is the Bragg angle of the diffraction angle, and K is the Scherrer constant. In this equation, the measured X-ray wavelength λ was 1.79 nm, and the Scherrer constant K was 0.94.

次に、得られた銀被覆銅合金粉末93gと、熱硬化型樹脂としてビスフェノールF型エポキシ樹脂(株式会社ADEKA製のアデカレジンEP−4901E)8.2gと、三フッ化ホウ素モノエチルアミン0.41gと、溶媒としてブチルカルビトールアセテート2.5gと、オレイン酸0.1gとを混練脱泡機で混合した後、三本ロールを5回パスして均一に分散させることによって導電ペーストを得た。   Next, 93 g of the obtained silver-coated copper alloy powder, 8.2 g of bisphenol F-type epoxy resin (ADEKA RESIN EP-4901E manufactured by ADEKA Corporation) as thermosetting resin, 0.41 g of boron trifluoride monoethylamine, Then, 2.5 g of butyl carbitol acetate as a solvent and 0.1 g of oleic acid were mixed by a kneading defoaming machine, and then a three-roll was passed five times to uniformly disperse to obtain a conductive paste.

この導電ペーストをスクリーン印刷法によってアルミナ基板上に(線幅500μm、線長37.5mmのパターンに)印刷した後、大気中において200℃で40分間焼成して硬化させることによって導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。   This conductive paste is printed on an alumina substrate by a screen printing method (in a pattern having a line width of 500 μm and a line length of 37.5 mm), and then baked and cured in the atmosphere at 200 ° C. for 40 minutes to form a conductive film. The volume resistivity of the obtained conductive film was calculated and the storage stability (reliability) was evaluated.

導電膜の体積抵抗率は、得られた導電膜のライン抵抗をデジタルマルチメーター(株式会社エーディーシー製のAD7451A)により測定し、膜厚を表面粗さ形状測定機(株式会社東京精密製のサーフコム1500DX型)により測定して、体積抵抗率(Ω・cm)=ライン抵抗(Ω)×膜厚(cm)×線幅(cm)/線長(cm)により算出した。その結果、導電膜の体積抵抗率は106μΩ・cmであった。   For the volume resistivity of the conductive film, the line resistance of the obtained conductive film was measured with a digital multimeter (AD7451A manufactured by ADC Corporation), and the film thickness was measured with a surface roughness profile measuring machine (Surfcom manufactured by Tokyo Seimitsu Co., Ltd.) 1500 DX), and volume resistivity (Ω · cm) = line resistance (Ω) × film thickness (cm) × line width (cm) / line length (cm) was calculated. As a result, the volume resistivity of the conductive film was 106 μΩ · cm.

導電膜の保存安定性(信頼性)は、一定温度(150℃)に保たれた試験室内において6週間保存した導電膜の体積抵抗率(6週間保存後の体積抵抗率)を算出し、体積抵抗率の変化率(%)={(6週間保存後の体積抵抗率)−(初期の体積抵抗率)}×100/(初期の体積抵抗率)によって評価した。その結果、6週間保存後の体積抵抗率は222μΩ・cmであり、体積抵抗率の変化率は109%であった。   The storage stability (reliability) of a conductive film is calculated by calculating the volume resistivity (volume resistivity after storage for 6 weeks) of a conductive film stored for 6 weeks in a test chamber maintained at a constant temperature (150 ° C.). Resistivity change rate (%) = {(Volume resistivity after 6 weeks storage) − (Initial volume resistivity)} × 100 / (Initial volume resistivity) As a result, the volume resistivity after storage for 6 weeks was 222 μΩ · cm, and the rate of change in volume resistivity was 109%.

また、導電膜の耐マイグレーション性を評価するために、得られた導電ペーストをスクリーン印刷法によって(96%アルミナからなる)セラミックス基板上に一対の電極パターンを電極間距離2mmになるように印刷した後、大気中において200℃で40分間焼成して硬化させることによって、導電膜からなる一対の電極を作製し、これらの電極間にイオン交換水を1滴滴下して定電圧電源(菊水電子工業株式会社製のPAB32−2A)で直流電圧20Vを印加して、(定電圧電源および電極と直列に接続した)デジタルマルチメーター(エーディーシー株式会社製のAD7451A)で電流値を読み取り、電圧印加時から閾電流値1mAの電流が流れるまでの時間を短絡時間(イオンマイグレーションによる電極間が短絡するまでの時間)として測定した。その結果、導電膜の短絡時間は484秒であった。   In order to evaluate the migration resistance of the conductive film, the obtained conductive paste was printed on a ceramic substrate (made of 96% alumina) by screen printing so that the distance between the electrodes was 2 mm. Then, a pair of electrodes made of a conductive film is prepared by baking and curing at 200 ° C. for 40 minutes in the atmosphere, and a drop of ion-exchanged water is dropped between these electrodes to create a constant voltage power source (Kikusui Electronics Corporation). When a DC voltage of 20V is applied with a PAB32-2A manufactured by Co., Ltd., and the current value is read with a digital multimeter (AD7451A manufactured by ADC Co., Ltd.) connected in series with a constant voltage power supply and electrodes. The time until the current with the threshold current value of 1 mA flows from the short circuit time (until the electrodes are short-circuited by ion migration) It was measured as between). As a result, the short circuit time of the conductive film was 484 seconds.

これらの結果を表1〜表4に示す。   These results are shown in Tables 1 to 4.

Figure 2015021143
Figure 2015021143

Figure 2015021143
Figure 2015021143

Figure 2015021143
Figure 2015021143

Figure 2015021143
Figure 2015021143

[実施例2]
EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA−2Na二水和物307.1gと炭酸アンモニウム153.5gを純水1223gに溶解した溶液に、硝酸銀51.2gを純水158gに溶解した溶液を加えて得られた溶液(溶液2)を用意し、窒素雰囲気下において、実施例1と同様の銅合金粉末(銅−亜鉛合金粉末)130gを溶液1に加えて、攪拌しながら25℃まで昇温させ、この銅合金粉末(銅−亜鉛合金粉末)が分散した溶液に溶液2を加えて1時間攪拌した後、毎分1℃の昇温速度で35℃まで昇温させ、35℃で30分間保持して熱処理を行った以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、酸素含有量、炭素含有量および銀層の結晶子径を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出、導電膜の保存安定性(信頼性)および耐マイグレーション性の評価を行った。
[Example 2]
A solution (solution 1) of 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate dissolved in 720 g of pure water, 307.1 g of EDTA-2Na dihydrate and 153.5 g of ammonium carbonate, 1223 g of pure water A solution obtained by adding 51.2 g of silver nitrate in 158 g of pure water to the solution dissolved in (a solution 2) was prepared, and the same copper alloy powder (copper- 130 g of zinc alloy powder) is added to solution 1 and heated to 25 ° C. while stirring. Solution 2 is added to the solution in which this copper alloy powder (copper-zinc alloy powder) is dispersed and stirred for 1 hour. The silver-coated copper alloy powder obtained in the same manner as in Example 1 except that the temperature was raised to 35 ° C. at a temperature raising rate of 1 ° C. and the heat treatment was performed by holding at 35 ° C. for 30 minutes. Same method as 1 , Composition, particle size distribution, BET specific surface area, tap density, oxygen content, carbon content, and crystallite diameter of the silver layer, and calculation of volume resistivity of the conductive film by the same method as in Example 1, conductivity The storage stability (reliability) and migration resistance of the film were evaluated.

その結果、銀被覆銅合金粉末の銀の被覆量は21.5質量%、銅の含有量は71.6質量%、亜鉛の含有量は6.9質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は3.2μm、累積90%粒子径(D90)は5.4μmであった。また、銀被覆銅合金粉末のBET比表面積は0.44m/g、タップ密度は5.1g/cmであった。また、銀被覆銅合金粉末中の酸素含有量は0.23質量%、炭素含有量は0.23質量%であった。また、銀被覆銅合金粉末の銀層の結晶子径は29nmであった。また、導電膜の体積抵抗率(初期の体積抵抗率)は85μΩ・cmであった。また、6週間保存後の体積抵抗率は113μΩ・cmであり、体積抵抗率の変化率は33%であった。また、導電膜の短絡時間は592秒であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.5% by mass, the copper content was 71.6% by mass, and the zinc content was 6.9% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.3 μm, a cumulative 50% particle diameter (D 50 ) of 3.2 μm, and a cumulative 90% particle diameter (D 90 ) of 5.4 μm. there were. The silver-coated copper alloy powder had a BET specific surface area of 0.44 m 2 / g and a tap density of 5.1 g / cm 3 . The oxygen content in the silver-coated copper alloy powder was 0.23% by mass, and the carbon content was 0.23% by mass. The crystallite diameter of the silver layer of the silver-coated copper alloy powder was 29 nm. Further, the volume resistivity (initial volume resistivity) of the conductive film was 85 μΩ · cm. The volume resistivity after storage for 6 weeks was 113 μΩ · cm, and the rate of change in volume resistivity was 33%. The short-circuit time of the conductive film was 592 seconds. These results are shown in Tables 1 to 4.

[実施例3]
銅6.4kgとニッケル0.8kgと亜鉛0.8kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、得られた合金粉末をろ過し、水洗し、乾燥し、解砕し、分級して、銅合金粉末(銅−ニッケル−亜鉛合金粉末)を得た。
[Example 3]
While dropping molten metal heated from 6.4 kg of copper, 0.8 kg of nickel and 0.8 kg of zinc from the bottom of the tundish, it is rapidly solidified by spraying high pressure water, and the resulting alloy powder is filtered, washed with water and dried. And then pulverized and classified to obtain a copper alloy powder (copper-nickel-zinc alloy powder).

このようにして得られた(銀被覆前の)銅合金粉末の組成および粒度分布を求めたところ、銅合金粉末中の銅の含有量は82.9質量%、ニッケルの含有量は10.2質量%、亜鉛の含有量は6.9質量%であり、銅合金粉末はCu80Ni10Zn10合金の粉末であった。また、銅合金粉末の累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は1.8μm、累積90%粒子径(D90)は3.3μmであった。なお、銅合金粉末中の銅、ニッケルおよび亜鉛の含有量は、実施例1において銅合金粉末中の銅および亜鉛の含有量を求めた方法と同様の方法により求め、銅合金粉末の粒度分布は、実施例1と同様の方法により求めた。 When the composition and particle size distribution of the copper alloy powder thus obtained (before silver coating) were determined, the copper content in the copper alloy powder was 82.9% by mass, and the nickel content was 10.2. The content of mass% and zinc was 6.9 mass%, and the copper alloy powder was a Cu 80 Ni 10 Zn 10 alloy powder. The cumulative 10% particle size (D 10 ) of the copper alloy powder was 0.7 μm, the cumulative 50% particle size (D 50 ) was 1.8 μm, and the cumulative 90% particle size (D 90 ) was 3.3 μm. . The contents of copper, nickel and zinc in the copper alloy powder were determined by the same method as the method for determining the contents of copper and zinc in the copper alloy powder in Example 1, and the particle size distribution of the copper alloy powder was It was determined by the same method as in Example 1.

また、EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA−2Na二水和物307.1gと炭酸アンモニウム153.5gを純水1223gに溶解した溶液に、硝酸銀51.2gを純水158gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。   In addition, a solution (solution 1) in which 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate were dissolved in 720 g of pure water, 307.1 g of EDTA-2Na dihydrate and 153.5 g of ammonium carbonate were purified. A solution (solution 2) obtained by adding a solution obtained by dissolving 51.2 g of silver nitrate in 158 g of pure water to a solution dissolved in 1223 g of water was prepared.

次に、窒素雰囲気下において、得られた銅−ニッケル−亜鉛合金粉末130gを溶液1に加えて、攪拌しながら25℃まで昇温させた。この銅−ニッケル−亜鉛合金粉末が分散した溶液に溶液2を加えて1時間攪拌して後、毎分1℃の昇温速度で35℃まで昇温させ、35℃で90分間保持して熱処理を行い、その後、ろ過し、水洗し、乾燥して、銀被覆銅合金粉末(銀被覆銅−ニッケル−亜鉛合金粉末)を得た。   Next, 130 g of the obtained copper-nickel-zinc alloy powder was added to the solution 1 in a nitrogen atmosphere, and the temperature was raised to 25 ° C. while stirring. Solution 2 was added to the solution in which the copper-nickel-zinc alloy powder was dispersed and stirred for 1 hour, and then heated to 35 ° C. at a rate of 1 ° C. per minute and held at 35 ° C. for 90 minutes for heat treatment. After that, it was filtered, washed with water, and dried to obtain a silver-coated copper alloy powder (silver-coated copper-nickel-zinc alloy powder).

次に、得られた銀被覆銅合金粉末80gとパルミチン酸0.24g(銀被覆銅合金粉末に対して0.3質量%)をカッターミルに入れ、20秒間の解砕を2回行うことによって、パルミチン酸で表面処理された銀被覆銅合金粉末を得た。   Next, 80 g of the obtained silver-coated copper alloy powder and 0.24 g of palmitic acid (0.3% by mass with respect to the silver-coated copper alloy powder) are put into a cutter mill, and pulverized for 20 seconds twice. A silver-coated copper alloy powder surface-treated with palmitic acid was obtained.

このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、酸素含有量、炭素含有量および銀層の結晶子径を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出、導電膜の保存安定性(信頼性)および耐マイグレーション性の評価を行った。   For the silver-coated copper alloy powder thus obtained, the composition, particle size distribution, BET specific surface area, tap density, oxygen content, carbon content, and crystallite diameter of the silver layer were determined in the same manner as in Example 1. While calculating | requiring, by the method similar to Example 1, calculation of the volume resistivity of the electrically conductive film, the storage stability (reliability) of the electrically conductive film, and evaluation of migration resistance were performed.

その結果、銀被覆銅合金粉末の銀の被覆量は22.4質量%、銅の含有量は65.7質量%、ニッケルの含有量は8.2質量%、亜鉛の含有量は3.7質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.9μm、累積50%粒子径(D50)は4.4μm、累積90%粒子径(D90)は7.2μmであった。また、銀被覆銅合金粉末のBET比表面積は0.44m/g、タップ密度は3.7g/cmであった。また、銀被覆銅合金粉末中の酸素含有量は0.29質量%、炭素含有量は0.24質量%であった。また、銀被覆銅合金粉末の銀層の結晶子径は36nmであった。また、導電膜の体積抵抗率(初期の体積抵抗率)は130μΩ・cmであった。また、6週間保存後の体積抵抗率は126μΩ・cmであり、体積抵抗率の変化率は−3%であった。また、導電膜の短絡時間は600秒以上であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.4 mass%, the copper content was 65.7 mass%, the nickel content was 8.2 mass%, and the zinc content was 3.7. It was mass%. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.9 μm, a cumulative 50% particle diameter (D 50 ) of 4.4 μm, and a cumulative 90% particle diameter (D 90 ) of 7.2 μm. there were. The silver-coated copper alloy powder had a BET specific surface area of 0.44 m 2 / g and a tap density of 3.7 g / cm 3 . The oxygen content in the silver-coated copper alloy powder was 0.29% by mass, and the carbon content was 0.24% by mass. The crystallite diameter of the silver layer of the silver-coated copper alloy powder was 36 nm. Moreover, the volume resistivity (initial volume resistivity) of the conductive film was 130 μΩ · cm. The volume resistivity after storage for 6 weeks was 126 μΩ · cm, and the rate of change in volume resistivity was −3%. Moreover, the short circuit time of the electrically conductive film was 600 seconds or more. These results are shown in Tables 1 to 4.

[実施例4]
銅6.8kgとニッケル0.4kgと亜鉛0.8kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、得られた合金粉末をろ過し、水洗し、乾燥し、解砕し、分級して、銅合金粉末(銅−ニッケル−亜鉛合金粉末)を得た。
[Example 4]
A molten metal heated to 6.8 kg of copper, 0.4 kg of nickel and 0.8 kg of zinc is dropped from the lower part of the tundish and sprayed with high pressure water to rapidly solidify it. The resulting alloy powder is filtered, washed with water and dried. And then pulverized and classified to obtain a copper alloy powder (copper-nickel-zinc alloy powder).

このようにして得られた(銀被覆前の)銅合金粉末の組成および粒度分布を求めたところ、銅合金粉末中の銅の含有量は86.0質量%、ニッケルの含有量は4.3質量%、亜鉛の含有量は9.7質量%であり、銅合金粉末はCu85NiZn10合金の粉末であった。また、銅合金粉末の累積10%粒子径(D10)は0.6μm、累積50%粒子径(D50)は1.8μm、累積90%粒子径(D90)は3.4μmであった。なお、銅合金粉末中の銅、ニッケルおよび亜鉛の含有量は、実施例1において銅合金粉末中の銅および亜鉛の含有量を求めた方法と同様の方法により求め、銅合金粉末の粒度分布は、実施例1と同様の方法により求めた。 When the composition and particle size distribution of the copper alloy powder thus obtained (before silver coating) were determined, the copper content in the copper alloy powder was 86.0% by mass, and the nickel content was 4.3. The mass%, the zinc content was 9.7 mass%, and the copper alloy powder was a Cu 85 Ni 5 Zn 10 alloy powder. Further, the cumulative 10% particle diameter (D 10 ) of the copper alloy powder was 0.6 μm, the cumulative 50% particle diameter (D 50 ) was 1.8 μm, and the cumulative 90% particle diameter (D 90 ) was 3.4 μm. . The contents of copper, nickel and zinc in the copper alloy powder were determined by the same method as the method for determining the contents of copper and zinc in the copper alloy powder in Example 1, and the particle size distribution of the copper alloy powder was It was determined by the same method as in Example 1.

次に、窒素雰囲気下において、実施例3と同様の銅合金粉末(銅−ニッケル−亜鉛合金粉末)130gを実施例3と同様の溶液1に加えて、攪拌しながら30℃まで昇温させた。この銅−亜鉛合金粉末が分散した溶液に実施例3と同様の溶液2を加えて20分間攪拌することにより、銀により被覆された銅−亜鉛合金粒子(銀被覆銅合金粒子)を含むスラリーを得た。このスラリーに、オレイン酸をアルコールに溶解させて得られた溶液(オレイン酸濃度3質量%)16.3gを添加し、さらに40分間攪拌して表面処理を行った後、毎分1℃の昇温速度で40℃まで昇温させ、40℃で30分間保持して熱処理を行い、その後、ろ過し、水洗し、窒素雰囲気中において120℃で乾燥して、銀被覆銅合金の乾燥粉末を得た。   Next, in a nitrogen atmosphere, 130 g of the same copper alloy powder (copper-nickel-zinc alloy powder) as in Example 3 was added to Solution 1 as in Example 3, and the temperature was raised to 30 ° C. while stirring. . By adding the same solution 2 as in Example 3 to the solution in which the copper-zinc alloy powder is dispersed and stirring for 20 minutes, a slurry containing copper-zinc alloy particles (silver-coated copper alloy particles) coated with silver is obtained. Obtained. To this slurry, 16.3 g of a solution obtained by dissolving oleic acid in alcohol (oleic acid concentration: 3% by mass) was added, and the mixture was further stirred for 40 minutes for surface treatment. The temperature is raised to 40 ° C at a temperature rate, and heat treatment is performed by holding at 40 ° C for 30 minutes, followed by filtration, washing with water, and drying at 120 ° C in a nitrogen atmosphere to obtain a dry powder of a silver-coated copper alloy It was.

このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、酸素含有量、炭素含有量および銀層の結晶子径を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出、導電膜の保存安定性(信頼性)および耐マイグレーション性の評価を行った。   For the silver-coated copper alloy powder thus obtained, the composition, particle size distribution, BET specific surface area, tap density, oxygen content, carbon content, and crystallite diameter of the silver layer were determined in the same manner as in Example 1. In addition, the volume resistivity of the conductive film, the storage stability (reliability) of the conductive film, and the migration resistance were evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は22.1質量%、銅の含有量は68.2質量%、ニッケルの含有量は3.2質量%、亜鉛の含有量は6.5質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.9μm、累積50%粒子径(D50)は4.3μm、累積90%粒子径(D90)は7.5μmであった。また、銀被覆銅合金粉末のBET比表面積は0.43m/g、タップ密度は4.0g/cmであった。また、銀被覆銅合金粉末中の酸素含有量は0.22質量%、炭素含有量は0.19質量%であった。また、銀被覆銅合金粉末の銀層の結晶子径は30nmであった。また、導電膜の体積抵抗率(初期の体積抵抗率)は80μΩ・cmであった。また、6週間保存後の体積抵抗率は82μΩ・cmであり、体積抵抗率の変化率は3%であった。また、導電膜の短絡時間は600秒以上であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.1% by mass, the copper content was 68.2% by mass, the nickel content was 3.2% by mass, and the zinc content was 6.5%. It was mass%. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.9 μm, a cumulative 50% particle diameter (D 50 ) of 4.3 μm, and a cumulative 90% particle diameter (D 90 ) of 7.5 μm. there were. The silver-coated copper alloy powder had a BET specific surface area of 0.43 m 2 / g and a tap density of 4.0 g / cm 3 . The oxygen content in the silver-coated copper alloy powder was 0.22% by mass, and the carbon content was 0.19% by mass. The crystallite diameter of the silver layer of the silver-coated copper alloy powder was 30 nm. Further, the volume resistivity (initial volume resistivity) of the conductive film was 80 μΩ · cm. The volume resistivity after storage for 6 weeks was 82 μΩ · cm, and the rate of change in volume resistivity was 3%. Moreover, the short circuit time of the electrically conductive film was 600 seconds or more. These results are shown in Tables 1 to 4.

[参考例]
熱処理を行わなかった以外は、実施例1と同様の方法により、得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、酸素含有量、炭素含有量および銀層の結晶子径を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出、導電膜の保存安定性(信頼性)および耐マイグレーション性の評価を行った。
[Reference example]
The silver coated copper alloy powder obtained by the same method as in Example 1 except that no heat treatment was performed, the composition, particle size distribution, BET specific surface area, tap density, oxygen content were obtained in the same manner as in Example 1. The amount of carbon, the carbon content and the crystallite diameter of the silver layer are determined, and the volume resistivity of the conductive film, the storage stability (reliability) of the conductive film, and the evaluation of migration resistance are obtained by the same method as in Example 1. Went.

その結果、銀被覆銅合金粉末の銀の被覆量は10.8質量%、銅の含有量は81.6質量%、亜鉛の含有量は7.6質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は0.8μm、累積50%粒子径(D50)は2.3μm、累積90%粒子径(D90)は4.0μmであった。また、銀被覆銅合金粉末のBET比表面積は0.55m/g、タップ密度は4.4g/cmであった。また、銀被覆銅合金粉末中の酸素含有量は0.15質量%、炭素含有量は0.24質量%であった。また、銀被覆銅合金粉末の銀層の結晶子径は16nmであった。また、導電膜の体積抵抗率(初期の体積抵抗率)は98μΩ・cmであった。また、6週間保存後の体積抵抗率は216μΩ・cmであり、体積抵抗率の変化率は120%であった。また、導電膜の短絡時間は420秒であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 10.8% by mass, the copper content was 81.6% by mass, and the zinc content was 7.6% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 0.8 μm, a cumulative 50% particle diameter (D 50 ) of 2.3 μm, and a cumulative 90% particle diameter (D 90 ) of 4.0 μm. there were. The silver-coated copper alloy powder had a BET specific surface area of 0.55 m 2 / g and a tap density of 4.4 g / cm 3 . The oxygen content in the silver-coated copper alloy powder was 0.15% by mass, and the carbon content was 0.24% by mass. The crystallite diameter of the silver layer of the silver-coated copper alloy powder was 16 nm. Further, the volume resistivity (initial volume resistivity) of the conductive film was 98 μΩ · cm. The volume resistivity after storage for 6 weeks was 216 μΩ · cm, and the rate of change in volume resistivity was 120%. Moreover, the short circuit time of the electrically conductive film was 420 seconds. These results are shown in Tables 1 to 4.

[比較例1]
表面処理された銀被覆銅合金粉末に代えて銀粉を使用した以外は、参考例と同様の方法により得られ銀粉について、実施例1と同様の方法により、粒度分布、BET比表面積、タップ密度、酸素含有量、炭素含有量および銀層の結晶子径を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出、導電膜の保存安定性(信頼性)および耐マイグレーション性の評価を行った。
[Comparative Example 1]
Except for using silver powder in place of the surface-treated silver-coated copper alloy powder, the silver powder obtained by the same method as in the reference example was subjected to the same particle size distribution, BET specific surface area, tap density as in Example 1. While calculating | requiring oxygen content, carbon content, and the crystallite diameter of a silver layer, by the method similar to Example 1, calculation of the volume resistivity of a electrically conductive film, the storage stability (reliability) of a electrically conductive film, and migration resistance Was evaluated.

その結果、銀粉の累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は2.2μm、累積90%粒子径(D90)は4.4μmであった。また、銀粉のBET比表面積は0.57m/g、タップ密度は4.8g/cmであった。また、銀粉中の酸素含有量は0.08質量%、炭素含有量は0.02質量%であった。また、銀被覆銅合金粉末の銀層の結晶子径は121nmであった。また、導電膜の体積抵抗率(初期の体積抵抗率)は26μΩ・cmであった。また、6週間保存後の体積抵抗率は14μΩ・cmであり、体積抵抗率の変化率は−46%であった。また、導電膜の短絡時間は51秒であった。これらの結果を表1〜表4に示す。 As a result, the cumulative 10% particle diameter (D 10 ) of the silver powder was 0.7 μm, the cumulative 50% particle diameter (D 50 ) was 2.2 μm, and the cumulative 90% particle diameter (D 90 ) was 4.4 μm. Moreover, the BET specific surface area of silver powder was 0.57 m < 2 > / g, and the tap density was 4.8 g / cm < 3 >. Moreover, the oxygen content in silver powder was 0.08 mass%, and the carbon content was 0.02 mass%. The crystallite diameter of the silver layer of the silver-coated copper alloy powder was 121 nm. Further, the volume resistivity (initial volume resistivity) of the conductive film was 26 μΩ · cm. The volume resistivity after storage for 6 weeks was 14 μΩ · cm, and the rate of change in volume resistivity was −46%. Moreover, the short circuit time of the electrically conductive film was 51 seconds. These results are shown in Tables 1 to 4.

[比較例2]
銅合金粉末に代えて銅粉を使用した以外は、参考例と同様の方法により得られた銀被覆銅粉について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、酸素含有量、炭素含有量および銀層の結晶子径を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出、導電膜の保存安定性(信頼性)および耐マイグレーション性の評価を行った。
[Comparative Example 2]
Except for using copper powder instead of copper alloy powder, the composition, particle size distribution, BET specific surface area, tap density of silver-coated copper powder obtained by the same method as in the Reference Example were the same as in Example 1. In addition to obtaining the oxygen content, carbon content, and crystallite diameter of the silver layer, calculation of the volume resistivity of the conductive film, storage stability (reliability) of the conductive film, and migration resistance were performed in the same manner as in Example 1. Sexuality was evaluated.

その結果、銀被覆銅粉の銀の被覆量は11.3質量%、銅の含有量は88.7質量%であった。また、銀被覆銅粉の累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は2.7μm、累積90%粒子径(D90)は4.9μmであった。また、銀被覆銅粉のBET比表面積は0.72m/g、タップ密度は3.5g/cmであった。また、銀被覆銅粉中の酸素含有量は0.17質量%、炭素含有量は0.25質量%であった。また、銀被覆銅合金粉末の銀層の結晶子径は30nmであった。また、導電膜の体積抵抗率(初期の体積抵抗率)は154μΩ・cmであった。また、6週間保存後の体積抵抗率は687μΩ・cmであり、体積抵抗率の変化率は346%であった。また、導電膜の短絡時間は291秒であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper powder was 11.3% by mass, and the copper content was 88.7% by mass. The silver-coated copper powder had a cumulative 10% particle diameter (D 10 ) of 1.2 μm, a cumulative 50% particle diameter (D 50 ) of 2.7 μm, and a cumulative 90% particle diameter (D 90 ) of 4.9 μm. It was. The silver-coated copper powder had a BET specific surface area of 0.72 m 2 / g and a tap density of 3.5 g / cm 3 . The oxygen content in the silver-coated copper powder was 0.17% by mass, and the carbon content was 0.25% by mass. The crystallite diameter of the silver layer of the silver-coated copper alloy powder was 30 nm. Further, the volume resistivity (initial volume resistivity) of the conductive film was 154 μΩ · cm. The volume resistivity after storage for 6 weeks was 687 μΩ · cm, and the rate of change in volume resistivity was 346%. The short-circuit time of the conductive film was 291 seconds. These results are shown in Tables 1 to 4.

[比較例3]
EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA−2Na二水和物307.1gと炭酸アンモニウム153.5gを純水1223gに溶解した溶液に、硝酸銀51.2gを純水158gに溶解した溶液を加えて得られた溶液(溶液2)を用意し、窒素雰囲気下において、比較例2と同様の銅粉130gを溶液1に加えた以外は、参考例と同様の方法により得られた銀被覆銅粉について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、酸素含有量、炭素含有量および銀層の結晶子径を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出、導電膜の保存安定性(信頼性)および耐マイグレーション性の評価を行った。
[Comparative Example 3]
A solution (solution 1) of 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate dissolved in 720 g of pure water, 307.1 g of EDTA-2Na dihydrate and 153.5 g of ammonium carbonate, 1223 g of pure water A solution obtained by adding a solution obtained by dissolving 51.2 g of silver nitrate in 158 g of pure water to the solution dissolved in (1) was prepared, and 130 g of copper powder similar to that in Comparative Example 2 was added to solution 1 in a nitrogen atmosphere. For the silver-coated copper powder obtained by the same method as in Reference Example, except for the above, the composition, the particle size distribution, the BET specific surface area, the tap density, the oxygen content, the carbon content by the same method as in Example 1. In addition, the crystallite size of the silver layer was obtained, and the volume resistivity of the conductive film was calculated, the storage stability (reliability) of the conductive film and the migration resistance were evaluated by the same method as in Example 1. .

その結果、銀被覆銅粉の銀の被覆量は21.7質量%、銅の含有量は78.3質量%であった。また、銀被覆銅粉の累積10%粒子径(D10)は1.7μm、累積50%粒子径(D50)は3.6μm、累積90%粒子径(D90)は6.0μmであった。また、銀被覆銅粉のBET比表面積は0.51m/g、タップ密度は4.1g/cmであった。また、銀被覆銅粉中の酸素含有量は0.25質量%、炭素含有量は0.17質量%であった。また、銀被覆銅合金粉末の銀層の結晶子径は32nmであった。また、導電膜の体積抵抗率(初期の体積抵抗率)は135μΩ・cmであった。また、6週間保存後の体積抵抗率は530μΩ・cmであり、体積抵抗率の変化率は293%であった。また、導電膜の短絡時間は191秒であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper powder was 21.7% by mass, and the copper content was 78.3% by mass. The silver-coated copper powder had a cumulative 10% particle diameter (D 10 ) of 1.7 μm, a cumulative 50% particle diameter (D 50 ) of 3.6 μm, and a cumulative 90% particle diameter (D 90 ) of 6.0 μm. It was. The silver-coated copper powder had a BET specific surface area of 0.51 m 2 / g and a tap density of 4.1 g / cm 3 . The oxygen content in the silver-coated copper powder was 0.25% by mass, and the carbon content was 0.17% by mass. The crystallite diameter of the silver layer of the silver-coated copper alloy powder was 32 nm. Further, the volume resistivity (initial volume resistivity) of the conductive film was 135 μΩ · cm. The volume resistivity after storage for 6 weeks was 530 μΩ · cm, and the rate of change in volume resistivity was 293%. Moreover, the short circuit time of the electrically conductive film was 191 seconds. These results are shown in Tables 1 to 4.

表1〜表4からわかるように、実施例1〜6の銀被覆銅合金粉末では、導電膜の体積抵抗率(初期の体積抵抗率)が低く、導電膜の体積抵抗率の変化率が低く(保存安定性に優れており)、且つ導電膜の短絡時間が非常に長く、耐マイグレーション性に優れている。参考例の銀被覆銅合金粉末と比べると、導電膜の短絡時間が延びて、耐マイグレーション性が向上しているのがわかる。また、比較例1の銀粉と比べると、導電膜の体積抵抗率やその変化率が高くなっているものの、導電膜の短絡時間が大幅に延びて、耐マイグレーション性が大幅に向上しているのがわかる。また、比較例2〜3の銀被覆銅粉と比べると、(同じ銀量であれば)導電膜の体積抵抗率が低くなり、導電膜の体積抵抗率の変化率も低くなって保存安定性が向上しているのに加えて、導電膜の短絡時間が大幅に延びて、耐マイグレーション性も大幅に向上しているのがわかる。   As can be seen from Tables 1 to 4, in the silver-coated copper alloy powders of Examples 1 to 6, the volume resistivity (initial volume resistivity) of the conductive film is low, and the change rate of the volume resistivity of the conductive film is low. (The storage stability is excellent), and the short-circuit time of the conductive film is very long, and the migration resistance is excellent. Compared with the silver-coated copper alloy powder of the reference example, it can be seen that the short-circuit time of the conductive film is extended and the migration resistance is improved. Moreover, compared with the silver powder of the comparative example 1, although the volume resistivity of the electrically conductive film and its change rate are high, the short circuit time of the electrically conductive film is greatly extended, and the migration resistance is greatly improved. I understand. In addition, when compared with the silver-coated copper powders of Comparative Examples 2 to 3, the volume resistivity of the conductive film is low (if the amount of silver is the same), and the change rate of the volume resistivity of the conductive film is also low, so that the storage stability is reduced. It can be seen that the short circuit time of the conductive film is greatly extended and the migration resistance is also greatly improved.

Claims (8)

1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を7〜50質量%の銀含有層により被覆した後、銀含有層で被覆した銅合金粉末を熱処理することを特徴とする、銀被覆銅合金粉末の製造方法。 A copper alloy powder having a composition comprising at least one of nickel and zinc of 1 to 50% by mass and the balance consisting of copper and inevitable impurities was coated with a silver containing layer of 7 to 50% by mass, and then coated with a silver containing layer. A method for producing a silver-coated copper alloy powder, comprising heat-treating a copper alloy powder. 前記銀含有層が銀または銀化合物からなる層であることを特徴とする、請求項1に記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to claim 1, wherein the silver-containing layer is a layer made of silver or a silver compound. 前記熱処理が、30〜50℃で10〜120分間加熱することにより行われることを特徴とする、請求項1または2に記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to claim 1 or 2, wherein the heat treatment is performed by heating at 30 to 50 ° C for 10 to 120 minutes. 前記熱処理の前または後に、前記銀含有層で被覆した銅合金粉末を表面処理剤で表面処理することを特徴とする、請求項1乃至3のいずれかに記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to any one of claims 1 to 3, wherein the copper alloy powder coated with the silver-containing layer is surface-treated with a surface treatment agent before or after the heat treatment. . 前記表面処理剤が脂肪酸であることを特徴とする、請求項4に記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to claim 4, wherein the surface treatment agent is a fatty acid. 前記銅合金粉末をアトマイズ法により製造することを特徴とする、請求項1乃至5のいずれかに記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to any one of claims 1 to 5, wherein the copper alloy powder is produced by an atomizing method. 前記銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1〜15μmであることを特徴とする、請求項1乃至6のいずれかに記載の銀被覆銅合金粉末の製造方法。 The silver according to any one of claims 1 to 6, wherein a cumulative 50% particle diameter (D50 diameter) of the copper alloy powder measured by a laser diffraction particle size distribution apparatus is 0.1 to 15 µm. A method for producing a coated copper alloy powder. 1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末が、7〜50質量%の銀含有層により被覆され、銀含有層の(111)面における結晶子径が40nm以下であることを特徴とする、銀被覆銅合金粉末。 A copper alloy powder having a composition comprising at least one of nickel and zinc of 1 to 50% by mass and the balance of copper and inevitable impurities is coated with a silver containing layer of 7 to 50% by mass, and (111 The silver-coated copper alloy powder is characterized by having a crystallite diameter in the plane of 40 nm or less.
JP2013147877A 2013-07-16 2013-07-16 Silver-coated copper alloy powder and method for producing the same Active JP6224933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013147877A JP6224933B2 (en) 2013-07-16 2013-07-16 Silver-coated copper alloy powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147877A JP6224933B2 (en) 2013-07-16 2013-07-16 Silver-coated copper alloy powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015021143A true JP2015021143A (en) 2015-02-02
JP6224933B2 JP6224933B2 (en) 2017-11-01

Family

ID=52485865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147877A Active JP6224933B2 (en) 2013-07-16 2013-07-16 Silver-coated copper alloy powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6224933B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176093A (en) * 2015-03-19 2016-10-06 Dowaエレクトロニクス株式会社 Silver-covered metal powder and method for producing the same
JP2017179555A (en) * 2016-03-31 2017-10-05 三井金属鉱業株式会社 Silver coat copper powder
WO2017170398A1 (en) * 2016-03-29 2017-10-05 タツタ電線株式会社 Conductive coating material and production method for shielded package using conductive coating material
WO2017179524A1 (en) * 2016-04-12 2017-10-19 Dowaエレクトロニクス株式会社 Silver-coated copper powder and method for producing same
WO2018043681A1 (en) * 2016-08-31 2018-03-08 Dowaエレクトロニクス株式会社 Silver-coated alloy powder, conductive paste, electronic component, and electrical device
KR102040020B1 (en) * 2018-08-29 2019-11-04 주식회사 영동테크 Metal nano powder including solid solution of Ag and Cu
CN112071465A (en) * 2020-09-18 2020-12-11 西安宏星电子浆料科技股份有限公司 Silver migration resistant sheet resistor front electrode slurry containing nickel-containing alloy powder
WO2024048851A1 (en) * 2022-08-29 2024-03-07 정연학 Method for producing co-firable copper-zinc alloy powder for multilayer ceramic device, copper-zinc alloy powder produced thereby, electrode paste comprising same, and multilayer ceramic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7343191B2 (en) 2019-01-17 2023-09-12 日本分光株式会社 Static mixer for liquid chromatography

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167702A (en) * 1984-09-07 1986-04-07 Mitsui Mining & Smelting Co Ltd Electrically conductive powder and electrically conductive composition using said powder
JPS62179566A (en) * 1986-01-31 1987-08-06 Toyobo Co Ltd Electrically conductive resin composition
JPH0378906A (en) * 1989-08-23 1991-04-04 Furukawa Electric Co Ltd:The Conductive paste
JPH0480303A (en) * 1990-07-24 1992-03-13 Mitsui Mining & Smelting Co Ltd Manufacture of copper powder coated with silver
US5945158A (en) * 1996-01-16 1999-08-31 N.V. Union Miniere S.A. Process for the production of silver coated particles
JP2004131781A (en) * 2002-10-09 2004-04-30 Catalysts & Chem Ind Co Ltd New metallic particulate and method for manufacturing the particulate
JP2006183110A (en) * 2004-12-28 2006-07-13 Mitsui Mining & Smelting Co Ltd Silver-copper composite powder and method for producing silver-copper composite powder
JP2011006740A (en) * 2009-06-25 2011-01-13 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, and conductive paste
WO2012023566A1 (en) * 2010-08-20 2012-02-23 三菱マテリアル株式会社 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP2012167337A (en) * 2011-02-15 2012-09-06 Dowa Electronics Materials Co Ltd Method of manufacturing silver coated flake copper powder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167702A (en) * 1984-09-07 1986-04-07 Mitsui Mining & Smelting Co Ltd Electrically conductive powder and electrically conductive composition using said powder
JPS62179566A (en) * 1986-01-31 1987-08-06 Toyobo Co Ltd Electrically conductive resin composition
JPH0378906A (en) * 1989-08-23 1991-04-04 Furukawa Electric Co Ltd:The Conductive paste
JPH0480303A (en) * 1990-07-24 1992-03-13 Mitsui Mining & Smelting Co Ltd Manufacture of copper powder coated with silver
US5945158A (en) * 1996-01-16 1999-08-31 N.V. Union Miniere S.A. Process for the production of silver coated particles
JP2004131781A (en) * 2002-10-09 2004-04-30 Catalysts & Chem Ind Co Ltd New metallic particulate and method for manufacturing the particulate
JP2006183110A (en) * 2004-12-28 2006-07-13 Mitsui Mining & Smelting Co Ltd Silver-copper composite powder and method for producing silver-copper composite powder
JP2011006740A (en) * 2009-06-25 2011-01-13 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, and conductive paste
WO2012023566A1 (en) * 2010-08-20 2012-02-23 三菱マテリアル株式会社 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP2012167337A (en) * 2011-02-15 2012-09-06 Dowa Electronics Materials Co Ltd Method of manufacturing silver coated flake copper powder

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021113358A (en) * 2015-03-19 2021-08-05 Dowaエレクトロニクス株式会社 Silver-covered metal powder and method for producing the same
JP2016176093A (en) * 2015-03-19 2016-10-06 Dowaエレクトロニクス株式会社 Silver-covered metal powder and method for producing the same
JP7042945B2 (en) 2015-03-19 2022-03-28 Dowaエレクトロニクス株式会社 Silver-coated metal powder and its manufacturing method
WO2017170398A1 (en) * 2016-03-29 2017-10-05 タツタ電線株式会社 Conductive coating material and production method for shielded package using conductive coating material
JP2017179361A (en) * 2016-03-29 2017-10-05 タツタ電線株式会社 Conductive coating and manufacturing method of shield package using the same
US11370926B2 (en) 2016-03-29 2022-06-28 Tatsuta Electric Wire & Cable Co., Ltd. Conductive coating material and production method for shielded package using conductive coating material
JP2017179555A (en) * 2016-03-31 2017-10-05 三井金属鉱業株式会社 Silver coat copper powder
JP2017190483A (en) * 2016-04-12 2017-10-19 Dowaエレクトロニクス株式会社 Silver-coated copper powder and method for producing the same
WO2017179524A1 (en) * 2016-04-12 2017-10-19 Dowaエレクトロニクス株式会社 Silver-coated copper powder and method for producing same
US11041229B2 (en) 2016-08-31 2021-06-22 Dowa Electronics Materials Co., Ltd. Silver-coated alloy powder, electrically conductive paste, electronic part, and electric device
EP3508286A4 (en) * 2016-08-31 2020-02-19 Dowa Electronics Materials Co., Ltd. Silver-coated alloy powder, conductive paste, electronic component, and electrical device
KR20190040982A (en) * 2016-08-31 2019-04-19 도와 일렉트로닉스 가부시키가이샤 Silver alloy powder, conductive paste, electronic parts and electric devices
JP2018040056A (en) * 2016-08-31 2018-03-15 Dowaエレクトロニクス株式会社 Silver-coated alloy powder, conductive paste, electronic component and electric device
KR102295909B1 (en) * 2016-08-31 2021-08-30 도와 일렉트로닉스 가부시키가이샤 Silver-coated alloy powder, conductive paste, electronic components and electrical devices
TWI741023B (en) * 2016-08-31 2021-10-01 日商同和電子科技股份有限公司 Silver coated alloy powder, conductive paste, electronic component and electrical device
WO2018043681A1 (en) * 2016-08-31 2018-03-08 Dowaエレクトロニクス株式会社 Silver-coated alloy powder, conductive paste, electronic component, and electrical device
CN109689250A (en) * 2016-08-31 2019-04-26 同和电子科技有限公司 The coating alloy powder of silver, conductive paste, electronic component and electric device
KR102040020B1 (en) * 2018-08-29 2019-11-04 주식회사 영동테크 Metal nano powder including solid solution of Ag and Cu
WO2020045728A1 (en) * 2018-08-29 2020-03-05 주식회사 영동테크 Metal nanopowder comprising solid solution of silver and copper
CN112071465A (en) * 2020-09-18 2020-12-11 西安宏星电子浆料科技股份有限公司 Silver migration resistant sheet resistor front electrode slurry containing nickel-containing alloy powder
WO2024048851A1 (en) * 2022-08-29 2024-03-07 정연학 Method for producing co-firable copper-zinc alloy powder for multilayer ceramic device, copper-zinc alloy powder produced thereby, electrode paste comprising same, and multilayer ceramic device

Also Published As

Publication number Publication date
JP6224933B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
JP5934829B2 (en) Silver-coated copper alloy powder and method for producing the same
KR101671324B1 (en) Copper powder
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
TWI778997B (en) Copper powder, method for producing the copper powder, conductive paste using the copper powder, and method for producing conductive film using the conductive paste
JP2020076155A (en) Silver-coated copper powder and method for producing the same
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
JPWO2010004852A1 (en) Copper powder for conductive paste and conductive paste
JP7272834B2 (en) Silver powder and its manufacturing method
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP6159505B2 (en) Flat copper particles
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP6549924B2 (en) Silver-coated copper powder and method for producing the same
JP5785433B2 (en) Low carbon copper particles
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP6577316B2 (en) Copper powder for conductive paste and method for producing the same
JP2017201062A (en) Method for producing silver-coated copper alloy powder
JP2017179555A (en) Silver coat copper powder
JP2017210686A (en) Silver-coated copper alloy powder and production method therefor
JP2021014634A (en) Surface-treated copper powder
WO2016114106A1 (en) Silver-coated copper powder and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171006

R150 Certificate of patent or registration of utility model

Ref document number: 6224933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250