JP7042945B2 - Silver-coated metal powder and its manufacturing method - Google Patents

Silver-coated metal powder and its manufacturing method Download PDF

Info

Publication number
JP7042945B2
JP7042945B2 JP2021049786A JP2021049786A JP7042945B2 JP 7042945 B2 JP7042945 B2 JP 7042945B2 JP 2021049786 A JP2021049786 A JP 2021049786A JP 2021049786 A JP2021049786 A JP 2021049786A JP 7042945 B2 JP7042945 B2 JP 7042945B2
Authority
JP
Japan
Prior art keywords
silver
copper
powder
coated
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021049786A
Other languages
Japanese (ja)
Other versions
JP2021113358A (en
Inventor
英幸 藤本
孝造 尾木
健一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2021049786A priority Critical patent/JP7042945B2/en
Publication of JP2021113358A publication Critical patent/JP2021113358A/en
Application granted granted Critical
Publication of JP7042945B2 publication Critical patent/JP7042945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銀被覆金属粉末およびその製造方法に関し、特に、導電ペーストなどに使用する銀被覆銅粉または銀被覆銅合金粉末およびその製造方法に関する。 The present invention relates to a silver-coated metal powder and a method for producing the same, and more particularly to a silver-coated copper powder or a silver-coated copper alloy powder used for a conductive paste or the like and a method for producing the same.

従来、印刷法などにより電子部品の電極や配線を形成するために、銀粉や銅粉などの導電性の金属粉末に溶剤、樹脂、分散剤などを配合して作製した導電ペーストが使用されている。 Conventionally, in order to form electrodes and wiring of electronic parts by a printing method or the like, a conductive paste prepared by mixing a solvent, a resin, a dispersant, etc. with a conductive metal powder such as silver powder or copper powder has been used. ..

しかし、銀粉は、体積抵抗率が極めて小さく、良好な導電性物質であるが、貴金属の粉末であるため、コストが高くなる。一方、銅粉は、体積抵抗率が低く、良好な導電性物質であるが、酸化され易いため、銀粉に比べて保存安定性(信頼性)に劣っている。 However, although silver powder has an extremely low volume resistivity and is a good conductive substance, it is a precious metal powder, so that the cost is high. On the other hand, copper powder has a low volume resistivity and is a good conductive substance, but it is easily oxidized, so that it is inferior in storage stability (reliability) to silver powder.

これらの問題を解消するために、導電ペーストに使用する金属粉末として、銅または銅合金の粉末の表面を銀で被覆した銀被覆金属粉末が使用されている。 In order to solve these problems, silver-coated metal powder in which the surface of copper or copper alloy powder is coated with silver is used as the metal powder used for the conductive paste.

しかし、従来の銀被覆金属粉末では、銅または銅合金の粉末の表面に銀単独の層が存在するため、耐マイグレーション性が悪くなるという問題がある。 However, the conventional silver-coated metal powder has a problem that migration resistance is deteriorated because a layer of silver alone is present on the surface of the powder of copper or a copper alloy.

このような問題を解消するため、表面に銀を被着した銅粒子からなる銀被着銅粉を非酸化性雰囲気中150~600℃の温度で熱処理することによって銀拡散銅粉を製造する方法(例えば、特許文献1参照)や、銀コート銅粉を湿式還元雰囲気中で加熱する方法が提案されている(例えば、特許文献2参照)。 In order to solve such a problem, a method for producing silver-diffused copper powder by heat-treating a silver-coated copper powder composed of copper particles coated with silver on the surface at a temperature of 150 to 600 ° C. in a non-oxidizing atmosphere. (For example, see Patent Document 1) and a method of heating silver-coated copper powder in a wet reducing atmosphere has been proposed (see, for example, Patent Document 2).

特開2001-11502号公報(段落番号0006)Japanese Unexamined Patent Publication No. 2001-11502 (paragraph number 0006) 特開2003-105404号公報(段落番号0017)Japanese Unexamined Patent Publication No. 2003-105404 (paragraph number 0017)

しかし、特許文献1の方法により製造した銀拡散銅粉や、特許文献2の銀コート銅粉などの従来の銀被覆金属粉末は、粒子同士が焼結し易く、導電ペーストの導電性粉体として使用した場合に、銀被覆金属粉末の分散性が低下したり、また、導電ペーストの粘度が経時的に増大して、導電ペーストとして使用するのが困難になるという問題があった。 However, in the conventional silver-coated metal powders such as the silver-diffused copper powder produced by the method of Patent Document 1 and the silver-coated copper powder of Patent Document 2, the particles are easily sintered with each other, and the particles are used as the conductive powder of the conductive paste. When used, there are problems that the dispersibility of the silver-coated metal powder decreases and the viscosity of the conductive paste increases with time, making it difficult to use as the conductive paste.

したがって、本発明は、このような従来の問題点に鑑み、粒子同士が焼結し難く且つ導電ペーストに使用した場合にその導電ペーストの粘度の経時的な増大を抑制することができる銀被覆金属粉末およびその製造方法を提供することを目的とする。 Therefore, in view of such conventional problems, the present invention is a silver-coated metal that makes it difficult for particles to sinter with each other and can suppress an increase in the viscosity of the conductive paste over time when used in a conductive paste. It is an object of the present invention to provide a powder and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、銅または銅合金の粉末を銀含有層により被覆した後、銀含有層で被覆した銅または銅合金の粉末を還元性雰囲気下において60~160℃で0.5~50時間加熱して表面改質を行うことにより、粒子同士が焼結し難く且つ導電ペーストに使用した場合にその導電ペーストの粘度の経時的な増大を抑制することができる銀被覆金属粉末を製造することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have coated a copper or copper alloy powder with a silver-containing layer, and then coated the copper or copper alloy powder with the silver-containing layer in a reducing atmosphere. By heating at 60 to 160 ° C. for 0.5 to 50 hours to modify the surface, it is difficult for the particles to be sintered and the increase in the viscosity of the conductive paste over time is suppressed when it is used for the conductive paste. We have found that it is possible to produce a silver-coated metal powder that can be used, and have completed the present invention.

すなわち、本発明による銀被覆金属粉末の製造方法は、銅または銅合金の粉末を銀含有層により被覆した後、銀含有層で被覆した銅または銅合金の粉末を還元性雰囲気下において60~160℃で0.5~50時間加熱して表面改質を行うことを特徴とする。 That is, in the method for producing a silver-coated metal powder according to the present invention, copper or a copper alloy powder is coated with a silver-containing layer, and then the copper or copper alloy powder coated with the silver-containing layer is 60 to 160 in a reducing atmosphere. It is characterized in that surface modification is performed by heating at ° C. for 0.5 to 50 hours.

この銀被覆金属粉末の製造方法において、銀含有層の被覆量が、銀含有層で被覆した銅または銅合金の粉末に対して7~50質量%であるのが好ましく、銀含有層が銀または銀化合物からなる層であるのが好ましい。また、銅合金が、1~50質量%の亜鉛を含み、残部が銅および不可避不純物からなる組成を有するのが好ましい。また、還元性雰囲気が水素雰囲気であるのが好ましく、表面改質の前または後に、銀含有層で被覆した銅または銅合金の粉末を表面処理剤で表面処理するのが好ましい。また、銅または銅合金の粉末をアトマイズ法により製造するのが好ましく、銅または銅合金の粉末のレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が0.1~15μmであるのが好ましい。 In this method for producing a silver-coated metal powder, the coating amount of the silver-containing layer is preferably 7 to 50% by mass with respect to the powder of copper or a copper alloy coated with the silver-containing layer, and the silver-containing layer is silver or It is preferably a layer made of a silver compound. Further, it is preferable that the copper alloy contains 1 to 50% by mass of zinc, and the balance is composed of copper and unavoidable impurities. Further, the reducing atmosphere is preferably a hydrogen atmosphere, and it is preferable to surface-treat a copper or copper alloy powder coated with a silver-containing layer with a surface treatment agent before or after surface modification. Further, it is preferable to produce copper or copper alloy powder by an atomizing method, and the volume-based cumulative 50% particle diameter (D 50 diameter) measured by a laser diffraction type particle size distribution device for copper or copper alloy powder is 0.1. It is preferably ~ 15 μm.

また、本発明による銀被覆金属粉末は、銅または銅合金の粉末が銀含有層により被覆され、粒子形状を真球としてBET比表面積から算出した粒子径DBET(μm)に対するレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)の比(D50/DBET)が3.5以下であり、pH0の硫酸水溶液に30分間浸漬したときの銅イオン溶出量が450mg/L以下であることを特徴とする。 Further, in the silver-coated metal powder according to the present invention, copper or a copper alloy powder is coated with a silver-containing layer, and a laser diffraction type particle size distribution with respect to a particle size DBET (μm) calculated from a BET specific surface area with the particle shape as a true sphere is obtained. The ratio (D 50 / D BET ) of the volume-based cumulative 50% particle diameter (D 50 diameter) measured by the apparatus is 3.5 or less, and the copper ion elution amount when immersed in a sulfuric acid aqueous solution of pH 0 for 30 minutes is 450 mg. It is characterized by being less than / L.

この銀被覆金属粉末において、銀含有層の被覆量が、銀含有層で被覆した銅または銅合金の粉末に対して7~50質量%であるのが好ましく、銀含有層が銀または銀化合物からなる層であるのが好ましい。また、銅合金が、1~50質量%の亜鉛を含み、残部が銅および不可避不純物からなる組成を有するのが好ましい。また、銅または銅合金の粉末のレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が0.1~15μmであるのが好ましい。 In this silver-coated metal powder, the coating amount of the silver-containing layer is preferably 7 to 50% by mass with respect to the powder of copper or copper alloy coated with the silver-containing layer, and the silver-containing layer is made of silver or a silver compound. It is preferably a layer consisting of. Further, it is preferable that the copper alloy contains 1 to 50% by mass of zinc, and the balance is composed of copper and unavoidable impurities. Further, it is preferable that the volume-based cumulative 50% particle diameter (D 50 diameter) measured by a laser diffraction type particle size distribution device for copper or copper alloy powder is 0.1 to 15 μm.

さらに、本発明による導電ペーストは、樹脂と溶剤および反応性希釈剤の少なくとも一方とを含み、導電性粉体として上記の銀被覆金属粉末を含むことを特徴とする。 Further, the conductive paste according to the present invention is characterized by containing a resin, a solvent and at least one of a reactive diluent, and containing the above-mentioned silver-coated metal powder as the conductive powder.

本発明によれば、粒子同士が焼結し難く且つ導電ペーストに使用した場合にその導電ペーストの粘度の経時的な増大を抑制することができる銀被覆金属粉末およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a silver-coated metal powder and a method for producing the same, which are difficult to sinter the particles together and can suppress an increase in the viscosity of the conductive paste over time when used in a conductive paste. can.

本発明による銀被覆金属粉末の製造方法の実施の形態では、銅または銅合金の粉末を銀含有層により被覆した後、銀含有層で被覆した銅または銅合金の粉末を還元性雰囲気下において60~160℃で0.5~50時間加熱して表面改質を行う。 In the embodiment of the method for producing a silver-coated metal powder according to the present invention, a copper or copper alloy powder is coated with a silver-containing layer, and then the copper or copper alloy powder coated with the silver-containing layer is coated in a reducing atmosphere. Surface modification is performed by heating at ~ 160 ° C. for 0.5 to 50 hours.

この銀被覆金属粉末の製造方法において、銀含有層は、銀または銀化合物からなる層であるのが好ましい。また、銀含有層の被覆量は、銀含有層で被覆した銅または銅合金の粉末に対して7~50質量%であるのが好ましく、8~45質量%であるのがさらに好ましく、9~40質量%であるのが最も好ましい。銀含有層の被覆量が7質量%未満では、銀被覆金属粉末の導電性に悪影響を及ぼすので好ましくない。一方、50質量%を超えると、銀の使用量の増加によってコストが高くなるので好ましくない。 In this method for producing a silver-coated metal powder, the silver-containing layer is preferably a layer made of silver or a silver compound. The coating amount of the silver-containing layer is preferably 7 to 50% by mass, more preferably 8 to 45% by mass, and 9 to 9 to 50% by mass with respect to the powder of copper or copper alloy coated with the silver-containing layer. Most preferably, it is 40% by mass. If the coating amount of the silver-containing layer is less than 7% by mass, the conductivity of the silver-coated metal powder is adversely affected, which is not preferable. On the other hand, if it exceeds 50% by mass, the cost increases due to an increase in the amount of silver used, which is not preferable.

銅合金の粉末を銀含有層で被覆する場合、銅合金は、1~50質量%(好ましくは1~10質量%、さらに好ましくは2~5質量%)の亜鉛を含み、残部が銅および不可避不純物からなる組成を有するのが好ましい。亜鉛の含有量が1質量%未満では、銅合金粉末中の銅の酸化が著しく、耐酸化性に問題が生じるので好ましくない。一方、50質量%を超えると、銀被覆金属粉末の導電性に悪影響を及ぼすので好ましくない。 When the copper alloy powder is coated with a silver-containing layer, the copper alloy contains 1 to 50% by weight (preferably 1 to 10% by weight, more preferably 2 to 5% by weight) of zinc, with the balance being copper and unavoidable. It preferably has a composition consisting of impurities. If the zinc content is less than 1% by mass, the copper in the copper alloy powder is significantly oxidized, which causes a problem in oxidation resistance, which is not preferable. On the other hand, if it exceeds 50% by mass, it adversely affects the conductivity of the silver-coated metal powder, which is not preferable.

銅または銅合金の粉末の粒子径は、(ヘロス法によって)レーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が0.1~15μmであるのが好ましく、0.3~10μmであるのがさらに好ましく、1~5μmであるのが最も好ましい。体積基準累積50%粒子径(D50径)が0.1μm未満では、銀被覆金属粉末の導電性に悪影響を及ぼすので好ましくない。一方、15μmを超えると、微細な配線の形成が困難になるので好ましくない。 The particle size of the copper or copper alloy powder is preferably 0.1 to 15 μm in volume-based cumulative 50% particle size (D 50 size) measured by a laser diffraction type particle size distribution device (by the Heros method). It is more preferably 3 to 10 μm, and most preferably 1 to 5 μm. If the volume-based cumulative 50% particle diameter (D 50 diameter) is less than 0.1 μm, it adversely affects the conductivity of the silver-coated metal powder, which is not preferable. On the other hand, if it exceeds 15 μm, it becomes difficult to form fine wiring, which is not preferable.

銅または銅合金の粉末は、湿式還元法、電解法、気相法などにより製造してもよいが、合金成分を溶解温度以上で溶解し、タンディッシュ下部から落下させながら高圧ガスまたは高圧水を衝突させて急冷凝固させることにより微粉末とする、(ガスアトマイズ法、水アトマイズ法などの)所謂アトマイズ法により製造するのが好ましい。特に、高圧水を吹き付ける、所謂水アトマイズ法により製造すると、粒子径が小さい銅または銅合金の粉末を得ることができるので、銅または銅合金の粉末を導電ペーストに使用した際に粒子間の接触点の増加による導電性の向上を図ることができる。 Copper or copper alloy powder may be produced by a wet reduction method, an electrolysis method, a gas phase method, etc., but the alloy component is melted at a melting temperature or higher, and high-pressure gas or high-pressure water is applied while dropping from the lower part of the tundish. It is preferably produced by a so-called atomizing method (gas atomizing method, water atomizing method, etc.), which is obtained by colliding and quenching and solidifying to form a fine powder. In particular, when manufactured by the so-called water atomization method in which high-pressure water is sprayed, a copper or copper alloy powder having a small particle size can be obtained. Therefore, when the copper or copper alloy powder is used as a conductive paste, contact between the particles It is possible to improve the conductivity by increasing the number of points.

銅または銅合金の粉末を銀含有層で被覆する方法として、銅と銀の置換反応を利用する方法や、還元剤を用いる還元法により、銅または銅合金の粉末の表面に銀または銀化合物を析出させる方法を使用することができ、例えば、溶媒中に銅または銅合金の粉末と銀または銀化合物を含む溶液を攪拌しながら銅または銅合金の粉末の表面に銀または銀化合物を析出させる方法や、溶媒中に銅または銅合金の粉末および有機物を含む溶液と溶媒中に銀または銀化合物および有機物を含む溶液とを混合して攪拌しながら銅または銅合金の粉末の表面に銀または銀化合物を析出させる方法などを使用することができる。 As a method of coating the powder of copper or a copper alloy with a silver-containing layer, a silver or a silver compound is applied to the surface of the powder of the copper or a copper alloy by a method using a substitution reaction between copper and silver or a reduction method using a reducing agent. A method of precipitating can be used, for example, a method of precipitating silver or a silver compound on the surface of a copper or copper alloy powder while stirring a solution containing the copper or copper alloy powder and a silver or silver compound in a solvent. Alternatively, a solution containing a copper or copper alloy powder and an organic substance in the solvent and a solution containing a silver or silver compound and an organic substance in the solvent are mixed and stirred to form a silver or silver compound on the surface of the copper or copper alloy powder. Can be used, such as a method of precipitating.

この溶媒としては、水、有機溶媒またはこれらを混合した溶媒を使用することができる。水と有機溶媒を混合した溶媒を使用する場合には、室温(20~30℃)において液体になる有機溶媒を使用する必要があるが、水と有機溶媒の混合比率は、使用する有機溶媒により適宜調整することができる。また、溶媒として使用する水は、不純物が混入するおそれがなければ、蒸留水、イオン交換水、工業用水などを使用することができる。 As the solvent, water, an organic solvent, or a solvent obtained by mixing them can be used. When using a solvent in which water and an organic solvent are mixed, it is necessary to use an organic solvent that becomes liquid at room temperature (20 to 30 ° C.), but the mixing ratio of water and the organic solvent depends on the organic solvent used. It can be adjusted as appropriate. Further, as the water used as the solvent, distilled water, ion-exchanged water, industrial water and the like can be used as long as there is no risk of impurities being mixed.

銀含有層の原料として、銀イオンを溶液中に存在させる必要があるため、水や多くの有機溶媒に対して高い溶解度を有する硝酸銀を使用するのが好ましい。また、銅または銅合金の粉末を銀含有層で被覆する反応(銀被覆反応)をできるだけ均一に行うために、固体の硝酸銀ではなく、硝酸銀を溶媒(水、有機溶媒またはこれらを混合した溶媒)に溶解した硝酸銀溶液を使用するのが好ましい。なお、使用する硝酸銀溶液の量、硝酸銀溶液中の硝酸銀の濃度および有機溶媒の量は、目的とする銀含有層の量に応じて決定することができる。 Since silver ions need to be present in the solution as a raw material for the silver-containing layer, it is preferable to use silver nitrate having high solubility in water and many organic solvents. Further, in order to carry out the reaction of coating the powder of copper or a copper alloy with the silver-containing layer as uniformly as possible (silver coating reaction), silver nitrate is used as a solvent (water, an organic solvent or a mixed solvent thereof) instead of solid silver nitrate. It is preferable to use a silver nitrate solution dissolved in. The amount of the silver nitrate solution to be used, the concentration of silver nitrate in the silver nitrate solution, and the amount of the organic solvent can be determined according to the amount of the target silver-containing layer.

銀含有層をより均一に形成するために、溶液中にキレート化剤を添加してもよい。キレート化剤としては、銀イオンと金属銅との置換反応により副生成する銅イオンなどが再析出しないように、銅イオンなどに対して錯安定度定数が高いキレート化剤を使用するのが好ましい。特に、銀被覆金属粉末のコアとなる銅または銅合金の粉末は(主構成要素として)銅を含んでいるので、銅との錯安定度定数に留意してキレート化剤を選択するのが好ましい。具体的には、キレート化剤として、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ジエチレントリアミン、トリエチレンジアミンおよびこれらの塩からなる群から選ばれたキレート化剤を使用することができる。 A chelating agent may be added to the solution to form the silver-containing layer more uniformly. As the chelating agent, it is preferable to use a chelating agent having a high complex stability constant with respect to copper ions and the like so that copper ions and the like that are by-produced by the substitution reaction between silver ions and metallic copper do not reprecipitate. .. In particular, since the copper or copper alloy powder that is the core of the silver-coated metal powder contains copper (as a main component), it is preferable to select the chelating agent while paying attention to the complex stability constant with copper. .. Specifically, as the chelating agent, a chelating agent selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, diethylenetriamine, triethylenediamine and salts thereof can be used.

銀被覆反応を安定かつ安全に行うために、溶液中にpH緩衝剤を添加してもよい。このpH緩衝剤として、炭酸アンモニウム、炭酸水素アンモニウム、アンモニア水、炭酸水素ナトリウムなどを使用することができる。 A pH buffer may be added to the solution in order to carry out the silver coating reaction stably and safely. As this pH buffering agent, ammonium carbonate, ammonium hydrogencarbonate, aqueous ammonia, sodium hydrogencarbonate and the like can be used.

銀被覆反応の際には、銀塩を添加する前に溶液中に銅または銅合金の粉末を入れて攪拌し、銅または銅合金の粉末が溶液中に十分に分散している状態で、銀塩を含む溶液を添加するのが好ましい。この銀被覆反応の際の反応温度は、反応液が凝固または蒸発する温度でなければよいが、好ましくは10~40℃、さらに好ましくは15~35℃の範囲で設定する。また、反応時間は、銀または銀化合物の被覆量や反応温度によって異なるが、1分~5時間の範囲で設定することができる。 During the silver coating reaction, copper or copper alloy powder is placed in the solution and stirred before adding the silver salt, and silver is sufficiently dispersed in the solution. It is preferable to add a solution containing salt. The reaction temperature during this silver coating reaction may not be a temperature at which the reaction solution solidifies or evaporates, but is preferably set in the range of 10 to 40 ° C, more preferably 15 to 35 ° C. The reaction time varies depending on the coating amount of silver or the silver compound and the reaction temperature, but can be set in the range of 1 minute to 5 hours.

表面改質は、銀含有層で被覆した銅または銅合金の粉末を還元性雰囲気下において60~160℃、好ましくは80~150℃、さらに好ましくは80~140℃で0.5~50時間、好ましくは1~40時間加熱することによって行う。加熱温度が60℃より低いと、導電ペーストに使用した場合に、時間の経過により導電ペーストの粘度が上昇し、160℃より高いと、粒子同士が焼結し、導電ペーストに使用した場合に、銀被覆金属粉末の分散性が低下する。また、還元性雰囲気は、水素雰囲気(水素ガス100%の雰囲気)であるのが好ましい。 The surface modification is carried out by subjecting a copper or copper alloy powder coated with a silver-containing layer to 60 to 160 ° C., preferably 80 to 150 ° C., more preferably 80 to 140 ° C. for 0.5 to 50 hours in a reducing atmosphere. It is preferably carried out by heating for 1 to 40 hours. When the heating temperature is lower than 60 ° C., the viscosity of the conductive paste increases with the passage of time when used for the conductive paste, and when the heating temperature is higher than 160 ° C., the particles are sintered and the particles are sintered when used for the conductive paste. The dispersibility of the silver-coated metal powder is reduced. Further, the reducing atmosphere is preferably a hydrogen atmosphere (atmosphere of 100% hydrogen gas).

この表面改質の前または後に、銀含有層で被覆した銅または銅合金の粉末を表面処理剤で表面処理するのが好ましく、この表面処理剤が、脂肪酸またはベンゾトリアゾールであるのが好ましい。この脂肪酸として、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、エイコサジエン酸、エイコサトリエン酸、エイコサテトラエン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸などを使用することができるが、パルミチン酸、ステアリン酸またはオレイン酸を使用するのが好ましい。 Before or after this surface modification, the copper or copper alloy powder coated with the silver-containing layer is preferably surface-treated with a surface treatment agent, and the surface treatment agent is preferably fatty acid or benzotriazole. These fatty acids include butyric acid, valeric acid, caproic acid, enanthic acid, capric acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitreic acid, margaric acid, stearic acid, oleic acid, bacenoic acid. , Linol acid, linolenic acid, arachidic acid, eikosazienoic acid, eikosatrienic acid, eikosatetraenoic acid, arachidonic acid, behenic acid, lignoseric acid, nervonic acid, serotic acid, montanic acid, melicic acid, etc. can be used. Although possible, it is preferred to use palmitic acid, stearic acid or oleic acid.

表面処理剤の添加量は、銀被覆金属粉末に対して0.1~7質量%であるのが好ましく、0.3~6質量%であるのがさらに好ましく、0.3~5質量%であるのが最も好ましい。表面処理は、銀含有層で被覆した銅または銅合金の粉末と表面処理剤とを混合して行ってもよいし、銀含有層で被覆した銅または銅合金の粉末のスラリーに表面処理剤を添加して行ってもよい。このように銀被覆金属粉末を表面処理剤(好ましくは0.1~7質量%の表面処理剤)で表面処理することにより、タップ密度を高めて分散性を向上させて、導電膜の体積抵抗率を低下させるとともに、耐酸化性を付与して、体積抵抗率の変化率を低下させることができる。 The amount of the surface treatment agent added is preferably 0.1 to 7% by mass, more preferably 0.3 to 6% by mass, and more preferably 0.3 to 5% by mass with respect to the silver-coated metal powder. Most preferably. The surface treatment may be performed by mixing a copper or copper alloy powder coated with a silver-containing layer and a surface treatment agent, or a surface treatment agent may be added to a slurry of copper or copper alloy powder coated with a silver-containing layer. It may be added. By surface-treating the silver-coated metal powder with a surface treatment agent (preferably 0.1 to 7% by mass of the surface treatment agent), the tap density is increased and the dispersibility is improved, and the volume resistivity of the conductive film is increased. It is possible to reduce the rate and impart oxidation resistance to reduce the rate of change in volume resistivity.

また、本発明による銀被覆金属粉末の実施の形態では、銅または銅合金の粉末が銀含有層により被覆され、粒子形状を真球としてBET比表面積から算出した粒子径DBET(μm)に対するレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)の比(D50/DBET)が3.5以下、好ましくは3.0以下であり、pH0の硫酸水溶液に30分間浸漬したときの銅イオン溶出量が450mg/L以下、好ましくは420mg/L以下である。D50/DBETが3.5以下であれば、粒子同士の焼結が少なく、導電ペーストに使用した際に銀被覆金属粉末の分散性が良好であり、また、銅イオン溶出量が450mg/L以下であれば、導電ペーストを製造した後に時間の経過による導電ペーストの粘度の上昇を抑制することができる。 Further, in the embodiment of the silver-coated metal powder according to the present invention, a copper or copper alloy powder is coated with a silver-containing layer, and a laser with respect to a particle size DBET (μm) calculated from the BET specific surface area with the particle shape as a true sphere is used. The ratio (D 50 / D BET ) of the volume-based cumulative 50% particle diameter (D 50 diameter) measured by the diffraction type particle size distribution device is 3.5 or less, preferably 3.0 or less, and 30 in a sulfuric acid aqueous solution having a pH of 0. The elution amount of copper ions when immersed for a minute is 450 mg / L or less, preferably 420 mg / L or less. When D 50 / D BET is 3.5 or less, there is little sintering between particles, the dispersibility of the silver-coated metal powder is good when used in a conductive paste, and the elution amount of copper ions is 450 mg /. When it is L or less, it is possible to suppress an increase in the viscosity of the conductive paste with the passage of time after producing the conductive paste.

この銀被覆金属粉末において、銀含有層が銀または銀化合物からなる層であるのが好ましい。また、銀含有層の被覆量は、銀含有層で被覆した銅または銅合金の粉末に対して7~50質量%であるのが好ましく、8~45質量%であるのがさらに好ましく、9~40質量%であるのが最も好ましい。また、銅合金が、1~50質量%の亜鉛を含み、残部が銅および不可避不純物からなる組成を有するのが好ましい。さらに、銅または銅合金の粉末の粒子径は、(ヘロス法によって)レーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が0.1~15μmであるのが好ましく、0.3~10μmであるのがさらに好ましく、1~5μmであるのが最も好ましい。 In this silver-coated metal powder, the silver-containing layer is preferably a layer made of silver or a silver compound. The coating amount of the silver-containing layer is preferably 7 to 50% by mass, more preferably 8 to 45% by mass, and 9 to 9 to 50% by mass with respect to the powder of copper or copper alloy coated with the silver-containing layer. Most preferably, it is 40% by mass. Further, it is preferable that the copper alloy contains 1 to 50% by mass of zinc, and the balance is composed of copper and unavoidable impurities. Further, the particle size of the copper or copper alloy powder is preferably 0.1 to 15 μm in volume-based cumulative 50% particle size (D 50 diameter) measured by a laser diffraction type particle size distribution device (by the Heros method). , 0.3 to 10 μm is more preferable, and 1 to 5 μm is most preferable.

以下、本発明による銀被覆金属粉末およびその製造方法の実施例について詳細に説明する。 Hereinafter, examples of the silver-coated metal powder according to the present invention and the method for producing the same will be described in detail.

[実施例1]
銅7.6kgと亜鉛0.4kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、ろ過し、水洗し、乾燥し、解砕し、分級して、銅合金粉末(銅-亜鉛合金粉末)を得た。
[Example 1]
While dropping 7.6 kg of copper and 0.4 kg of zinc from the bottom of the tundish, high-pressure water is sprayed to quench and solidify, filter, wash with water, dry, crush, classify, and copper alloy. A powder (copper-zinc alloy powder) was obtained.

このようにして得られた(銀被覆前の)銅合金粉末の組成および体積基準累積50%粒子径(D50径)を求めたところ、銅合金粉末中の銅の含有量は95.1質量%、亜鉛の含有量は4.9質量%であり、銅合金粉末はCu95Zn合金の粉末であった。また、銅合金粉末の体積基準累積50%粒子径(D50径)は2.0μmであった。なお、銅合金粉末中の銅および亜鉛の含有量は、銅合金粉末(約2.5g)を塩化ビニル製リング(内径3.2mm×厚さ4mm)内に敷き詰めた後、錠剤型の成型圧縮機(株式会社前川試験製作所製の型番BRE-50)により100kNの荷重をかけて、銅合金粉末のペレットを作製し、このペレットをサンプルホルダー(開口径3.0cm)に入れて蛍光X線分析装置(株式会社リガク製のRIX2000)内の測定位置にセットし、測定雰囲気を減圧下(8.0Pa)とし、X線出力を50kV、50mAとした条件で測定した結果から、装置に付属のソフトウェアで自動計算することによって求め、ナトリウム未満の軽元素を除いた成分の比率を算出した。また、銅合金粉末の体積基準累積50%粒子径(D50径)は、レーザー回折式粒度分布装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定した。 When the composition and volume-based cumulative 50% particle diameter (D 50 diameter) of the copper alloy powder thus obtained (before silver coating) were determined, the copper content in the copper alloy powder was 95.1 mass. The content of% and zinc was 4.9% by mass, and the copper alloy powder was a powder of Cu 95 Zn 5 alloy. The volume-based cumulative 50% particle diameter (D 50 diameter) of the copper alloy powder was 2.0 μm. The content of copper and zinc in the copper alloy powder is determined by laying the copper alloy powder (about 2.5 g) in a vinyl chloride ring (inner diameter 3.2 mm x thickness 4 mm) and then compressing it into a tablet mold. A load of 100 kN was applied by a machine (model number BRE-50 manufactured by Maekawa Test Mfg. Co., Ltd.) to prepare pellets of copper alloy powder, and the pellets were placed in a sample holder (opening diameter 3.0 cm) for fluorescent X-ray analysis. The software attached to the device is based on the results of measurement under the conditions of setting the measurement position in the device (RIX2000 manufactured by Rigaku Co., Ltd.), setting the measurement atmosphere to reduced pressure (8.0 Pa), and setting the X-ray output to 50 kV and 50 mA. The ratio of components excluding light elements less than sodium was calculated by automatic calculation in. The volume-based cumulative 50% particle diameter (D 50 diameter) of the copper alloy powder was measured by a laser diffraction type particle size distribution device (Heros particle size distribution measuring device (HELOS & RODOS) manufactured by SYSTEMC).

また、EDTA-2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA-2Na二水和物307.1gと炭酸アンモニウム153.5gを純水1223gに溶解した溶液に、硝酸銀51.2gを純水158gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。 Further, a solution (solution 1) in which 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate were dissolved in 720 g of pure water, and 307.1 g of EDTA-2Na dihydrate and 153.5 g of ammonium carbonate were purely prepared. A solution (solution 2) obtained by adding a solution of 51.2 g of silver nitrate in 158 g of pure water to a solution dissolved in 1223 g of water was prepared.

次に、窒素雰囲気下において、得られた銅合金粉末(銅-亜鉛合金粉末)130gを溶液1に加えて、攪拌しながら25℃まで昇温させた。この銅合金粉末(銅-亜鉛合金粉末)が分散した溶液に溶液2を加えて1時間攪拌した後、ろ過し、水洗し、乾燥して、銀被覆銅合金粉末(銀被覆銅-亜鉛合金粉末)を得た。 Next, 130 g of the obtained copper alloy powder (copper-zinc alloy powder) was added to Solution 1 under a nitrogen atmosphere, and the temperature was raised to 25 ° C. with stirring. Solution 2 is added to the solution in which this copper alloy powder (copper-zinc alloy powder) is dispersed, and the mixture is stirred for 1 hour, filtered, washed with water, dried, and silver-coated copper alloy powder (silver-coated copper-zinc alloy powder). ) Was obtained.

この銀被覆銅合金粉末を水素ガス(100%)雰囲気中において80℃で10時間保持して、銀被覆銅合金粉末の表面改質を行った。 The silver-coated copper alloy powder was held at 80 ° C. for 10 hours in a hydrogen gas (100%) atmosphere to modify the surface of the silver-coated copper alloy powder.

このようにして得られた銀被覆銅合金粉末の組成、体積基準累積50%粒子径(D50径)、BET比表面積を求めた。 The composition of the silver-coated copper alloy powder thus obtained, the volume-based cumulative 50% particle diameter ( D50 diameter), and the BET specific surface area were determined.

銀被覆銅合金粉末中の銅および亜鉛の含有量は、銀被覆前の銅合金粉末中の銅および亜鉛の含有量と同様の方法により、銀被覆銅合金粉末のペレットを作製して求めた。また、銀被覆銅合金粉末の断面を集束イオンビーム(FIB)加工観察装置(日本電子株式会社製のJEM-9310FIB)によって加工した後、電界放出形走査電子顕微鏡(FE-SEM)(日本電子株式会社製のJSM-6700F)によって観察したところ、銅合金粉末の表面が銀で被覆されていることが確認された。また、銀被覆銅合金粉末の銀(Ag)の被覆量も、銀被覆銅合金粉末中の銅および亜鉛の含有量と同様の方法により求めた。その結果、銀被覆銅合金粉末の銀の被覆量は21.8質量%、銅の含有量は74.9質量%、亜鉛の含有量は3.3質量%であった。 The content of copper and zinc in the silver-coated copper alloy powder was determined by preparing pellets of the silver-coated copper alloy powder by the same method as the content of copper and zinc in the copper alloy powder before silver coating. Further, after processing the cross section of the silver-coated copper alloy powder with a focused ion beam (FIB) processing observation device (JEM-9310FIB manufactured by JEOL Ltd.), a field emission scanning electron microscope (FE-SEM) (JEOL Ltd.) When observed with JSM-6700F) manufactured by the company, it was confirmed that the surface of the copper alloy powder was coated with silver. Further, the coating amount of silver (Ag) in the silver-coated copper alloy powder was also determined by the same method as the content of copper and zinc in the silver-coated copper alloy powder. As a result, the silver coating amount of the silver-coated copper alloy powder was 21.8% by mass, the copper content was 74.9% by mass, and the zinc content was 3.3% by mass.

銀被覆銅合金粉末の体積基準累積50%粒子径(D50径)は、レーザー回折式粒度分布装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定した。その結果、体積基準累積50%粒子径(D50径)は2.2μmであった。 The volume-based cumulative 50% particle diameter ( D50 diameter) of the silver-coated copper alloy powder was measured by a laser diffraction type particle size distribution device (Heros particle size distribution measuring device (HELOS & RODOS) manufactured by SYMPATEC). As a result, the volume-based cumulative 50% particle diameter (D 50 diameter) was 2.2 μm.

銀被覆銅合金粉末のBET比表面積は、BET比表面積測定装置(ユアサイオニクス株式会社製の4ソーブUS)を用いてBET法により求めた。その結果、銀被覆銅合金粉末のBET比表面積は0.78m/gであった。また、この銀被覆銅合金粉末の真密度をAgとCuとZnの金属単体の密度(Ag:10.49g/cm、Cu:8.92g/cm、Zn:7.14g/cm)の加重平均値として算出すると9.20g/cmになり、粒子形状を真球としてBET比表面積から算出した粒子径DBET(μm)=6/(BET比表面積(m/g)×真密度(g/cm)は0.84μmになる。また、銀被覆銅合金粉末の焼結の度合いを示す指標としてD50/DBETを算出すると2.6になる。なお、D50/DBET=1であれば、レーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)とBET比表面積から算出したDBETが等しいこと、すなわち、個々の粒子が完全に分散している状態を示し、D50/DBETが大きいほど、BET比表面積から算出したDBETに対して、レーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が大きいこと、すなわち、粒子の焼結が進んでいることを示している。 The BET specific surface area of the silver-coated copper alloy powder was determined by the BET method using a BET specific surface area measuring device (4 Sorb US manufactured by Your Sionics Co., Ltd.). As a result, the BET specific surface area of the silver-coated copper alloy powder was 0.78 m 2 / g. Further, the true density of this silver-coated copper alloy powder is the density of a single metal of Ag, Cu and Zn (Ag: 10.49 g / cm 3 , Cu: 8.92 g / cm 3 , Zn: 7.14 g / cm 3 ). When calculated as a weighted average value of, it becomes 9.20 g / cm 3 , and the particle diameter D BET (μm) = 6 / (BET specific surface area (m 2 / g) × true) calculated from the BET specific surface area with the particle shape as a true sphere. The density (g / cm 3 ) is 0.84 μm. Further, when D 50 / D BET is calculated as an index indicating the degree of sintering of the silver-coated copper alloy powder, it is 2.6. It should be noted that D 50 / D. If BET = 1, the volume-based cumulative 50% particle diameter (D 50 diameter) measured by the laser diffraction type particle size distribution device and the D BET calculated from the BET specific surface area are equal, that is, the individual particles are completely dispersed. The larger the D 50 / D BET , the larger the volume-based cumulative 50% particle diameter (D 50 diameter) measured by the laser diffraction type particle size distribution device with respect to the D BET calculated from the BET specific surface area. It indicates that the particles are large, that is, the particles are being sintered.

また、銀被覆銅合金粉末5gを液温25℃でpH0の硫酸水溶液45gとともに容量100mLのポリプロピレン製の広口ビンに入れ、高周波出力200Wの超音波洗浄機により超音波を30分間印加した後、得られたスラリーを0.2μmのフィルタにより固液分離して得られた溶出液中の銅イオン量(銅イオン溶出量)をICP法により求めたところ、325mg/Lであった。 Further, 5 g of silver-coated copper alloy powder was placed in a wide-mouthed polypropylene bottle having a capacity of 100 mL together with 45 g of a sulfuric acid aqueous solution having a liquid temperature of 25 ° C. and a pH of 0. The amount of copper ions (copper ion elution amount) in the eluent obtained by solid-liquid separation of the obtained slurry with a 0.2 μm filter was determined by the ICP method and found to be 325 mg / L.

また、得られた銀被覆銅合金粉末5gを、エチルセルロース(100cps)4gとヒドロキシプロピルメチルセルロースフタレート(信越化学工業株式会社製のHP-55S)5gをテルピネオール(試薬)91gに溶解して作製したビヒクル5gと混練脱泡機で混合した後、三本ロールを5回パスして均一に分散させることによって導電ペーストを作製した。この導電ペーストの作製直後の粘度η1と、25℃恒温で4日間放置した後に測定した粘度η2を、粘度計(Brookfield社製のDV-III粘度計、CP-52コーン)を使用して、1rpm(ずり速度2sec-1)で測定し、粘度増加率=(η2-η1)/η1を求めたところ、導電ペーストの粘度増加率は25%であった。 Further, 5 g of a vehicle prepared by dissolving 5 g of the obtained silver-coated copper alloy powder in 4 g of ethyl cellulose (100 cps) and 5 g of hydroxypropylmethyl cellulose phthalate (HP-55S manufactured by Shin-Etsu Chemical Co., Ltd.) in 91 g of terpineol (reagent). After mixing with a kneading and defoaming machine, a conductive paste was prepared by passing three rolls 5 times and uniformly dispersing them. The viscosity η1 immediately after the production of this conductive paste and the viscosity η2 measured after being left at a constant temperature of 25 ° C. for 4 days were measured at 1 rpm using a viscometer (DV-III viscometer manufactured by Brookfield, CP-52 cone). When the viscosity increase rate = (η2-η1) / η1 was determined by measuring at (slip rate 2 sec -1 ), the viscosity increase rate of the conductive paste was 25%.

[実施例2]
表面改質の際の加熱時間を40時間とした以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Example 2]
The composition and volume standard cumulative 50% of the silver-coated copper alloy powder obtained by the same method as in Example 1 except that the heating time for surface modification was set to 40 hours by the same method as in Example 1. The particle size (D 50 diameter) and BET specific surface area were determined, the true density, D BET , and D 50 / D BET were calculated, the amount of copper ions in the eluent was determined, and the viscosity increase rate of the conductive paste was determined.

その結果、銀被覆銅合金粉末の銀の被覆量は22.0質量%、銅の含有量は74.8質量%、亜鉛の含有量は3.2質量%であった。また、体積基準累積50%粒子径(D50径)は2.3μmであり、BET比表面積は0.75m/gであった。また、真密度は9.21g/cm、DBETは0.87μm、D50/DBETは2.6になる。また、溶出液中の銅イオン量は237mg/Lであり、導電ペーストの粘度増加率は24%であった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.0% by mass, the copper content was 74.8% by mass, and the zinc content was 3.2% by mass. The volume-based cumulative 50% particle diameter (D 50 diameter) was 2.3 μm, and the BET specific surface area was 0.75 m 2 / g. The true density is 9.21 g / cm 3 , the DB BET is 0.87 μm, and the D 50 / D BET is 2.6. The amount of copper ions in the eluate was 237 mg / L, and the viscosity increase rate of the conductive paste was 24%.

[実施例3]
表面改質の際の加熱温度を100℃とした以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Example 3]
The composition and volume standard cumulative 50% of the silver-coated copper alloy powder obtained by the same method as in Example 1 except that the heating temperature at the time of surface modification was set to 100 ° C. by the same method as in Example 1. The particle size (D 50 diameter) and BET specific surface area were determined, the true density, D BET , and D 50 / D BET were calculated, the amount of copper ions in the eluent was determined, and the rate of increase in viscosity of the conductive paste was determined.

その結果、銀被覆銅合金粉末の銀の被覆量は21.8質量%、銅の含有量は74.8質量%、亜鉛の含有量は3.4質量%であった。また、体積基準累積50%粒子径(D50径)は2.1μmであり、BET比表面積は0.77m/gであった。また、真密度は9.20g/cm、DBETは0.85μm、D50/DBETは2.4になる。また、溶出液中の銅イオン量は203mg/Lであり、導電ペーストの粘度増加率は17%であった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.8% by mass, the copper content was 74.8% by mass, and the zinc content was 3.4% by mass. The volume-based cumulative 50% particle diameter (D 50 diameter) was 2.1 μm, and the BET specific surface area was 0.77 m 2 / g. The true density is 9.20 g / cm 3 , the DB BET is 0.85 μm, and the D 50 / D BET is 2.4. The amount of copper ions in the eluate was 203 mg / L, and the viscosity increase rate of the conductive paste was 17%.

[実施例4]
表面改質の際の加熱温度を150℃として加熱時間を40時間とした以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Example 4]
The composition of the silver-coated copper alloy powder obtained by the same method as in Example 1 was obtained by the same method as in Example 1 except that the heating temperature at the time of surface modification was 150 ° C. and the heating time was 40 hours. , Volume-based cumulative 50% particle diameter (D 50 diameter), BET specific surface area, true density, D BET , D 50 / D BET , copper ion amount in eluent, viscosity of conductive paste The rate of increase was calculated.

その結果、銀被覆銅合金粉末の銀の被覆量は22.1質量%、銅の含有量は74.9質量%、亜鉛の含有量は3.0質量%であった。また、体積基準累積50%粒子径(D50径)は3.0μmであり、BET比表面積は0.62m/gであった。また、真密度は9.21g/cm、DBETは1.05μm、D50/DBETは2.9になる。また、溶出液中の銅イオン量は175mg/Lであり、導電ペーストの粘度増加率は17%であった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.1% by mass, the copper content was 74.9% by mass, and the zinc content was 3.0% by mass. The volume-based cumulative 50% particle diameter (D 50 diameter) was 3.0 μm, and the BET specific surface area was 0.62 m 2 / g. The true density is 9.21 g / cm 3 , the DB BET is 1.05 μm, and the D 50 / D BET is 2.9. The amount of copper ions in the eluate was 175 mg / L, and the viscosity increase rate of the conductive paste was 17%.

[実施例5]
銅8kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、ろ過し、水洗し、乾燥し、解砕し、分級して、銅粉を得た。
[Example 5]
A molten metal heated with 8 kg of copper was dropped from the lower part of the tundish and sprayed with high-pressure water to quench and solidify, filtered, washed with water, dried, crushed and classified to obtain copper powder.

このようにして得られた(銀被覆前の)銅粉の体積基準累積50%粒子径(D50径)を実施例1と同様の方法により求めたところ、銅粉の体積基準累積50%粒子径(D50径)は2.3μmであった。 When the volume-based cumulative 50% particle diameter (D 50 diameter) of the copper powder thus obtained (before silver coating) was determined by the same method as in Example 1, the volume-based cumulative 50% particles of the copper powder were obtained. The diameter (D 50 diameter) was 2.3 μm.

また、EDTA-2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA-2Na二水和物136.5gと炭酸アンモニウム68.2gを純水544gに溶解した溶液に、硝酸銀22.7gを純水70gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。 Further, a solution (solution 1) in which 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate were dissolved in 720 g of pure water, and 136.5 g of EDTA-2Na dihydrate and 68.2 g of ammonium carbonate were purely prepared. A solution (solution 2) obtained by adding a solution of 22.7 g of silver nitrate in 70 g of pure water to a solution dissolved in 544 g of water was prepared.

次に、窒素雰囲気下において、得られた銅粉130gを溶液1に加えて、攪拌しながら25℃まで昇温させた。この銅粉が分散した溶液に溶液2を加えて1時間攪拌した後、ろ過し、水洗し、乾燥して、銀被覆銅粉を得た。 Next, 130 g of the obtained copper powder was added to the solution 1 under a nitrogen atmosphere, and the temperature was raised to 25 ° C. with stirring. Solution 2 was added to the solution in which the copper powder was dispersed, and the mixture was stirred for 1 hour, filtered, washed with water, and dried to obtain silver-coated copper powder.

この銀被覆銅粉を水素ガス(100%)雰囲気中において100℃で1時間保持して、銀被覆銅粉の表面改質を行った。 The silver-coated copper powder was held at 100 ° C. for 1 hour in a hydrogen gas (100%) atmosphere to modify the surface of the silver-coated copper powder.

次に、得られた銀被覆銅粉80gとパルミチン酸0.24g(銀被覆銅粉に対して0.3質量%)をカッターミルに入れ、20秒間の解砕を2回行うことによって、パルミチン酸で表面処理された銀被覆銅粉を得た。 Next, 80 g of the obtained silver-coated copper powder and 0.24 g of palmitic acid (0.3% by mass based on the silver-coated copper powder) were placed in a cutter mill and crushed for 20 seconds twice to obtain palmitic acid. A silver-coated copper powder surface-treated with acid was obtained.

このようにして得られた銀被覆銅粉について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。 For the silver-coated copper powder thus obtained, the composition, volume-based cumulative 50% particle diameter (D 50 diameter), and BET specific surface area were determined by the same method as in Example 1, and the true density, DBET , and D were obtained. 50 / D BET was calculated, the amount of copper ions in the eluent was determined, and the viscosity increase rate of the conductive paste was determined.

その結果、銀被覆銅粉の銀の被覆量は10.6質量%、銅の含有量は89.4質量%であった。また、体積基準累積50%粒子径(D50径)は2.3μmであり、BET比表面積は0.51m/gであった。また、真密度は9.09g/cm、DBETは1.29μm、D50/DBETは1.8になる。また、溶出液中の銅イオン量は404mg/Lであり、導電ペーストの粘度増加率は29%であった。 As a result, the silver coating amount of the silver-coated copper powder was 10.6% by mass, and the copper content was 89.4% by mass. The volume-based cumulative 50% particle diameter (D 50 diameter) was 2.3 μm, and the BET specific surface area was 0.51 m 2 / g. The true density is 9.09 g / cm 3 , the DB BET is 1.29 μm, and the D 50 / D BET is 1.8. The amount of copper ions in the eluate was 404 mg / L, and the viscosity increase rate of the conductive paste was 29%.

[実施例6]
表面改質の際の加熱温度を120℃として加熱時間を10時間とした以外は、実施例5と同様の方法により得られた銀被覆銅粉について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Example 6]
The composition of the silver-coated copper powder obtained by the same method as in Example 5 except that the heating temperature at the time of surface modification was 120 ° C. and the heating time was 10 hours was prepared by the same method as in Example 1. Volume-based cumulative 50% particle diameter (D 50 diameter), BET specific surface area are calculated, true density, DB BET , D 50 / D BET are calculated, the amount of copper ions in the eluent is determined, and the viscosity of the conductive paste is increased. I asked for the rate.

その結果、銀被覆銅粉の銀の被覆量は10.4質量%、銅の含有量は89.6質量%であった。また、体積基準累積50%粒子径(D50径)は2.3μmであり、BET比表面積は0.48m/gであった。また、真密度は9.08g/cm、DBETは1.38μm、D50/DBETは1.7になる。また、溶出液中の銅イオン量は297mg/Lであり、導電ペーストの粘度増加率は22%であった。 As a result, the silver coating amount of the silver-coated copper powder was 10.4% by mass, and the copper content was 89.6% by mass. The volume-based cumulative 50% particle diameter (D 50 diameter) was 2.3 μm, and the BET specific surface area was 0.48 m 2 / g. The true density is 9.08 g / cm 3 , the DB BET is 1.38 μm, and the D 50 / D BET is 1.7. The amount of copper ions in the eluate was 297 mg / L, and the viscosity increase rate of the conductive paste was 22%.

[比較例1]
表面改質を行わなかった以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Comparative Example 1]
Regarding the silver-coated copper alloy powder obtained by the same method as in Example 1 except that the surface was not modified, the composition and volume-based cumulative 50% particle diameter ( D50 diameter) were obtained by the same method as in Example 1. ), The BET specific surface area was calculated, the true density, D BET , and D 50 / D BET were calculated, the amount of copper ions in the eluent was determined, and the viscosity increase rate of the conductive paste was determined.

その結果、銀被覆銅合金粉末の銀の被覆量は22.0質量%、銅の含有量は74.9質量%、亜鉛の含有量は3.1質量%であった。また、体積基準累積50%粒子径(D50径)は2.0μmであり、BET比表面積は0.82m/gであった。また、真密度は9.21g/cm、DBETは0.79μm、D50/DBETは2.5になる。また、溶出液中の銅イオン量は467mg/Lであり、導電ペーストの粘度増加率は54%であった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.0% by mass, the copper content was 74.9% by mass, and the zinc content was 3.1% by mass. The volume-based cumulative 50% particle diameter (D 50 diameter) was 2.0 μm, and the BET specific surface area was 0.82 m 2 / g. The true density is 9.21 g / cm 3 , the DB BET is 0.79 μm, and the D 50 / D BET is 2.5. The amount of copper ions in the eluate was 467 mg / L, and the viscosity increase rate of the conductive paste was 54%.

[比較例2]
表面改質を行わなかった以外は、実施例5と同様の方法により得られた銀被覆銅粉について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Comparative Example 2]
Regarding the silver-coated copper powder obtained by the same method as in Example 5 except that the surface was not modified, the composition and volume-based cumulative 50% particle diameter ( D50 diameter) were obtained by the same method as in Example 1. , BET specific surface area was determined, true density, DBBET , and D50 / DBET were calculated, the amount of copper ions in the eluent was determined, and the rate of increase in viscosity of the conductive paste was determined.

その結果、銀被覆銅粉の銀の被覆量は10.5質量%、銅の含有量は89.5質量%であった。また、体積基準累積50%粒子径(D50径)は2.2μmであり、BET比表面積は0.54m/gであった。また、真密度は9.20g/cm、DBETは1.23μm、D50/DBETは1.7になる。また、溶出液中の銅イオン量は463mg/Lであり、導電ペーストの粘度増加率は69%であった。 As a result, the silver coating amount of the silver-coated copper powder was 10.5% by mass, and the copper content was 89.5% by mass. The volume-based cumulative 50% particle diameter (D 50 diameter) was 2.2 μm, and the BET specific surface area was 0.54 m 2 / g. The true density is 9.20 g / cm 3 , the DB BET is 1.23 μm, and the D 50 / D BET is 1.7. The amount of copper ions in the eluate was 463 mg / L, and the viscosity increase rate of the conductive paste was 69%.

[比較例3]
表面改質の際の加熱温度を200℃として加熱時間を40時間とした以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Comparative Example 3]
The composition of the silver-coated copper alloy powder obtained by the same method as in Example 1 except that the heating temperature at the time of surface modification was set to 200 ° C. and the heating time was set to 40 hours by the same method as in Example 1. , Volume-based cumulative 50% particle diameter (D 50 diameter), BET specific surface area, true density, D BET , D 50 / D BET , copper ion amount in eluent, viscosity of conductive paste The rate of increase was calculated.

その結果、銀被覆銅合金粉末の銀の被覆量は21.8質量%、銅の含有量は74.9質量%、亜鉛の含有量は3.3質量%であった。また、体積基準累積50%粒子径(D50径)は4.1μmであり、BET比表面積は0.57m/gであった。また、真密度は9.20g/cm、DBETは1.14μm、D50/DBETは3.6になる。また、溶出液中の銅イオン量は187mg/Lであり、導電ペーストの粘度増加率は19%であった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.8% by mass, the copper content was 74.9% by mass, and the zinc content was 3.3% by mass. The volume-based cumulative 50% particle diameter (D 50 diameter) was 4.1 μm, and the BET specific surface area was 0.57 m 2 / g. The true density is 9.20 g / cm 3 , the DB BET is 1.14 μm, and the D 50 / D BET is 3.6. The amount of copper ions in the eluate was 187 mg / L, and the viscosity increase rate of the conductive paste was 19%.

[比較例4]
表面改質を大気雰囲気中において行った以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Comparative Example 4]
The silver-coated copper alloy powder obtained by the same method as in Example 4 except that the surface modification was carried out in the air atmosphere was subjected to the same method as in Example 1 in terms of composition and volume-based cumulative 50% particle diameter (50% by volume). D 50 diameter), BET specific surface area was determined, true density, D BET , and D 50 / D BET were calculated, the amount of copper ions in the eluent was determined, and the rate of increase in viscosity of the conductive paste was determined.

その結果、銀被覆銅合金粉末の銀の被覆量は22.2質量%、銅の含有量は74.9質量%、亜鉛の含有量は2.9質量%であった。また、体積基準累積50%粒子径(D50径)は2.3μmであり、BET比表面積は0.85m/gであった。また、真密度は9.22g/cm、DBETは0.77μm、D50/DBETは2.9になる。また、溶出液中の銅イオン量は2210mg/Lであり、導電ペーストの粘度が著しく増大して粘度増加率を求めることができなかった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.2% by mass, the copper content was 74.9% by mass, and the zinc content was 2.9% by mass. The volume-based cumulative 50% particle diameter (D 50 diameter) was 2.3 μm, and the BET specific surface area was 0.85 m 2 / g. The true density is 9.22 g / cm 3 , the DB BET is 0.77 μm, and the D 50 / D BET is 2.9. Further, the amount of copper ions in the eluate was 2210 mg / L, and the viscosity of the conductive paste increased remarkably, and the rate of increase in viscosity could not be determined.

これらの実施例および比較例の銀被覆金属粉末の製造条件および特性を表1~表3に示す。 Tables 1 to 3 show the production conditions and characteristics of the silver-coated metal powders of these Examples and Comparative Examples.

Figure 0007042945000001
Figure 0007042945000001

Figure 0007042945000002
Figure 0007042945000002

Figure 0007042945000003
Figure 0007042945000003

表1~表4からわかるように、実施例1~6の銀被覆金属粉末(銀被覆銅粉または銀被覆銅合金粉末)では、D50/DBETが低く、粒子の焼結が進んでいなかった。また、実施例1~6の銀被覆金属粉末では、溶出液中の銅イオン量が低く、実施例1~6の銀被覆金属粉末を使用して作製した導電ペーストの粘度増加率は低かった。一方、比較例3の銀被覆金属粉末(銀被覆銅合金粉末)では、D50/DBETが高く、粒子の焼結が進んでいた。また、比較例1、2及び4の銀被覆金属粉末(銀被覆銅粉または銀被覆銅合金粉末)では、溶出液中の銅イオン量が高く、比較例1、2及び4の銀被覆金属粉末(銀被覆銅粉または銀被覆銅合金粉末)を使用して作製した導電ペーストの粘度増加率は高かった。 As can be seen from Tables 1 to 4, in the silver-coated metal powders (silver-coated copper powder or silver-coated copper alloy powder) of Examples 1 to 6, the D50 / D BET is low and the sintering of particles is progressing. There wasn't. Further, in the silver-coated metal powders of Examples 1 to 6, the amount of copper ions in the eluate was low, and the viscosity increase rate of the conductive paste prepared by using the silver-coated metal powders of Examples 1 to 6 was low. On the other hand, in the silver-coated metal powder (silver-coated copper alloy powder) of Comparative Example 3, the D 50 / D BET was high, and the sintering of the particles proceeded. Further, in the silver-coated metal powders (silver-coated copper powder or silver-coated copper alloy powder) of Comparative Examples 1, 2 and 4, the amount of copper ions in the eluent was high, and the silver-coated metal powders of Comparative Examples 1, 2 and 4 were obtained. The rate of increase in viscosity of the conductive paste prepared using (silver-coated copper powder or silver-coated copper alloy powder) was high.

Claims (8)

銅合金の粉末を銀からなる層により被覆した後、銀からなる層で被覆した銅合金の粉末を水素ガス100%の雰囲気下において60~160℃で0.5~50時間加熱して表面改質を行うことを特徴とする、銀被覆金属粉末の製造方法。After coating the copper alloy powder with a layer made of silver, the surface of the copper alloy powder coated with the layer made of silver is modified by heating at 60 to 160 ° C. for 0.5 to 50 hours in an atmosphere of 100% hydrogen gas. A method for producing a silver-coated metal powder, which comprises performing quality. 前記銅合金が、1~50質量%の亜鉛を含み、残部が銅および不可避不純物からなる組成を有することを特徴とする、請求項1に記載の銀被覆金属粉末の製造方法。The method for producing a silver-coated metal powder according to claim 1, wherein the copper alloy contains 1 to 50% by mass of zinc, and the balance is composed of copper and unavoidable impurities. 銅の粉末を銀からなる層により被覆した後、銀からなる層で被覆した銅の粉末を水素ガス100%の雰囲気下において60~140℃で0.5~50時間加熱して表面改質を行うことを特徴とする、銀被覆金属粉末の製造方法。After coating the copper powder with a layer made of silver, the copper powder coated with the layer made of silver is heated at 60 to 140 ° C. for 0.5 to 50 hours in an atmosphere of 100% hydrogen gas to modify the surface. A method for producing a silver-coated metal powder, which comprises performing. 前記銀からなる層の被覆量が、前記銀からなる層で被覆した銅または銅合金の粉末に対して7~50質量%であることを特徴とする、請求項1乃至3のいずれかに記載の銀被覆金属粉末の製造方法。The invention according to any one of claims 1 to 3, wherein the coating amount of the silver layer is 7 to 50% by mass with respect to the copper or copper alloy powder coated with the silver layer. How to make silver-coated metal powder. 前記表面改質の前または後に、前記銀からなる層で被覆した銅または銅合金の粉末を表面処理剤で表面処理することを特徴とする、請求項1乃至4のいずれかに記載の銀被覆金属粉末の製造方法。The silver coating according to any one of claims 1 to 4, wherein the copper or copper alloy powder coated with the layer made of silver is surface-treated with a surface treatment agent before or after the surface modification. Method for manufacturing metal powder. 前記銅または銅合金の粉末をアトマイズ法により製造することを特徴とする、請求項1乃至5のいずれかに記載の銀被覆金属粉末の製造方法。The method for producing a silver-coated metal powder according to any one of claims 1 to 5, wherein the copper or copper alloy powder is produced by an atomizing method. 前記銅または銅合金の粉末のレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(DVolume-based cumulative 50% particle size (D) measured by the laser diffraction type particle size distribution device for copper or copper alloy powder. 5050 径)が0.1~15μmであることを特徴とする、請求項1乃至6のいずれかに記載の銀被覆金属粉末の製造方法。The method for producing a silver-coated metal powder according to any one of claims 1 to 6, wherein the diameter) is 0.1 to 15 μm. 樹脂と溶剤を含み、導電性粉体として銀被覆金属粉末を含む導電性ペーストにおいて、銀被覆金属粉末が、銅または銅合金の粉末が銀からなる層により被覆され、粒子形状を真球としてBET比表面積から算出した粒子径DIn a conductive paste containing a resin and a solvent and containing a silver-coated metal powder as a conductive powder, the silver-coated metal powder is coated with a layer in which copper or a copper alloy powder is made of silver, and the particle shape is a true sphere. Particle diameter D calculated from specific surface area BETBET (μm)に対するレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(DVolume-based cumulative 50% particle size (D) measured by a laser diffraction type particle size distribution device for (μm) 5050 径)の比(DRatio of diameter (D) 5050 /D/ D BETBET )が3.5以下であり、且つpH0の硫酸水溶液に30分間浸漬したときの銅イオン溶出量が450mg/L以下である、銀被覆金属粉末であることを特徴とする、導電ペースト。) Is 3.5 or less, and the copper ion elution amount when immersed in a sulfuric acid aqueous solution having a pH of 0 for 30 minutes is 450 mg / L or less, and the conductive paste is a silver-coated metal powder.
JP2021049786A 2015-03-19 2021-03-24 Silver-coated metal powder and its manufacturing method Active JP7042945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021049786A JP7042945B2 (en) 2015-03-19 2021-03-24 Silver-coated metal powder and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015055530A JP6956459B2 (en) 2015-03-19 2015-03-19 Silver-coated metal powder and its manufacturing method
JP2021049786A JP7042945B2 (en) 2015-03-19 2021-03-24 Silver-coated metal powder and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015055530A Division JP6956459B2 (en) 2015-03-19 2015-03-19 Silver-coated metal powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021113358A JP2021113358A (en) 2021-08-05
JP7042945B2 true JP7042945B2 (en) 2022-03-28

Family

ID=57070445

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015055530A Active JP6956459B2 (en) 2015-03-19 2015-03-19 Silver-coated metal powder and its manufacturing method
JP2021049786A Active JP7042945B2 (en) 2015-03-19 2021-03-24 Silver-coated metal powder and its manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015055530A Active JP6956459B2 (en) 2015-03-19 2015-03-19 Silver-coated metal powder and its manufacturing method

Country Status (1)

Country Link
JP (2) JP6956459B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180047527A (en) * 2016-10-31 2018-05-10 엘에스니꼬동제련 주식회사 Surface treated silver powder and manufacturing method of the same
KR101911306B1 (en) * 2016-12-29 2018-10-24 서울과학기술대학교 산학협력단 manufacturing method of ear-of-rice-shaped Cu particles
JP6968543B2 (en) * 2017-01-26 2021-11-17 株式会社村田製作所 Copper particle structure and copper ink
JP2019031735A (en) * 2017-08-07 2019-02-28 Dowaエレクトロニクス株式会社 Surface treatment silver-coated alloy powder, production method of powder, conductive paste, electronic component and electric device
KR102175700B1 (en) * 2018-06-25 2020-11-06 호서대학교 산학협력단 Method for preparing silver coating copper particles
KR102007857B1 (en) * 2018-06-29 2019-08-06 엘에스니꼬동제련 주식회사 Surface treated silver powder and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105404A (en) 2001-09-28 2003-04-09 Mitsui Mining & Smelting Co Ltd Producing method for silver coated copper powder, silver coated copper powder obtained by the producing method, conductive paste using the silver coated copper powder and printed circuit board using the conductive paste
JP2007245077A (en) 2006-03-17 2007-09-27 Hitachi Metals Ltd Catalyst and hydrogen production apparatus using the same
WO2008059789A1 (en) 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP2015021143A (en) 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138001A (en) * 1979-04-11 1980-10-28 Kobe Steel Ltd Preparation of powder of alloy steel with low oxygen
JP2010144197A (en) * 2008-12-16 2010-07-01 Mitsui Mining & Smelting Co Ltd Metal powder, and method for producing the same
JP2015034310A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105404A (en) 2001-09-28 2003-04-09 Mitsui Mining & Smelting Co Ltd Producing method for silver coated copper powder, silver coated copper powder obtained by the producing method, conductive paste using the silver coated copper powder and printed circuit board using the conductive paste
JP2007245077A (en) 2006-03-17 2007-09-27 Hitachi Metals Ltd Catalyst and hydrogen production apparatus using the same
WO2008059789A1 (en) 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP2015021143A (en) 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same

Also Published As

Publication number Publication date
JP2021113358A (en) 2021-08-05
JP2016176093A (en) 2016-10-06
JP6956459B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
US7534283B2 (en) Method of producing copper powder and copper powder
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
TWI541365B (en) Silver-coated copper alloy powder and method for producing same
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
JP2008138266A (en) Solder powder, and solder paste using the same
JP2009235556A (en) Copper powder for conductive pastes, and conductive paste
CN111804905B (en) Micron-sized spherical hollow gold powder and preparation method thereof
JPWO2008059789A1 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
US5292359A (en) Process for preparing silver-palladium powders
JP4490305B2 (en) Copper powder
JP7272834B2 (en) Silver powder and its manufacturing method
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
US20220347746A1 (en) Method for refining large-particle-size pure copper or copper alloy particles by high-energy ball milling
JPH11264001A (en) Flake copper powder and its production
JP2014091842A (en) Method of manufacturing silver coating copper alloy powder
JP2009167491A (en) Metal powder having excellent sinterability, method for producing the same, and method for producing sintered compact using the metal powder
JP2016084487A (en) Metal powder and manufacturing method thereof
KR102023711B1 (en) A silver nano powder of high purity
KR102017177B1 (en) A method for preparing high-purity silver nano powder using wet process
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP2017179555A (en) Silver coat copper powder
JP2017201062A (en) Method for producing silver-coated copper alloy powder
JP2017210686A (en) Silver-coated copper alloy powder and production method therefor
JP2020196928A (en) Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7042945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150