JPWO2008059789A1 - Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder - Google Patents

Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder Download PDF

Info

Publication number
JPWO2008059789A1
JPWO2008059789A1 JP2008544126A JP2008544126A JPWO2008059789A1 JP WO2008059789 A1 JPWO2008059789 A1 JP WO2008059789A1 JP 2008544126 A JP2008544126 A JP 2008544126A JP 2008544126 A JP2008544126 A JP 2008544126A JP WO2008059789 A1 JPWO2008059789 A1 JP WO2008059789A1
Authority
JP
Japan
Prior art keywords
fine powder
silver
copper fine
plated copper
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008544126A
Other languages
Japanese (ja)
Inventor
隆宏 芳賀
隆宏 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Publication of JPWO2008059789A1 publication Critical patent/JPWO2008059789A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/166Process features with two steps starting with addition of reducing agent followed by metal deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Chemically Coating (AREA)

Abstract

銅微粉をアルカリ性溶液中で銅微粉表面の有機物を除去・水洗し、さらに、酸性溶液中で銅微粉表面の酸化物を酸洗・水洗した後、この銅微粉を分散させた酸性溶液中に還元剤を添加して銅微粉スラリーを作成し、pHを調整した後、この銅微粉スラリーにキレート化剤で錯化した銀イオン溶液を連続的に添加することで、無電解置換メッキと還元型メッキにより銅微粉表面に銀層を形成することを特徴とする銀メッキ銅微粉の製造方法。従来の銀メッキ銅微粉における、銀メッキ前の銅微粉の酸化状態によって銀メッキ反応後の色調にバラツキが生じることや、銀メッキによるタップ密度の低下等の問題を解決し、導電性と銀メッキ反応時の再現性に優れ、原料銅微粉並みのタップ密度を有する銀メッキ銅微粉及びその製造方法を提供することを目的とする。The copper fine powder is washed with water in the alkaline solution to remove the organic matter on the surface of the copper fine powder, and the oxide on the surface of the copper fine powder is pickled and washed in the acidic solution, and then reduced in the acidic solution in which the copper fine powder is dispersed. A copper fine powder slurry is prepared by adding an agent, and after adjusting the pH, a silver ion solution complexed with a chelating agent is continuously added to the copper fine powder slurry, so that electroless displacement plating and reduction type plating are performed. A method for producing silver-plated copper fine powder, characterized in that a silver layer is formed on the surface of the copper fine powder. In conventional silver-plated copper fine powder, it solves problems such as variations in the color tone after silver plating reaction due to the oxidation state of copper fine powder before silver plating and reduction of tap density due to silver plating, etc., and conductivity and silver plating It aims at providing the silver plating copper fine powder which is excellent in the reproducibility at the time of reaction, and has the tap density like raw material copper fine powder, and its manufacturing method.

Description

本発明は銀メッキ銅微粉及び銀メッキ銅微粉を用いて製造した導電ペースト並びに銀メッキ銅微粉の製造方法に関するものであり、特に導電性と銀メッキ反応時の再現性に優れ、原料銅微粉並みのタップ密度を有する銀メッキ銅微粉に関する。   The present invention relates to a silver-plated copper fine powder, a conductive paste produced using the silver-plated copper fine powder, and a method for producing the silver-plated copper fine powder. It relates to the silver plating copper fine powder which has the tap density of.

従来、銅微粉は導電ペーストの原料として広く用いられてきた。導電ペーストは、その取り扱いの容易さ故に、実験目的なものから電子産業用途に到るまで広範に使用されている。   Conventionally, copper fine powder has been widely used as a raw material for conductive paste. Conductive pastes are widely used because of their ease of handling, from experimental purposes to applications in the electronics industry.

なかでも、銀層を表面に被覆した銀メッキ銅微粉は、導電ペーストに加工され、スクリーン印刷法を用いたプリント配線板の回路形成、各種電気的接点部等に応用され、電気的導通確保の材料として用いられてきた。
これは、表面に銀層を被覆しない通常の銅微粉と比較したとき、銀メッキ銅微粉は銅微粉よりも電気的導電性に優れるからである。また、銀粉のみでは高価になるが、銅に銀をめっきすれば、導電性粉末全体としては安価になり、製造コストを大幅に低減できるからである。したがって、導電特性により優れている銀をメッキした銅微粉からなる導電ペーストは、低抵抗の導体を低コストで製造できるという大きなメリットが得られる。
Among them, silver-plated copper fine powder with a silver layer coated on its surface is processed into a conductive paste and applied to the formation of printed wiring board circuits using screen printing, various electrical contact points, etc., to ensure electrical continuity. It has been used as a material.
This is because silver-plated copper fine powder is more excellent in electrical conductivity than copper fine powder when compared with normal copper fine powder that does not cover the surface with a silver layer. Moreover, although it will become expensive only by silver powder, if silver is plated on copper, it will become cheap as the whole electroconductive powder, and manufacturing cost can be reduced significantly. Therefore, a conductive paste made of copper fine powder plated with silver, which is superior in conductive properties, has a great merit that a low-resistance conductor can be manufactured at low cost.

ところで、このような導電ペースト用の銀メッキ銅微粉は、一般的に銅と銀との置換反応を利用した無電解置換メッキ法により製造する技術が知られている。特許文献1には、硝酸銀、炭酸アンモニウム塩、エチレンジアミン四酢酸塩の銀錯塩溶液を用いて金属銅粉の表面に銀を置換析出させる方法についての記載がある。
また、特許文献2には、キレート化剤溶液に銅粉を分散し、該銅粉分散液に硝酸銀溶液を加え、次いで還元剤を添加して銅粉表面へ銀被膜を析出させる方法が開示されている。
さらに、特許文献3には、銅粉分散液にキレート化剤を加えて銅粉スラリーを作製し、これに緩衝剤を添加してpH調整を行い、これに銀イオンを添加して置換反応により銀コート銅粉とする技術が開示されている。
By the way, the technique of manufacturing such a silver plating copper fine powder for electrically conductive paste by the electroless displacement plating method using the substitution reaction of copper and silver is generally known. Patent Document 1 describes a method of substituting and depositing silver on the surface of metallic copper powder using a silver complex solution of silver nitrate, ammonium carbonate, and ethylenediaminetetraacetate.
Patent Document 2 discloses a method of dispersing a copper powder in a chelating agent solution, adding a silver nitrate solution to the copper powder dispersion, and then adding a reducing agent to deposit a silver coating on the surface of the copper powder. ing.
Furthermore, in Patent Document 3, a chelating agent is added to a copper powder dispersion to prepare a copper powder slurry, a pH is adjusted by adding a buffer to the slurry, and silver ions are added thereto to perform substitution reaction. A technique for producing silver-coated copper powder is disclosed.

これらの製造方法で得られる銀メッキ銅微粉は、導電性や耐湿性の特性に優れ、導電ペースト材料としては好適な材料として利用されてきた。しかし、これらの製造方法で得られた銀メッキ銅微粉は、銀メッキ前の銅微粉の酸化状態によって銀メッキ反応後の色調にバラツキが生じることや、銀メッキによるタップ密度の低下等の問題点を抱えていた。
特開昭57−59283号公報 特開平2−46641号公報 特開2004−52044号公報
Silver-plated copper fine powder obtained by these production methods is excellent in conductivity and moisture resistance characteristics, and has been used as a suitable material as a conductive paste material. However, the silver-plated copper fine powder obtained by these manufacturing methods has problems such as variations in the color tone after the silver plating reaction due to the oxidation state of the copper fine powder before silver plating, and a decrease in tap density due to silver plating. Was holding.
JP-A-57-59283 JP-A-2-46641 JP 2004-52044 A

本発明は、上記の問題点を解決することを目的とし、導電性と銀メッキ反応時の再現性に優れ、原料銅微粉並みのタップ密度を有する銀メッキ銅微粉及びその製造方法を提供する。   The present invention aims to solve the above problems, and provides a silver-plated copper fine powder having excellent conductivity and reproducibility at the time of silver plating reaction and having a tap density similar to that of a raw material copper fine powder and a method for producing the same.

本発明者等は、上記課題を解決するために鋭意研究した結果、従来の銀メッキ銅微粉において銀メッキ反応の前後に表面処理工程を導入すること及び無電解置換メッキと還元型メッキにより銅微粉表面に銀層を形成することで、銀メッキ製造時の再現性に優れ、原料銅微粉並みのタップ密度を有する銀メッキ銅微粉となることを見出した。   As a result of intensive research to solve the above problems, the present inventors have introduced a surface treatment process before and after the silver plating reaction in conventional silver-plated copper fine powder, and copper fine powder by electroless displacement plating and reduction type plating. It has been found that by forming a silver layer on the surface, the silver-plated copper fine powder is excellent in reproducibility during silver plating production and has a tap density similar to that of the raw material copper fine powder.

これらの知見に基づき、本発明は
1)平均粒径が1〜30μm、タップ密度が2.4g/cm以上、比表面積が0.9m/g以下である銀メッキ銅微粉
2)平均粒径が3〜20μm、タップ密度が3.0g/cm以上、比表面積が0.6m/g以下である銀メッキ銅微粉
3)銀メッキ銅微粉が、さらに0.01〜5.0重量%の脂肪酸で被覆されている上記1又は2記載の銀メッキ銅微粉
4)銀メッキ銅微粉が、さらに0.1〜1.0重量%の脂肪酸で被覆されている上記1又は2記載の銀メッキ銅微粉
5)上記1〜4のいずれかに記載の銀メッキ銅微粉を用いて製造した導電ペースト、を提供する。
Based on these findings, the present invention is as follows: 1) Silver-plated copper fine powder having an average particle diameter of 1 to 30 μm, a tap density of 2.4 g / cm 3 or more, and a specific surface area of 0.9 m 2 / g or less 2) Average grains Silver-plated copper fine powder having a diameter of 3 to 20 μm, a tap density of 3.0 g / cm 3 or more, and a specific surface area of 0.6 m 2 / g or less 3) Silver-plated copper fine powder is further 0.01 to 5.0 weight The silver-plated copper fine powder according to 1 or 2 above, which is coated with 1% of fatty acid 4) The silver according to 1 or 2 above, wherein the silver-plated copper fine powder is further coated with 0.1 to 1.0% by weight of fatty acid Plating copper fine powder 5) Provided is a conductive paste produced using the silver-plated copper fine powder according to any one of 1 to 4 above.

本発明は、また
6)銅微粉の表面に銀層を形成する銀メッキ銅微粉の製造方法において、銅微粉をアルカリ性溶液中で銅微粉表面の有機物を除去・水洗し、次に酸性溶液中で銅微粉表面の酸化物を酸洗・水洗した後、この銅微粉を分散させた酸性溶液中に還元剤を添加しpHを調整して銅微粉スラリーを作成し、この銅微粉スラリーに銀イオン溶液を連続的に添加することにより、無電解置換メッキと還元型無電解メッキにより銅微粉表面に銀層を形成する銀メッキ銅微粉の製造方法
7)前記アルカリ性溶液として水酸化カリウムを用い、酸性溶液として硫酸を用いることを特徴とする上記6記載の銀メッキ銅微粉の製造方法
8)還元剤として多価カルボン酸若しくはその塩類又はホルムアルデヒドから選択した1種又は2種以上を用いる上記6又は7記載の銀メッキ銅微粉の製造方法
9)銀イオン溶液添加開始時のpHを3.0〜5.0に調整する上記6〜8のいずれかに記載の銀メッキ銅微粉の製造方法
10)銀イオン溶液添加開始時のpHを3.5〜4.5に調整する上記6〜8のいずれかに記載の銀メッキ銅微粉の製造方法
11)銀イオン溶液は、透明なアンモニア性硝酸銀溶液である上記6〜10のいずれかに記載の銀メッキ銅微粉の製造方法
12)銀メッキ銅微粉を水素気流下の還元性雰囲気中で150〜220°C、20〜90分間、熱処理を行う上記6〜11のいずれかに記載の銀メッキ銅微粉の製造方法
13)銀メッキ銅微粉を水素気流下の還元性雰囲気中で180〜210°C、20〜40分間、熱処理を行う上記6〜11のいずれかに記載の銀メッキ銅微粉の製造方法
14)銀メッキ銅微粉を、脂肪酸を含むアルコール溶液中に浸漬し、銀メッキ銅微粉の表面を0.01〜5.0重量%の脂肪酸で被覆する上記6〜13のいずれかに記載の銀メッキ銅微粉の製造方法
15)銀メッキ銅微粉を、脂肪酸を含むアルコール溶液中に浸漬し、銀メッキ銅微粉の表面を0.1〜1.0重量%の脂肪酸で被覆する上記6〜13のいずれかに記載の銀メッキ銅微粉の製造方法、を提供するものである。
The present invention also relates to 6) a method for producing a silver-plated copper fine powder in which a silver layer is formed on the surface of the copper fine powder. In the alkaline solution, the copper fine powder is removed in an alkaline solution, washed with water, and then washed in an acidic solution After pickling and washing the oxide on the surface of the copper fine powder, a reducing agent is added to the acidic solution in which the copper fine powder is dispersed to adjust the pH to create a copper fine powder slurry, and a silver ion solution is added to the copper fine powder slurry. A method for producing silver-plated copper fine powder in which a silver layer is formed on the surface of copper fine powder by electroless displacement plating and reduction-type electroless plating. 7) An acidic solution using potassium hydroxide as the alkaline solution 8. A method for producing a silver-plated copper fine powder as described in 6 above, wherein sulfuric acid is used as the reducing agent. 8) One or more selected from polyvalent carboxylic acids or salts thereof or formaldehyde are used as the reducing agent. Method for producing silver-plated copper fine powder according to 6 or 7 9) Method for producing silver-plated copper fine powder according to any one of 6 to 8 above, wherein the pH at the start of addition of the silver ion solution is adjusted to 3.0 to 5.0 10) The method for producing silver-plated copper fine powder according to any one of 6 to 8 above, wherein the pH at the start of addition of the silver ion solution is adjusted to 3.5 to 4.5. 11) The silver ion solution is a transparent ammoniacal silver nitrate. The method for producing a silver-plated copper fine powder according to any one of the above 6 to 10 as a solution 12) The silver-plated copper fine powder is heat-treated in a reducing atmosphere under a hydrogen stream at 150 to 220 ° C for 20 to 90 minutes. The manufacturing method of the silver plating copper fine powder in any one of said 6-11 13) Said 6-6 which heat-processes silver plating copper fine powder in 180-210 degreeC and 20-40 minutes in the reducing atmosphere under hydrogen stream. Of the silver-plated copper fine powder according to any one of 11 Production method 14) The silver-plated copper fine powder is immersed in an alcohol solution containing a fatty acid, and the surface of the silver-plated copper fine powder is coated with 0.01 to 5.0% by weight of a fatty acid. 15) Silver-plated copper fine powder 15) The silver-plated copper fine powder is immersed in an alcohol solution containing a fatty acid, and the surface of the silver-plated copper fine powder is coated with 0.1 to 1.0% by weight of fatty acid. The manufacturing method of the silver plating copper fine powder in any one of 13 is provided.

銀メッキ反応の前後に表面処理工程を導入すること及び無電解置換メッキと還元型メッキにより銅微粉表面に銀層を形成することで、銅微粉表面に銀層を均一に被覆することが可能となり、その結果、優れた導電性を有するとともに銀メッキ反応時の再現性に優れ、原料銅微粉並みのタップ密度を有する銀メッキ銅微粉となり、導電ペーストに使用した際に安定的に高充填化を達成することができるという優れた効果を有する。   By introducing a surface treatment process before and after the silver plating reaction and forming a silver layer on the surface of the copper fine powder by electroless displacement plating and reduction plating, it becomes possible to uniformly coat the silver layer on the surface of the copper fine powder. As a result, it has excellent conductivity and reproducibility at the time of silver plating reaction, resulting in silver-plated copper fine powder with tap density similar to that of raw copper fine powder, and stable and high filling when used in conductive paste It has an excellent effect that it can be achieved.

従来は、酸性溶液でなくアルカリ性溶液を使用するため、粉として取り出す際に銅水酸化物が再沈殿してしまうおそれがあった。また、置換反応の際、銀イオン溶液をまとめて投入するため、銀イオン濃度が銅粉周辺で不均一になり、銀の被覆状態の悪い銀メッキ銅微粉が形成されることが考えられた。
これに対し本発明は、アルカリ性溶液中に銅微粉を分散させることで銅微粉表面の有機物を除去し、酸性溶液中に銅微粉を分散させることで銅微粉表面の酸化物を除去し、キレート化剤により錯体化した銅イオンを安定な状態で維持できるようにpH調整をし、銀イオンとの置換反応が均一的に進行するように銀イオン溶液を連続的に添加しているため、銅微粉表面に極めて均一に銀層を被覆できる。
Conventionally, since an alkaline solution is used instead of an acidic solution, the copper hydroxide may be reprecipitated when taken out as a powder. In addition, since the silver ion solution was put together during the substitution reaction, it was considered that the silver ion concentration became non-uniform around the copper powder, and silver-plated copper fine powder having a poor silver coating state was formed.
In contrast, the present invention removes organic substances on the surface of copper fine powder by dispersing copper fine powder in an alkaline solution, and removes oxides on the surface of copper fine powder by dispersing copper fine powder in an acidic solution. Since the pH is adjusted so that the copper ions complexed by the agent can be maintained in a stable state, and the silver ion solution is continuously added so that the substitution reaction with the silver ions proceeds uniformly, the copper fine powder The silver layer can be coated on the surface very uniformly.

アルカリ性溶液として、水酸化ナトリウム、水酸化カリウム等を用いる。置換反応させる前に銅微粉表面の有機物を確実に除去できるアルカリ性溶液であればよいが、好ましくは水酸化カリウムとする。
酸性溶液にあっては、硫酸、塩酸、リン酸等を用いる。好ましくは硫酸とし、置換反応をさせる前に銅微粉表面の銅酸化物を確実に除去できる酸性溶液であればよいが、その選択する種類や濃度は過剰に銅微粉の銅自体を溶解しないようにする必要がある。
この酸性溶液のpHは2.0〜5.0の酸性領域とすることが望ましい。pHが5.0を越えると銅微粉の酸化物を十分に溶解除去できなくなり、pHが2.0より小さくなると銅粉の溶解が生じ、銅微粉自体の凝集も進行し易くなる。より好ましくは、pH3.5〜4.5の酸性領域である。
As the alkaline solution, sodium hydroxide, potassium hydroxide or the like is used. Any alkaline solution that can reliably remove the organic matter on the surface of the copper fine powder before the substitution reaction may be used, but potassium hydroxide is preferred.
In an acidic solution, sulfuric acid, hydrochloric acid, phosphoric acid or the like is used. It is preferable to use sulfuric acid, and any acidic solution that can reliably remove the copper oxide on the surface of the copper fine powder before the substitution reaction is performed. However, the type and concentration to be selected should not excessively dissolve the copper fine copper itself. There is a need to.
The pH of this acidic solution is desirably in the acidic range of 2.0 to 5.0. If the pH exceeds 5.0, the oxide of the copper fine powder cannot be sufficiently dissolved and removed, and if the pH is lower than 2.0, the copper powder is dissolved and the aggregation of the copper fine powder itself easily proceeds. More preferably, it is an acidic region having a pH of 3.5 to 4.5.

また、本発明の製造方法において、キレート化剤はEDTAやアンモニア等を用いることができる。本発明で用いられるキレート化剤は、本発明の効果を奏する限り、特に制限されるものではないが、好ましくはアンモニアとする。
硝酸銀溶液にアンモニア水を加えると、沈殿を生じるが、過剰のアンモニア水を加えると、透明なアンモニア性硝酸銀溶液(この中に[Ag(NHを含む)が得られる。これに酒石酸ナトリウムカリウムなどの還元剤を加えると銅微粉の表面に銀が析出し、銀メッキ銅微粉が形成される。
In the production method of the present invention, EDTA, ammonia or the like can be used as the chelating agent. The chelating agent used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but is preferably ammonia.
When ammonia water is added to the silver nitrate solution, precipitation occurs, but when excess ammonia water is added, a clear ammoniacal silver nitrate solution (containing [Ag (NH 3 ) 2 ] + therein) is obtained. When a reducing agent such as sodium potassium tartrate is added thereto, silver is deposited on the surface of the copper fine powder, and silver-plated copper fine powder is formed.

また、本発明において還元剤は、多価カルボン酸、多価カルボン酸塩類、ホルムアルデヒド等を用いることができる。例えば、酒石酸ナトリウムカリウム(ロッシェル塩)やブドウ糖(グルコース)などが挙げられる。好ましくは、酒石酸ナトリウムカリウム(ロッシェル塩)とし、この還元剤は弱い還元力を示し、置換反応の副生物として生成する酸化物(CuO、CuO、AgO、AgO)のみを還元し、銅の錯イオンまでは還元させない。In the present invention, polyvalent carboxylic acids, polyvalent carboxylates, formaldehyde and the like can be used as the reducing agent. Examples include sodium potassium tartrate (Rochelle salt) and glucose (glucose). Preferably, potassium sodium tartrate (Rochelle salt), this reducing agent exhibits weak reducing power, and reduces only oxides (CuO, Cu 2 O, AgO, Ag 2 O) produced as a by-product of the substitution reaction, Copper complex ions are not reduced.

そして、本発明における銀イオン溶液は硝酸銀溶液を用いる。本発明で用いられる銀イオン溶液は、本発明の効果を奏する限り、特に制限はされない。この硝酸銀溶液は硝酸銀濃度20〜300g/Lとし、好ましくは50〜100g/Lとする。
また、銅微粉スラリーに添加する銀イオン溶液の速度は、200mL/min以下とし、好ましくは100mL/min以下とする。上記濃度範囲の硝酸銀溶液を比較的ゆっくりとした添加速度、実用的には20〜200mL/minで添加することで、銅微粉表面に均一な銀層を被覆することが確実に行うことができる。
And the silver ion solution in this invention uses a silver nitrate solution. The silver ion solution used in the present invention is not particularly limited as long as the effects of the present invention are exhibited. This silver nitrate solution has a silver nitrate concentration of 20 to 300 g / L, preferably 50 to 100 g / L.
Moreover, the speed | rate of the silver ion solution added to a copper fine powder slurry shall be 200 mL / min or less, Preferably you may be 100 mL / min or less. By adding a silver nitrate solution in the above concentration range at a relatively slow addition rate, practically at 20 to 200 mL / min, it is possible to reliably coat a uniform silver layer on the copper fine powder surface.

さらに、本発明の製造方法において、酸性溶液中に銅微粉を分散した後、デカンテーション処理を行うことが好ましい。デカンテーション処理は、傾斜法とも呼ばれ、酸性溶液に銅微粉を分散させた後、溶液を静置することで銅微粉もしくは銀メッキ銅微粉を沈降させた後、上澄み液を静かに傾斜して分離採取する操作をいう。これによれば、銅微粉もしくは銀メッキ銅微粉が大気と接触することがないので、銅微粉もしくは銀メッキ銅微粉の再酸化を防止した状態で次工程に移行することが可能となる。   Furthermore, in the production method of the present invention, it is preferable to carry out a decantation treatment after copper fine powder is dispersed in an acidic solution. The decantation process is also called a gradient method. After copper fine powder is dispersed in an acidic solution, the solution is allowed to stand to settle copper fine powder or silver-plated copper fine powder, and then the supernatant is gently inclined. An operation to separate and collect. According to this, since copper fine powder or silver plating copper fine powder does not contact air | atmosphere, it becomes possible to transfer to the following process in the state which prevented reoxidation of copper fine powder or silver plating copper fine powder.

本発明の製造方法に用いる後処理の1の方法は、水素気流下の還元性雰囲気中で150〜220°C、30〜90分間で熱処理を行う。好ましくは180〜210°C、20〜40分間で熱処理を行い、この熱処理により銅微粉と銀層の界面を一部合金化することで、界面の結合力を高めることができる。
銀メッキ銅微粉は導電性ペーストとする際に、樹脂や溶剤と混合して混練りするが、界面の結合力が弱いと、機械的摩擦を受けた時に銀層の剥離が生じてしまう。そこで、低温短時間での熱処理が有効となる。ただし、熱処理をあまり高温下や長時間行うと銀が銅に完全に拡散してしまう虞がある。
One method of post-treatment used in the production method of the present invention is to perform heat treatment at 150 to 220 ° C. for 30 to 90 minutes in a reducing atmosphere under a hydrogen stream. Preferably, the heat treatment is performed at 180 to 210 ° C. for 20 to 40 minutes, and the interface between the copper fine powder and the silver layer is partially alloyed by this heat treatment, whereby the bonding force at the interface can be increased.
Silver-plated copper fine powder is mixed with a resin or solvent and kneaded when making a conductive paste, but if the bonding force at the interface is weak, the silver layer will be peeled off when subjected to mechanical friction. Therefore, heat treatment at low temperature and short time is effective. However, if the heat treatment is performed at a very high temperature or for a long time, silver may be completely diffused into copper.

本発明の製造方法に用いる後処理の2の方法は、0.01〜5.0重量%の脂肪酸を含むアルコール溶液中に銀メッキ銅微粉を浸漬し、30分間程度の攪拌後に濾過、乾燥する。好ましくは、0.1〜1.0重量%の脂肪酸を含むアルコール溶液中に銀メッキ銅微粉を浸漬し、30分程度の攪拌後に濾過、乾燥する。脂肪酸はステアリン酸を用いる。脂肪酸被覆は、脂肪酸が銀メッキ銅微粉表面の凹凸に被覆されることにより表面が平滑化されることや脂肪酸自体が潤滑剤の役割を果たし銀メッキ銅微粉の充填性が高まることという優れた効果を有する。
これら後処理により銀メッキ反応により低下した銀メッキ銅微粉のタップ密度を原料銅微粉並みに高めることができ、高充填性を要求されるビアホール用途で有利となるのである。
In the post-treatment method 2 used in the production method of the present invention, silver-plated copper fine powder is immersed in an alcohol solution containing 0.01 to 5.0% by weight of a fatty acid, filtered and dried after stirring for about 30 minutes. . Preferably, the silver-plated copper fine powder is immersed in an alcohol solution containing 0.1 to 1.0% by weight of a fatty acid, filtered and dried after stirring for about 30 minutes. As the fatty acid, stearic acid is used. Fatty acid coating is an excellent effect that the surface is smoothed by the fatty acid being coated on the irregularities of the silver-plated copper fine powder surface, and that the fatty acid itself acts as a lubricant and the filling property of the silver-plated copper fine powder is increased. Have
By these post-treatments, the tap density of the silver-plated copper fine powder lowered by the silver plating reaction can be increased to the same level as the raw material copper fine powder, which is advantageous for via hole applications that require high filling properties.

上記に示した銀メッキ銅微粉及びその製造方法に用いられる銅微粉は、その種類、製法等に特に制限がなく、通常の電解法、還元法、アトマイズ法、機械的粉砕等から得られる銅微粉が用いることができる。また、その銅粉形状も特定はなく、球状、フレーク状、針状、樹脂状のものを用いることができる。
以上によって、平均粒径が1〜30μm、タップ密度が2.4g/cm以上、比表面積が0.9m/g以下である銀メッキ銅微粉を得ることができる。この銀メッキ銅微粉は、さらに平均粒径が3〜20μm、タップ密度が3.0g/cm以上、比表面積が0.6m/g以下を達成することができる。
また、この銀メッキ銅微粉は、上記の処理により0.01〜5.0重量%の脂肪酸で被覆された構造の銀メッキ銅微粉とすることができる。さらに、この銀メッキ銅微粉は、0.1〜1.0重量%の脂肪酸で被覆された構造とすることもできる。これらの銀メッキ銅微粉は導電ペーストとして有用である。本願発明は、これらの銅粉をもちいて製造した導電性ペーストを含むものである。
The copper fine powder used in the silver-plated copper fine powder and the production method thereof shown above is not particularly limited in the type, production method, etc., and is obtained from a normal electrolytic method, reduction method, atomizing method, mechanical grinding, etc. Can be used. Moreover, the shape of the copper powder is not specified, and a spherical shape, a flake shape, a needle shape, or a resin shape can be used.
As described above, silver-plated copper fine powder having an average particle diameter of 1 to 30 μm, a tap density of 2.4 g / cm 3 or more, and a specific surface area of 0.9 m 2 / g or less can be obtained. The silver-plated copper fine powder can further achieve an average particle size of 3 to 20 μm, a tap density of 3.0 g / cm 3 or more, and a specific surface area of 0.6 m 2 / g or less.
Moreover, this silver plating copper fine powder can be made into the silver plating copper fine powder of the structure coat | covered with 0.01 to 5.0 weight% of fatty acid by said process. Furthermore, this silver plating copper fine powder can also be made into the structure coat | covered with 0.1-1.0 weight% of fatty acid. These silver-plated copper fine powders are useful as a conductive paste. The present invention includes a conductive paste manufactured using these copper powders.

次に実施例に基づいて本発明を説明する。以下に示す実施例は、本発明の理解を容易にするためのものであり、これらの実施例よって本発明を制限するものではない。すなわち、本発明の技術思想に基づく変形及び他の実施例は、本発明に含まれるものである。   Next, this invention is demonstrated based on an Example. The following examples are for facilitating the understanding of the present invention, and the present invention is not limited by these examples. That is, modifications and other examples based on the technical idea of the present invention are included in the present invention.

(実施例1)
本実施例1においては、いわゆる電解法と呼ばれる製法により得られた電解銅粉を、さらにジェットミルで粉砕して得られた銅微粉を使用した。この銅微粉はレーザー回折散乱式粒度分布測定法による重量累積粒径D50は6.2μmであった。
この銅微粉500gを1%水酸化カリウム水溶液1000mlに加えて20分間攪拌し、続いて一次デカンテーション処理を行い、さらに純水1000mlを加えて数分間攪拌した。
その後、二次デカンテーション処理を行い、硫酸濃度15g/Lの硫酸水溶液2500mlを加えて30分間攪拌した。さらに、三次デカンテーション処理を行い、純水2500mlを加えて数分間攪拌した。
次いで、四次デカンテーション処理を行い、1%酒石酸ナトリウムカリウム溶液2500mlを加えて数分間攪拌し、銅スラリーを形成させた。
該銅スラリーに希硫酸又は水酸化カリウム溶液を加えて、銅スラリーのpHを3.5〜4.5になるように調整した。
Example 1
In the present Example 1, the copper fine powder obtained by further pulverizing the electrolytic copper powder obtained by the so-called electrolysis method with a jet mill was used. This copper fine powder had a weight cumulative particle diameter D 50 of 6.2 μm as measured by a laser diffraction / scattering particle size distribution measurement method.
500 g of this copper fine powder was added to 1000 ml of 1% aqueous potassium hydroxide solution and stirred for 20 minutes, followed by primary decantation treatment, and further 1000 ml of pure water was added and stirred for several minutes.
Then, the secondary decantation process was performed, 2500 ml of sulfuric acid aqueous solution with a sulfuric acid concentration of 15 g / L was added, and it stirred for 30 minutes. Further, tertiary decantation treatment was performed, 2500 ml of pure water was added, and the mixture was stirred for several minutes.
Next, quaternary decantation treatment was performed, and 2500 ml of 1% sodium potassium tartrate solution was added and stirred for several minutes to form a copper slurry.
A dilute sulfuric acid or potassium hydroxide solution was added to the copper slurry to adjust the pH of the copper slurry to 3.5 to 4.5.

pHを調整した銅スラリーに硝酸銀アンモニア溶液1000ml(硝酸銀887.5gを水に添加してアンモニア水を加え、1000mlとして調整したもの)を、30分間の時間をかけてゆっくりと添加しながら置換反応処理及び還元反応処理を行い、さらに30分間の攪拌をして銀メッキ銅微粉を得た。
その後、五次デカンテーション処理を行い、純水3500mlを加えて数分間攪拌した。さらに六次デカンテーション処理を行い、純水3500mlを加えて数分間攪拌した。そして、濾過洗浄、吸引脱水することで銀メッキ銅微粉と溶液とを濾別し、銀メッキ銅微粉を90°Cの温度で2時間の乾燥を行った。
Substitution reaction treatment while adding silver nitrate ammonia solution 1000ml (added 887.5g silver nitrate to water and adding ammonia water to 1000ml) to pH adjusted copper slurry slowly over 30 minutes Then, a reduction reaction treatment was performed, and the mixture was further stirred for 30 minutes to obtain silver-plated copper fine powder.
Then, the fifth decantation process was performed, 3500 ml of pure water was added, and it stirred for several minutes. Further, a sixth decantation treatment was performed, 3500 ml of pure water was added, and the mixture was stirred for several minutes. Then, the silver-plated copper fine powder and the solution were separated by filtration, washing and dehydrating, and the silver-plated copper fine powder was dried at a temperature of 90 ° C. for 2 hours.

(実施例2)
実施例1で作製した銀メッキ銅微粉500gを0.5%ステアリン酸エタノール溶液750mlに分散させ、30分間攪拌した。そして、濾過洗浄、吸引脱水することでステアリン酸被覆銀メッキ銅微粉と溶液とを濾別し、ステアリン酸被覆銀メッキ銅微粉を90°Cの温度で2時間の乾燥を行った。
(Example 2)
500 g of the silver-plated copper fine powder produced in Example 1 was dispersed in 750 ml of 0.5% stearic acid ethanol solution and stirred for 30 minutes. Then, the stearic acid-coated silver-plated copper fine powder and the solution were separated by filtration, washing and dehydrating, and the stearic acid-coated silver-plated copper fine powder was dried at a temperature of 90 ° C. for 2 hours.

(実施例3)
実施例1で作製した銀メッキ銅微粉500gを管状炉に入れ、水素気流下(3.0〜3.5l/min)の還元性雰囲気中で200°C、30分間熱処理した。熱処理済みの銀メッキ銅微粉を乳鉢で粉砕した。
(Example 3)
500 g of the silver-plated copper fine powder produced in Example 1 was placed in a tubular furnace and heat-treated at 200 ° C. for 30 minutes in a reducing atmosphere under a hydrogen stream (3.0 to 3.5 l / min). The heat-treated silver-plated copper fine powder was pulverized in a mortar.

(実施例4)
実施例3で作製した銀メッキ銅微粉500gを0.5%ステアリン酸エタノール溶液750mlに分散させ、30分間攪拌した。そして、濾過洗浄、吸引脱水することでステアリン酸被覆銀メッキ銅微粉と溶液とを濾別し、ステアリン酸被覆銀メッキ銅微粉を90°Cの温度で2時間の乾燥を行った。
Example 4
500 g of the silver-plated copper fine powder prepared in Example 3 was dispersed in 750 ml of 0.5% stearic acid ethanol solution and stirred for 30 minutes. Then, the stearic acid-coated silver-plated copper fine powder and the solution were separated by filtration, washing and dehydrating, and the stearic acid-coated silver-plated copper fine powder was dried at a temperature of 90 ° C. for 2 hours.

(比較例1)
1%酒石酸ナトリウムカリウム溶液2500mlに実施例1で使用した銅微粉500gを加えて数分間攪拌した。次に銅スラリーに希硫酸又は水酸化カリウム溶液を加えて、銅スラリーのpHを3.5〜4.5に調整した。
このようにpH調整した銅スラリーに硝酸銀アンモニア溶液1000ml(硝酸銀87.5gを水に添加してアンモニア水を加え、1000mlとして調整したもの)を、30分間の時間をかけてゆっくりと添加しながら置換反応処理及び還元反応処理を行い、さらに30分間の攪拌をして銀メッキ銅微粉を得た。
続いてデカンテーション処理を行い、純水3500mlを加えて数分間攪拌した。さらにデカンテーション処理を行い、純水3500mlを加えて数分間攪拌した。そして、濾過洗浄、吸引脱水することで銀メッキ銅微粉と溶液とを濾別し、銀メッキ銅微粉を90°Cの温度で2時間の乾燥を行った。
(Comparative Example 1)
To 2500 ml of 1% sodium potassium tartrate solution, 500 g of the copper fine powder used in Example 1 was added and stirred for several minutes. Next, dilute sulfuric acid or potassium hydroxide solution was added to the copper slurry to adjust the pH of the copper slurry to 3.5 to 4.5.
The copper slurry adjusted to pH in this way was replaced with 1000 ml of silver nitrate ammonia solution (87.5 g of silver nitrate added to water and adjusted to 1000 ml) and slowly added over 30 minutes. Reaction treatment and reduction reaction treatment were performed, and stirring was further performed for 30 minutes to obtain silver-plated copper fine powder.
Subsequently, decantation was performed, 3500 ml of pure water was added, and the mixture was stirred for several minutes. Further, decantation treatment was performed, 3500 ml of pure water was added, and the mixture was stirred for several minutes. Then, the silver-plated copper fine powder and the solution were separated by filtration, washing and dehydrating, and the silver-plated copper fine powder was dried at a temperature of 90 ° C. for 2 hours.

上述の実施例に係る銀メッキ銅微粉に関し、その平均粒径、比表面積、見掛密度、及びタップ密度を測定した。平均粒径はレーザー回折散乱式粒度分布測定法によるもので、重量累積粒径D50の値を採用した。比表面積はBET法により測定した。見掛密度はJISZ2504により測定した。タップ密度はJISZ2512により測定した。その結果を表1に示す。
この表1に示すように、原料粉の平均粒径は6.2μm、比表面積0.48m/g、タップ密度4.98g/cm、比抵抗は2.9×10−4Ω・cmとなった
実施例1では、平均粒径が9.4μm、比表面積0.33m/g、タップ密度3.92g/cm、比抵抗は1.3×10−4Ω・cmとなった。実施例2では、平均粒径が11.7μm、比表面積0.24m/g、タップ密度4.76g/cm、比抵抗は7.1×10−5Ω・cmとなった。実施例3では、平均粒径が13.8μm、比表面積0.19m/g、タップ密度3.99g/cm、比抵抗は1.1×10−4Ω・cmとなった。また、実施例4では、平均粒径が13.3μm、比表面積0.16m/g、タップ密度4.95g/cm、比抵抗は6.5×10−5Ω・cmとなった。
これらはいずれも、平均粒径が1〜30μm、タップ密度が2.4g/cm以上、比表面積が0.9m/g以下である本願発明の銀メッキ銅微粉の範囲に入るもので、好適な銀メッキ銅微粉であった。また、実施例1から実施例4はいずれも、比抵抗は1.5×10−4Ω・cm以下となり、原料粉及び後述する比較例に比べて、良好な導電性を示した。
The average particle diameter, specific surface area, apparent density, and tap density of the silver-plated copper fine powder according to the above-described example were measured. The average particle diameter was determined by a laser diffraction / scattering particle size distribution measurement method, and the value of weight cumulative particle diameter D 50 was adopted. The specific surface area was measured by the BET method. The apparent density was measured according to JISZ2504. The tap density was measured according to JISZ2512. The results are shown in Table 1.
As shown in Table 1, the raw material powder has an average particle size of 6.2 μm, a specific surface area of 0.48 m 2 / g, a tap density of 4.98 g / cm 3 , and a specific resistance of 2.9 × 10 −4 Ω · cm. In Example 1, the average particle size was 9.4 μm, the specific surface area was 0.33 m 2 / g, the tap density was 3.92 g / cm 3 , and the specific resistance was 1.3 × 10 −4 Ω · cm. . In Example 2, the average particle size was 11.7 μm, the specific surface area was 0.24 m 2 / g, the tap density was 4.76 g / cm 3 , and the specific resistance was 7.1 × 10 −5 Ω · cm. In Example 3, the average particle size was 13.8 μm, the specific surface area was 0.19 m 2 / g, the tap density was 3.99 g / cm 3 , and the specific resistance was 1.1 × 10 −4 Ω · cm. In Example 4, the average particle size was 13.3 μm, the specific surface area was 0.16 m 2 / g, the tap density was 4.95 g / cm 3 , and the specific resistance was 6.5 × 10 −5 Ω · cm.
These are all within the range of the silver-plated copper fine powder of the present invention having an average particle diameter of 1 to 30 μm, a tap density of 2.4 g / cm 3 or more and a specific surface area of 0.9 m 2 / g or less, It was a suitable silver-plated copper fine powder. In addition, in all of Examples 1 to 4, the specific resistance was 1.5 × 10 −4 Ω · cm or less, which showed better conductivity than the raw material powder and the comparative example described later.

Figure 2008059789
Figure 2008059789

これに対して、比較例1の平均粒径は8.7μm、タップ密度が4.00gg/cmであるが、比表面積は0.44m/gと他の実施例と比較して高い数値であり、銀メッキ銅微粉表面の凹凸が多く、銀メッキ表面の色調が悪く、また導電性も低下し、本願発明の目的を達成することができず、好ましくない結果となった。On the other hand, the average particle diameter of Comparative Example 1 is 8.7 μm and the tap density is 4.00 gg / cm 3 , but the specific surface area is 0.44 m 2 / g, which is a higher numerical value than the other examples. Thus, the surface of the silver-plated copper fine powder has many irregularities, the color tone of the silver-plated surface is poor, and the conductivity is lowered, so that the object of the present invention cannot be achieved, resulting in an undesirable result.

本発明に係る銅微粉表面に銀層を均一に被覆した銀メッキ銅微粉は、優れた導電性を有するとともに銀メッキ反応時の再現性に優れ、原料銅微粉並みのタップ密度を有するため、導電ペーストなどの電気的導通確保の材料に最適である。   The silver-plated copper fine powder in which the silver layer is uniformly coated on the surface of the copper fine powder according to the present invention has excellent conductivity and excellent reproducibility during the silver plating reaction, and has a tap density similar to that of the raw copper powder. Ideal for materials that ensure electrical continuity, such as paste.

Claims (15)

平均粒径が1〜30μm、タップ密度が2.4g/cm以上、比表面積が0.9m/g以下であることを特徴とする銀メッキ銅微粉。A silver-plated copper fine powder having an average particle size of 1 to 30 μm, a tap density of 2.4 g / cm 3 or more, and a specific surface area of 0.9 m 2 / g or less. 平均粒径が3〜20μm、タップ密度が3.0g/cm以上、比表面積が0.6m/g以下であることを特徴とする銀メッキ銅微粉。A silver-plated copper fine powder having an average particle size of 3 to 20 μm, a tap density of 3.0 g / cm 3 or more, and a specific surface area of 0.6 m 2 / g or less. 銀メッキ銅微粉が、さらに0.01〜5.0重量%の脂肪酸で被覆されていることを特徴とする請求項1又は2記載の銀メッキ銅微粉。   The silver-plated copper fine powder according to claim 1 or 2, wherein the silver-plated copper fine powder is further coated with 0.01 to 5.0% by weight of a fatty acid. 銀メッキ銅微粉が、さらに0.1〜1.0重量%の脂肪酸で被覆されていることを特徴とする請求項1又は2記載の銀メッキ銅微粉。   The silver-plated copper fine powder according to claim 1 or 2, wherein the silver-plated copper fine powder is further coated with 0.1 to 1.0% by weight of a fatty acid. 請求項1〜4のいずれかに記載の銀メッキ銅微粉を用いて製造した導電ペースト。   The electrically conductive paste manufactured using the silver plating copper fine powder in any one of Claims 1-4. 銅微粉の表面に銀層を形成する銀メッキ銅微粉の製造方法において、銅微粉をアルカリ性溶液中で銅微粉表面の有機物を除去・水洗し、次に酸性溶液中で銅微粉表面の酸化物を酸洗・水洗した後、この銅微粉を分散させた酸性溶液中に還元剤を添加しpHを調整して銅微粉スラリーを作成し、この銅微粉スラリーに銀イオン溶液を連続的に添加することにより、無電解置換メッキと還元型無電解メッキにより銅微粉表面に銀層を形成することを特徴とする銀メッキ銅微粉の製造方法。   In the method for producing silver-plated copper fine powder that forms a silver layer on the surface of copper fine powder, the copper fine powder is washed with water in the alkaline solution to remove the organic matter on the surface of the copper fine powder, and then the oxide on the surface of the copper fine powder in the acidic solution. After pickling and washing with water, a reducing agent is added to the acidic solution in which the copper fine powder is dispersed to adjust the pH to create a copper fine powder slurry, and a silver ion solution is continuously added to the copper fine powder slurry. A method for producing silver-plated copper fine powder, comprising forming a silver layer on the surface of the copper fine powder by electroless displacement plating and reduction-type electroless plating. 前記アルカリ性溶液として水酸化カリウムを用い、酸性溶液として硫酸を用いることを特徴とする請求項6記載の銀メッキ銅微粉の製造方法。   The method for producing a silver-plated copper fine powder according to claim 6, wherein potassium hydroxide is used as the alkaline solution and sulfuric acid is used as the acidic solution. 還元剤として多価カルボン酸若しくはその塩類又はホルムアルデヒドから選択した1種又は2種以上を用いることを特徴とする請求項6又は7記載の銀メッキ銅微粉の製造方法。   The method for producing silver-plated copper fine powder according to claim 6 or 7, wherein one or more selected from polyvalent carboxylic acids or salts thereof or formaldehyde is used as the reducing agent. 銀イオン溶液添加開始時のpHを3.0〜5.0に調整することを特徴とする請求項6〜8のいずれかに記載の銀メッキ銅微粉の製造方法。   The method for producing silver-plated copper fine powder according to any one of claims 6 to 8, wherein the pH at the start of addition of the silver ion solution is adjusted to 3.0 to 5.0. 銀イオン溶液添加開始時のpHを3.5〜4.5に調整することを特徴とする請求項6〜8のいずれかに記載の銀メッキ銅微粉の製造方法。   The method for producing silver-plated copper fine powder according to any one of claims 6 to 8, wherein the pH at the start of addition of the silver ion solution is adjusted to 3.5 to 4.5. 銀イオン溶液は、透明なアンモニア性硝酸銀溶液であることを特徴とする請求項6〜10のいずれかに記載の銀メッキ銅微粉の製造方法。   The method for producing a silver-plated copper fine powder according to any one of claims 6 to 10, wherein the silver ion solution is a transparent ammoniacal silver nitrate solution. 銀メッキ銅微粉を水素気流下の還元性雰囲気中で150〜220°C、20〜90分間、熱処理を行うことを特徴とする請求項6〜11のいずれかに記載の銀メッキ銅微粉の製造方法。   The silver-plated copper fine powder according to any one of claims 6 to 11, wherein the silver-plated copper fine powder is heat-treated in a reducing atmosphere under a hydrogen stream at 150 to 220 ° C for 20 to 90 minutes. Method. 銀メッキ銅微粉を水素気流下の還元性雰囲気中で180〜210°C、20〜40分間、熱処理を行うことを特徴とする請求項6〜11のいずれかに記載の銀メッキ銅微粉の製造方法。   The silver-plated copper fine powder according to any one of claims 6 to 11, wherein the silver-plated copper fine powder is heat-treated in a reducing atmosphere under a hydrogen stream at 180 to 210 ° C for 20 to 40 minutes. Method. 銀メッキ銅微粉を、脂肪酸を含むアルコール溶液中に浸漬し、銀メッキ銅微粉の表面を0.01〜5.0重量%の脂肪酸で被覆することを特徴とする請求項6〜13のいずれかに記載の銀メッキ銅微粉の製造方法。   The silver-plated copper fine powder is immersed in an alcohol solution containing a fatty acid, and the surface of the silver-plated copper fine powder is coated with 0.01 to 5.0% by weight of a fatty acid. The manufacturing method of the silver plating copper fine powder of description. 銀メッキ銅微粉を、脂肪酸を含むアルコール溶液中に浸漬し、銀メッキ銅微粉の表面を0.1〜1.0重量%の脂肪酸で被覆することを特徴とする請求項6〜13のいずれかに記載の銀メッキ銅微粉の製造方法。   The silver-plated copper fine powder is immersed in an alcohol solution containing a fatty acid, and the surface of the silver-plated copper fine powder is coated with 0.1 to 1.0% by weight of a fatty acid. The manufacturing method of the silver plating copper fine powder of description.
JP2008544126A 2006-11-17 2007-11-12 Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder Pending JPWO2008059789A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006311507 2006-11-17
JP2006311507 2006-11-17
PCT/JP2007/071907 WO2008059789A1 (en) 2006-11-17 2007-11-12 Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder

Publications (1)

Publication Number Publication Date
JPWO2008059789A1 true JPWO2008059789A1 (en) 2010-03-04

Family

ID=39401597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008544126A Pending JPWO2008059789A1 (en) 2006-11-17 2007-11-12 Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder

Country Status (3)

Country Link
JP (1) JPWO2008059789A1 (en)
TW (1) TW200831214A (en)
WO (1) WO2008059789A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402350B2 (en) * 2009-07-24 2014-01-29 藤倉化成株式会社 Method for producing conductive paste and conductive paste
JP5571435B2 (en) * 2010-03-31 2014-08-13 Jx日鉱日石金属株式会社 Method for producing silver-plated copper fine powder
JP5695879B2 (en) * 2010-10-25 2015-04-08 石原ケミカル株式会社 Method for producing tin-plated copper powder
JP5576318B2 (en) * 2011-03-01 2014-08-20 三井金属鉱業株式会社 Copper particles
CN102773475B (en) * 2012-07-31 2014-06-11 东南大学 Copper oxide silver composite powder for conductive paste and preparation method thereof
JPWO2014054618A1 (en) * 2012-10-03 2016-08-25 戸田工業株式会社 Silver hybrid copper powder and manufacturing method thereof, conductive paste containing the silver hybrid copper powder, conductive adhesive, conductive film, and electric circuit
JP2014208908A (en) * 2013-03-29 2014-11-06 Dowaエレクトロニクス株式会社 Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste
JP6258616B2 (en) * 2013-07-16 2018-01-10 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
CN103752842A (en) * 2013-11-11 2014-04-30 南京工业大学 Substitution and chemistry deposition compound preparation method for nano silver coated copper powder
JP2015183291A (en) * 2014-03-26 2015-10-22 三井金属鉱業株式会社 Silver-coated copper powder and conductive paste using the same
CN106457404B (en) 2014-04-23 2020-02-21 阿尔法金属公司 Method for producing metal powder
JP6956459B2 (en) * 2015-03-19 2021-11-02 Dowaエレクトロニクス株式会社 Silver-coated metal powder and its manufacturing method
CN105903980A (en) * 2016-05-16 2016-08-31 深圳市微纳集成电路与系统应用研究院 Copper nanometer powder and preparation method thereof as well as silver-coated copper powder and preparation method thereof
CN107626917B (en) * 2017-09-15 2022-02-22 烟台屹海新材料科技有限公司 Preparation method of silver-plated copper powder
CN109773212B (en) * 2019-03-29 2022-05-20 金陵科技学院 Preparation method of antioxidant silver-plated copper soldering paste suitable for high-power packaging
CN111872376B (en) * 2020-07-21 2022-10-04 云南铜业科技发展股份有限公司 Preparation method of silver-coated micro-alloyed copper powder with high oxidation resistance

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240463A (en) * 1993-02-22 1994-08-30 Mitsubishi Paper Mills Ltd Method for electroless-plating fine metal powder with silver
JPH10212501A (en) * 1997-01-28 1998-08-11 Dowa Mining Co Ltd Coated powder, silver-coated copper powder and its production, conductive paste and conductive film
JP2000248303A (en) * 1999-03-03 2000-09-12 Dowa Mining Co Ltd Production of silver-coated copper powder
JP2002245849A (en) * 2001-02-13 2002-08-30 Dowa Mining Co Ltd Conductive filter for conductive paste and manufacturing method of the same
JP2003147316A (en) * 2001-11-16 2003-05-21 Hitachi Chem Co Ltd Adhesive resin paste composition and semiconductor device using the same
JP2004052044A (en) * 2002-07-19 2004-02-19 Mitsui Mining & Smelting Co Ltd Silver-coated copper powder and its manufacturing method
JP2005044798A (en) * 2003-07-08 2005-02-17 Hitachi Chem Co Ltd Conductive powder and its production method
JP2006161081A (en) * 2004-12-03 2006-06-22 Dowa Mining Co Ltd Silvered copper powder, its manufacturing method, and conductive paste

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240463A (en) * 1993-02-22 1994-08-30 Mitsubishi Paper Mills Ltd Method for electroless-plating fine metal powder with silver
JPH10212501A (en) * 1997-01-28 1998-08-11 Dowa Mining Co Ltd Coated powder, silver-coated copper powder and its production, conductive paste and conductive film
JP2000248303A (en) * 1999-03-03 2000-09-12 Dowa Mining Co Ltd Production of silver-coated copper powder
JP2002245849A (en) * 2001-02-13 2002-08-30 Dowa Mining Co Ltd Conductive filter for conductive paste and manufacturing method of the same
JP2003147316A (en) * 2001-11-16 2003-05-21 Hitachi Chem Co Ltd Adhesive resin paste composition and semiconductor device using the same
JP2004052044A (en) * 2002-07-19 2004-02-19 Mitsui Mining & Smelting Co Ltd Silver-coated copper powder and its manufacturing method
JP2005044798A (en) * 2003-07-08 2005-02-17 Hitachi Chem Co Ltd Conductive powder and its production method
JP2006161081A (en) * 2004-12-03 2006-06-22 Dowa Mining Co Ltd Silvered copper powder, its manufacturing method, and conductive paste

Also Published As

Publication number Publication date
TWI349589B (en) 2011-10-01
WO2008059789A1 (en) 2008-05-22
TW200831214A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
JP5394084B2 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JPWO2008059789A1 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JP5571435B2 (en) Method for producing silver-plated copper fine powder
CN109423637B (en) Preparation method of high-conductivity material
JP2014105387A (en) Silver coat copper powder and manufacturing method thereof
KR20090022757A (en) The conductive paste composition for electrode including powder coated with silver and the manufacturing method thereof
JP2016176093A (en) Silver-covered metal powder and method for producing the same
JP6159505B2 (en) Flat copper particles
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
JP4078410B2 (en) Manufacturing method of silver diffusion copper powder
JP6549924B2 (en) Silver-coated copper powder and method for producing the same
CN112643026A (en) Preparation method of silver-coated nickel powder
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP5576319B2 (en) Copper particles
CN108213415B (en) Production method of corrosion-resistant high-temperature-resistant silver-copper coated powder
US20180264548A1 (en) Silver Coated Copper Flakes and Methods of Their Manufacture
JP2014198893A (en) Silver powder and its manufacturing method, paste, electronic circuit component, electrical product
JP2012233222A (en) Low-carbon copper particle
JP4644765B2 (en) Silver diffused copper powder, process for producing the same, and conductive paste using the same
WO2014115614A1 (en) Copper powder
JP4012961B2 (en) Production method of plate copper powder
JP2005068508A (en) Metal powder coated with inorganic superfine particle and its production method
KR20200066066A (en) Manufacturing method of silver powder capable of controlling shrinkage rate
JP6179423B2 (en) Method for producing sulfur-containing nickel powder
JP2004183060A (en) Polyaniline-based resin coated copper powder, its manufacturing method, and conductive paste obtained by using the powder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023