JPH11264001A - Flake copper powder and its production - Google Patents
Flake copper powder and its productionInfo
- Publication number
- JPH11264001A JPH11264001A JP10084942A JP8494298A JPH11264001A JP H11264001 A JPH11264001 A JP H11264001A JP 10084942 A JP10084942 A JP 10084942A JP 8494298 A JP8494298 A JP 8494298A JP H11264001 A JPH11264001 A JP H11264001A
- Authority
- JP
- Japan
- Prior art keywords
- copper powder
- acid
- flake
- flake copper
- organic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はフレーク銅粉及びその製
造方法に関し、より詳しくは導電性ペースト用あるいは
導電性接着剤用の導電性フィラーとして適したフレーク
銅粉及びその製造方法に係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flake copper powder and a method for producing the same, and more particularly to a flake copper powder suitable as a conductive filler for a conductive paste or a conductive adhesive and a method for producing the same.
【0002】[0002]
【従来の技術およびその問題点】近年、OA機器、携帯
通信機器等の電子部品実装技術においてチップ部品、接
点材料等の分野で使用される導電性ペーストとしては、
銀あるいは銀−パラジウムを主成分とする導電性金属粉
体あるいはフレークを樹脂バインダー、もしくはガラス
フリット等に配合したものがある。これらペーストは主
に焼成型で、プリント配線基板のスルーホール用、配線
クロスオーバー用、または電極用等に使用されている。
これら銀あるいは銀−パラジウムを主成分とする導電性
金属粉体あるいはフレークを使用する導電性ペーストは
導電性に優れかつ耐酸化性にも優れているが、銀、パラ
ジウム等の金属粉は高価でありまた安定した入手が困難
であり、しかも耐マイグレーション性に問題がある。そ
こで、高価な銀、パラジウムに代えて安価でかつ導電性
に優れた銅粉が特に近年著しく技術向上した表面処理と
相俟って導電性フィラーとしての要求が種々高まってき
ている。2. Description of the Related Art In recent years, conductive pastes used in the field of chip parts, contact materials and the like in electronic component mounting techniques for OA equipment, portable communication equipment, etc. include:
There is a conductive metal powder or flake containing silver or silver-palladium as a main component mixed with a resin binder or a glass frit. These pastes are mainly baked, and are used for through holes in printed wiring boards, wiring crossovers, electrodes, and the like.
Conductive pastes using conductive metal powders or flakes containing silver or silver-palladium as a main component are excellent in conductivity and oxidation resistance, but metal powders such as silver and palladium are expensive. In addition, stable acquisition is difficult, and there is a problem in migration resistance. Therefore, inexpensive copper powder having excellent conductivity in place of expensive silver and palladium has been increasingly demanded as a conductive filler, especially in combination with the surface treatment which has been significantly improved in recent years.
【0003】上記の如き銅ペースト用に供される銅粉は
銀粉に比べて安価であり、入手が容易で生産性が高いも
のである反面、表面酸化を生じ易く、一度酸化が生じる
とこれを用いた厚膜導体、接点部等の耐酸化性、特に耐
熱性及び耐湿性が劣化し、各種部品品質が問題とされる
事態に至る。このため、上記の如き用途に使用される銅
粉の表面を酸化防止剤で被覆することが考えられる。こ
の銅粉表面への酸化防止剤被覆法としては湿式法及び乾
式法の二種類があるが、湿式法は工程に洗浄、分水、乾
燥等を含み耐酸化性の優れたものは得にくく、処理に長
時間を要し生産性に劣るものであることから、乾式法が
実操業に適したものであるといえる。[0003] The copper powder used for the copper paste as described above is inexpensive compared to silver powder, is easily available, and has high productivity. On the other hand, surface oxidation is liable to occur. Oxidation resistance, especially heat resistance and moisture resistance of the used thick film conductors and contact portions are degraded, leading to a situation in which the quality of various parts becomes problematic. For this reason, it is conceivable to coat the surface of the copper powder used for the above applications with an antioxidant. There are two methods of coating the antioxidant on the copper powder surface, a wet method and a dry method, but the wet method involves washing, water separation, drying, etc. in the process, and it is difficult to obtain an excellent oxidation resistance. Since the treatment requires a long time and is inferior in productivity, it can be said that the dry method is suitable for actual operation.
【0004】特開平7-278614号では、銅粉表面に脂肪酸
(ステアリン酸)を添加して乾式粉砕により外観、半田
付け性に優れた球状銅粉を製造する方法が開示されてい
る。しかしながら、該公報を含めて従来の銅粉にあって
は、その酸化度合いは水素還元減量等を指標として活用
していたが、銅粉表面に付着もしくはコーティングして
いる表面処理剤等も定量してしまい、銅粉自体の酸化度
合いは測定されておらず、実際の導電性フィラー等とし
て使用する場合の酸化度合いの絶対的な指標として信頼
性の低いもので、酸素濃度量の判断基準として極めて曖
昧であり、外観、半田付け性による間接的な判断しか採
り得ず、具体的な酸素濃度に基づく耐酸化性の優劣は望
みえるものではなかった。また該公報記載の銅粉は球状
を呈し、主として球状径を所定範囲内に維持するための
銅粉の製造法と言うべきものである。Japanese Patent Application Laid-Open No. 7-278614 discloses a method of adding a fatty acid (stearic acid) to the surface of copper powder and performing dry pulverization to produce spherical copper powder having excellent appearance and solderability. However, in the conventional copper powders including the publication, the degree of oxidation was used as an index based on the weight loss of hydrogen reduction and the like, but the surface treatment agent or the like attached or coated on the copper powder surface was also determined. Therefore, the degree of oxidation of the copper powder itself has not been measured, and is an unreliable absolute index of the degree of oxidation when used as an actual conductive filler, etc. It was ambiguous and could only take indirect judgments based on the appearance and solderability, and the superiority of oxidation resistance based on specific oxygen concentration was not expected. Further, the copper powder described in the publication has a spherical shape, and is mainly referred to as a method for producing copper powder for maintaining the spherical diameter within a predetermined range.
【0005】本発明は前記状況に鑑み、耐酸性、特に耐
熱性、耐湿性に優れたフレーク銅粉であって、その表面
に酸化防止剤が被覆された銅粉を乾式法により提供する
ことを目的とする。本発明者らは、これら目的を達成す
るべく鋭意努力した結果、フレーク銅粉の酸素濃度自体
が耐酸化性に多大な影響を及ぼし、所定量を越える酸素
濃度を有する銅粉では導電性フィラー等としては不適で
あること、また酸化防止剤として常温において固体粉末
状である有機化合物であって、その融点が所定値以下で
ある場合、これら有機化合物がフレーク銅粉表面に均一
に被覆される等の知見を得た。本発明はこれら知見に基
づくものである。In view of the above circumstances, the present invention provides a flake copper powder excellent in acid resistance, particularly heat resistance and moisture resistance, the copper powder of which surface is coated with an antioxidant by a dry method. Aim. The present inventors have made intensive efforts to achieve these objects, and as a result, the oxygen concentration itself of the flake copper powder has a great effect on the oxidation resistance. For copper powder having an oxygen concentration exceeding a predetermined amount, conductive fillers such as As an antioxidant, an organic compound that is in the form of a solid powder at room temperature as an antioxidant, and when its melting point is below a predetermined value, these organic compounds are uniformly coated on the surface of the flake copper powder. Was obtained. The present invention is based on these findings.
【0006】[0006]
【問題点を解決するための手段】本発明に係るフレーク
銅粉は、酸素濃度が0.5%以下であるフレーク銅粉に、
その融点が200℃以下であって常温で固体粉末状をなす
有機化合物が被覆されてなるフレーク銅粉により前記課
題を解決したものである。本発明フレーク銅粉におい
て、前記固体粉末状有機化合物の被覆量は銅粉重量に対
して0.01〜5.0%、好ましくは0.05〜3.0%とする。前記
固体粉末状有機化合物はステアリン酸、ミリスチン酸、
クエン酸、グルタル酸、パルミチン酸、マレイン酸から
選ばれたいずれか一種又は二種以上とする。また、本発
明に係るフレーク銅粉の製造方法は、アトマイズ法、電
解法、化学還元法から得られる銅粉と固体粉末状有機化
合物を乾式混合粉砕し、その後一定の篩網目を有した風
力分級機により粒度調整するものである。この際の乾式
混合粉砕はボールミルまたは振動ミルを用いて行い、原
料銅粉の粒度分布はJIS標準篩の63μmを全て通過す
るものとする。Means for Solving the Problems The flake copper powder according to the present invention is a flake copper powder having an oxygen concentration of 0.5% or less,
This problem has been solved by a flake copper powder coated with an organic compound having a melting point of 200 ° C. or less and forming a solid powder at room temperature. In the flake copper powder of the present invention, the coating amount of the solid powdery organic compound is 0.01 to 5.0%, preferably 0.05 to 3.0% based on the weight of the copper powder. The solid powdery organic compound is stearic acid, myristic acid,
Any one or two or more selected from citric acid, glutaric acid, palmitic acid, and maleic acid. Further, the method for producing flake copper powder according to the present invention is a method of dry-mixing and pulverizing copper powder and a solid powdery organic compound obtained from an atomizing method, an electrolytic method, and a chemical reduction method, and then wind classification having a certain sieve mesh. The particle size is adjusted by a machine. The dry mixing and pulverization at this time is performed using a ball mill or a vibration mill, and the particle size distribution of the raw material copper powder passes through all 63 μm of the JIS standard sieve.
【0007】[0007]
【発明の態様】本発明に使用される銅粉は一般的にアト
マイズ法、電解法、化学還元法等の製造方法で得られ
る。好ましくは粒度分布が細かく、極力酸化していない
銅粉で形状は球、粒、デンドライト状等特別に限定する
ものではない。原料粉として重要なのは酸化度合いであ
り、分析方法としては一例として、銅粉自体の酸化度合
いは不活性ガス−インパルス加熱融解法(非分散赤外線
吸収法)により再現性良く定量することが可能である。
本発明使用銅粉の酸素量は0.5%以下、好ましくは0.3%
以下、より好ましくは0.1%以下のものとする。なお、
銅粉原料の粒度分布はJIS標準篩の63μm網を全て通
過するものとし、好ましくはさらに45μm網を50%以上
通過する微粒銅粉とする。DETAILED DESCRIPTION OF THE INVENTION The copper powder used in the present invention is generally obtained by a production method such as an atomizing method, an electrolytic method, and a chemical reduction method. Preferably, the copper powder has a fine particle size distribution and is not oxidized as much as possible, and the shape is not particularly limited, such as spheres, grains, and dendrites. The degree of oxidation is important as a raw material powder, and as an example of an analysis method, the degree of oxidation of copper powder itself can be quantified with good reproducibility by an inert gas-impulse heating melting method (non-dispersive infrared absorption method). .
The oxygen content of the copper powder used in the present invention is 0.5% or less, preferably 0.3%
Or less, more preferably 0.1% or less. In addition,
The particle size distribution of the copper powder raw material should pass through all the 63 μm nets of the JIS standard sieve, and preferably be fine copper powder which further passes 50% or more through the 45 μm net.
【0008】次に、上記した銅粉原料とともに使用され
る固体粉末状有機化合物はその融点が200℃以下、好ま
しく150℃以下であり、常温において固体状のものとす
る。具体的な化合物としては、ステアリン酸、ミリスチ
ン酸、クエン酸、グルタル酸、パルミチン酸、マレイン
酸等がある。これら固体粉末状有機化合物は銅粉と混合
する前に十分解砕されていることが好ましく、微細な程
原料銅粉との馴染みがよくなる。固体粉末状有機化合物
の原料銅粉に対する被覆量は0.01〜5.0wt%であり、好
ましくは0.05〜3.0wt%である。被覆量が0.05wt%未満
になると徐々に耐酸化性が低下し始めて、0.01wt%未満
になるとその傾向が著しくなる。また被覆量が3.0wt%
を越えると徐々に耐酸化性が低下し始めて、5.0wt%を
越えるとその傾向が著しくなる。Next, the solid powdery organic compound used together with the above-mentioned copper powder raw material has a melting point of 200 ° C. or lower, preferably 150 ° C. or lower, and is solid at room temperature. Specific compounds include stearic acid, myristic acid, citric acid, glutaric acid, palmitic acid, maleic acid and the like. It is preferable that these solid powdery organic compounds are sufficiently pulverized before being mixed with the copper powder, and the finer the finer the better the compatibility with the raw material copper powder. The coating amount of the solid powdery organic compound with respect to the raw material copper powder is 0.01 to 5.0% by weight, preferably 0.05 to 3.0% by weight. When the coating amount is less than 0.05 wt%, the oxidation resistance starts to gradually decrease, and when the coating amount is less than 0.01 wt%, the tendency becomes remarkable. The coating amount is 3.0wt%
If the amount exceeds 5.0%, the oxidation resistance starts to decrease gradually. If the amount exceeds 5.0% by weight, the tendency becomes remarkable.
【0009】前記の銅粉原料と固体粉末状有機化合物か
ら得られるフレーク銅粉の製造方法につき説明すると、
まず、銅粉と処理剤をボールミル等の容器に仕込む。こ
の場合、事前に容器内にはフレーク状にするためのボー
ルをいれておく。そして容器の蓋をして密閉状態を保ち
ながら該容器を所定時間横回転もしくは振動を与えてフ
レーク化を行う。この際に銅粉は充填されたボールに叩
かれフレーク化されるとともに表面に固体粉末状有機化
合物が均一に付着してコーティングされる。またフレー
クの際の摩擦熱が発生し、これにより200℃以下、好ま
しくは150℃以下の融点を有する固体粉末状有機化合物
はその融点に達して表面処理を円滑に促進させる。フレ
ーク状態は振動時間等に比例してアスペクト比が大きく
なる傾向にあるが、経済的な面を考慮して適宜処理時間
を調整するのが好ましい。フレーク化された銅粉はその
後一定の網目を有した風力分級機により粒度分布を調整
する。この風力分級は搬送流体中に一定目開きのスクリ
ーンを介在させることにより、所望の粒度を有する粉末
を得る方法である。このような分級機の代表的な機種と
して、フロースルー式ハイボルター分級機がある。フレ
ーク化の際には容器内を真空もしくは不活性ガス等によ
る置換で酸化がより進行しないようにすることが好まし
い。The method for producing flake copper powder obtained from the above-mentioned copper powder raw material and solid powdery organic compound will be described.
First, copper powder and a treating agent are charged into a container such as a ball mill. In this case, a ball for flakes is put in the container in advance. Then, while the container is closed and the container is kept in a sealed state, the container is horizontally rotated or vibrated for a predetermined time to form flakes. At this time, the copper powder is beaten by the filled ball to be flaked, and the surface is uniformly coated with the solid powdery organic compound to be coated. In addition, frictional heat is generated at the time of flakes, whereby the solid powdery organic compound having a melting point of 200 ° C. or lower, preferably 150 ° C. or lower reaches the melting point and smoothly promotes surface treatment. In the flake state, the aspect ratio tends to increase in proportion to the vibration time or the like, but it is preferable to appropriately adjust the processing time in consideration of economical aspects. The flaked copper powder is then adjusted in particle size distribution by an air classifier having a certain mesh. This air classification is a method of obtaining a powder having a desired particle size by interposing a screen having a certain aperture in a carrier fluid. A typical example of such a classifier is a flow-through type high-bolter classifier. At the time of flake formation, it is preferable that the inside of the container is replaced with a vacuum or an inert gas to prevent the oxidation from further progressing.
【0010】一般に、銅粉は延伸性が極めて大きいので
ボールミル等を用いて混合粉砕する場合に互いに凝集し
て大きなフレーク状を呈するが、本発明では予め原料銅
粉の粒径を63μm篩下以下とし、かつ融点が200℃以
下、好ましくは150℃以下の固体粉末状有機化合物を銅
粉とともに混合粉砕するため、この有機化合物がボール
ミル内で摩擦熱により溶解して銅粉表面に吸着され、そ
れが銅粉同士の凝集を抑制する一種の介在物のような作
用をなし、フレーク銅粉の凝集粗大化を防止し、均一で
微細なフレーク銅粉を得ることができる。本発明により
得られたフレーク銅粉は種々の用途に用いることがで
き、導電性ペースト、導電性接着剤等の導電フィラーと
して好適に使用できるものである。In general, copper powder has a very high stretchability, and when mixed and pulverized using a ball mill or the like, the copper powder agglomerates with each other to form a large flake. And, the melting point is 200 ℃ or less, preferably to mix and pulverize the solid powdery organic compound having a temperature of 150 ℃ or less together with copper powder, the organic compound is dissolved by frictional heat in a ball mill and adsorbed on the copper powder surface, Acts like a kind of inclusion that suppresses agglomeration between copper powders, prevents the flake copper powder from agglomerating and coarsening, and can obtain uniform and fine flake copper powder. The flake copper powder obtained by the present invention can be used for various applications, and can be suitably used as a conductive filler such as a conductive paste and a conductive adhesive.
【0011】[0011]
【実施例】表1に示す製造方法によった原料銅粉、その
酸素濃度及び平均粒径を有する銅粉を用い、固体粉末状
有機化合物としては同じく表1に示す種類の化合物を表
1に示す量で銅粉と共に10リットルのポット容器であっ
てその中に5.0mmφ(14kg)のボールを入れた容器内
に、仕込み量1.5kg装入し、容器内を窒素置換しつつ5
時間混合粉砕してフレーク化及び表面被覆を行った。な
お、酸素量測定は不活性ガス−インパルス加熱融解法
(非分散赤外線吸収法)により、平均粒径の測定はレー
ザー回折法によって行った。EXAMPLE A raw material copper powder obtained by the production method shown in Table 1 and a copper powder having an oxygen concentration and an average particle diameter thereof were used. 1.5 kg was charged into a 10-liter pot container together with copper powder in the amount shown, in which a 5.0 mmφ (14 kg) ball was placed.
Flaking and surface coating were performed by mixing and grinding for an hour. The oxygen content was measured by an inert gas-impulse heating melting method (non-dispersive infrared absorption method), and the average particle size was measured by a laser diffraction method.
【0012】得られたフレーク銅粉は、網目25μmの風
力分級機で粒度調整を行い、フレーク銅粉の酸素量を測
定し、耐酸化性につき試験した。耐酸化性試験は耐熱性
及び耐湿性につき行い、耐熱性はフレーク銅粉を85℃中
に240時間保持した後、耐湿性は45℃、95%RH中に240時
間保持した後、酸素量変化率を測定した。なお、実施例
のいずれも製品回収率は97%を越えるものであった。こ
れらの結果を表1に示す。また、実施例7で得られたフ
レーク銅粉を走査電子顕微鏡で倍率3000で撮影した写真
を図1に示す。The obtained flake copper powder was subjected to particle size adjustment using an air classifier having a mesh size of 25 μm, the oxygen content of the flake copper powder was measured, and the oxidation resistance was tested. The oxidation resistance test was conducted on heat resistance and moisture resistance.The heat resistance was measured after keeping the flake copper powder at 85 ° C for 240 hours, and the moisture resistance was maintained at 45 ° C and 95% RH for 240 hours, and the oxygen content was changed. The rate was measured. In all of the examples, the product recovery rate exceeded 97%. Table 1 shows the results. FIG. 1 shows a photograph of the flake copper powder obtained in Example 7 taken with a scanning electron microscope at a magnification of 3000.
【0013】[0013]
【表1】 [Table 1]
【0014】[0014]
【比較例】実施例1〜4と同様の銅粉を用いて比較試験
を行った。比較例1はフレーク化時に水5リットルとス
テアリン酸を併用して24時間混合粉砕し、その後脱水、
乾燥を行った。この場合の製品回収率は85%であった。
比較例2は固体粉末状有機化合物としてのステアリン酸
処理量を増やしたこと以外は実施例1と同様に処理し
た。比較例3は常温で液状であるオレイン酸を使用した
こと以外は実施例2と同様に処理した。比較例4は融点
が288℃であるステアリン酸ナトリウムを使用したこと
以外は実施例2と同様に処理した。これらの結果を表2
に示す。Comparative Example A comparative test was performed using the same copper powder as in Examples 1 to 4. Comparative Example 1 was mixed and pulverized for 24 hours using 5 liters of water and stearic acid together at the time of flake formation, and then dewatered
Drying was performed. The product recovery in this case was 85%.
Comparative Example 2 was treated in the same manner as in Example 1 except that the amount of stearic acid as a solid powdery organic compound was increased. Comparative Example 3 was treated in the same manner as in Example 2 except that oleic acid that was liquid at room temperature was used. Comparative Example 4 was treated in the same manner as in Example 2 except that sodium stearate having a melting point of 288 ° C. was used. Table 2 shows these results.
Shown in
【0015】[0015]
【表2】 [Table 2]
【0016】上記本発明実施例及び比較例から、フレー
ク銅粉の酸素量が0.5%以下であれば耐酸化性に優れた
ものが得られることがわかる。また有機化合物は固体粉
末状でなければフレーク化できないこと、この固体粉末
状有機化合物量が5.0wt%以下、さらには3.0wt%以下に
なると耐酸化性が劣るようになり、同様に固体粉末状有
機化合物の融点が200℃を越える化合物を用いると耐熱
性が劣るようになることが分かる。From the above Examples of the present invention and Comparative Examples, it can be seen that when the oxygen content of the flake copper powder is 0.5% or less, a product excellent in oxidation resistance can be obtained. In addition, organic compounds cannot be flaked unless they are in the form of solid powder. When the amount of the organic compounds in the form of solid powder is 5.0 wt% or less, and even less than 3.0 wt%, the oxidation resistance becomes poor. It can be seen that when a compound having a melting point of the organic compound exceeding 200 ° C. is used, heat resistance becomes poor.
【0017】[0017]
【発明の効果】以上のような本発明によれば、湿式法に
よらずに乾式法でフレーク銅粉を得ることができ、生産
性が向上し、歩留まりも大きく向上する。従って電子部
品実装技術において導電性ペースト等の導電性フィラー
等として銀あるいは銀−パラジウム等に代えて用いるこ
とができ極めて安価、均一でしかも耐酸化性に優れたフ
レーク銅粉が得られる。According to the present invention as described above, flake copper powder can be obtained by a dry method without using a wet method, thereby improving productivity and greatly improving yield. Accordingly, silver or silver-palladium or the like can be used instead of silver or silver-palladium as a conductive filler such as a conductive paste in an electronic component mounting technique, and flake copper powder which is extremely inexpensive, uniform and excellent in oxidation resistance can be obtained.
【図1】本発明実施例7で得れらたフレーク銅粉を3000
倍で示した走査電子顕微鏡写真である。FIG. 1 shows a flake copper powder obtained in Example 7 of the present invention of 3000
It is a scanning electron microscope photograph shown by the magnification.
Claims (7)
粉に、その融点が200℃以下であって常温で固体粉末状
をなす有機化合物が被覆されてなるフレーク銅粉。1. A flake copper powder obtained by coating a flake copper powder having an oxygen concentration of 0.5% or less with an organic compound having a melting point of 200 ° C. or less and forming a solid powder at room temperature.
粉重量に対して0.01〜5.0%である請求項1記載のフレ
ーク銅粉。2. The flake copper powder according to claim 1, wherein the coating amount of the solid powdery organic compound is 0.01 to 5.0% based on the weight of the copper powder.
粉重量に対して0.05〜3.0%である請求項1記載のフレ
ーク銅粉。3. The flake copper powder according to claim 1, wherein the coating amount of the solid powdery organic compound is 0.05 to 3.0% based on the weight of the copper powder.
酸、ミリスチン酸、クエン酸、グルタル酸、パルミチン
酸、マレイン酸から選ばれたいずれか一種又は二種以上
である請求項1乃至3のいずれかに記載のフレーク銅
粉。4. The solid powdery organic compound is one or more selected from stearic acid, myristic acid, citric acid, glutaric acid, palmitic acid, and maleic acid. The flake copper powder according to the above.
得られる銅粉と固体粉末状有機化合物を乾式混合粉砕
し、その後一定の篩網目を有した風力分級機により粒度
調整するフレーク銅粉の製造方法。5. A flake copper powder obtained by dry mixing and pulverizing a copper powder obtained by an atomizing method, an electrolytic method, and a chemical reduction method and a solid powdery organic compound, and then adjusting the particle size by an air classifier having a predetermined sieve mesh. Production method.
μmを全て通過するものとする請求項5記載のフレーク
銅粉の製造方法。6. The copper powder raw material has a particle size distribution of 63 according to JIS standard sieve.
The method for producing flaked copper powder according to claim 5, wherein all of the flaked copper powder passes through μm.
動ミルを用いて行う請求項5又は6記載のフレーク銅粉
の製造方法。7. The method for producing flake copper powder according to claim 5, wherein the dry mixing and pulverization is performed using a ball mill or a vibration mill.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10084942A JPH11264001A (en) | 1998-03-16 | 1998-03-16 | Flake copper powder and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10084942A JPH11264001A (en) | 1998-03-16 | 1998-03-16 | Flake copper powder and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11264001A true JPH11264001A (en) | 1999-09-28 |
Family
ID=13844716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10084942A Pending JPH11264001A (en) | 1998-03-16 | 1998-03-16 | Flake copper powder and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11264001A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002015622A (en) * | 2000-06-30 | 2002-01-18 | Fukuda Metal Foil & Powder Co Ltd | Copper powder for electro-conductive paste and its manufacturing method |
US6916433B2 (en) | 2000-02-29 | 2005-07-12 | Matsushita Electric Industrial Co., Ltd. | Conductive adhesive, apparatus for mounting electronic component, and method for mounting the same |
JP2005314755A (en) * | 2004-04-28 | 2005-11-10 | Mitsui Mining & Smelting Co Ltd | Flake copper powder, production method therefor and conductive paste |
JP2006004905A (en) * | 2004-03-10 | 2006-01-05 | Murata Mfg Co Ltd | Conductive paste and ceramic electronic component using this |
US7618475B2 (en) | 2005-01-31 | 2009-11-17 | Dowa Electronics Materials Co., Ltd. | Metal powder for electrically conductive paste and electrically conductive paste |
JP2010138494A (en) * | 2010-02-10 | 2010-06-24 | Mitsui Mining & Smelting Co Ltd | Method for producing flake copper powder |
JP2012014979A (en) * | 2010-07-01 | 2012-01-19 | Sumitomo Bakelite Co Ltd | Flat conductive particle manufacturing method, flat conductive particle, and resin composition |
CN104190946A (en) * | 2014-08-29 | 2014-12-10 | 广东风华高新科技股份有限公司 | Making method for high-tap-density surface-modified silver powder |
JP2016523426A (en) * | 2013-05-03 | 2016-08-08 | ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー | Improved sintered paste containing partially oxidized metal particles |
WO2018123809A1 (en) * | 2016-12-28 | 2018-07-05 | Dowaエレクトロニクス株式会社 | Copper powder and method for manufacturing same |
JP2018109225A (en) * | 2016-12-28 | 2018-07-12 | Dowaエレクトロニクス株式会社 | Copper powder and method for producing same |
CN112317754A (en) * | 2020-11-18 | 2021-02-05 | 贵州振华电子信息产业技术研究有限公司 | Sheet ball-milling tantalum powder and preparation method and application thereof |
-
1998
- 1998-03-16 JP JP10084942A patent/JPH11264001A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6916433B2 (en) | 2000-02-29 | 2005-07-12 | Matsushita Electric Industrial Co., Ltd. | Conductive adhesive, apparatus for mounting electronic component, and method for mounting the same |
JP2002015622A (en) * | 2000-06-30 | 2002-01-18 | Fukuda Metal Foil & Powder Co Ltd | Copper powder for electro-conductive paste and its manufacturing method |
JP2006004905A (en) * | 2004-03-10 | 2006-01-05 | Murata Mfg Co Ltd | Conductive paste and ceramic electronic component using this |
JP2005314755A (en) * | 2004-04-28 | 2005-11-10 | Mitsui Mining & Smelting Co Ltd | Flake copper powder, production method therefor and conductive paste |
US7618475B2 (en) | 2005-01-31 | 2009-11-17 | Dowa Electronics Materials Co., Ltd. | Metal powder for electrically conductive paste and electrically conductive paste |
JP2010138494A (en) * | 2010-02-10 | 2010-06-24 | Mitsui Mining & Smelting Co Ltd | Method for producing flake copper powder |
JP2012014979A (en) * | 2010-07-01 | 2012-01-19 | Sumitomo Bakelite Co Ltd | Flat conductive particle manufacturing method, flat conductive particle, and resin composition |
JP2016523426A (en) * | 2013-05-03 | 2016-08-08 | ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー | Improved sintered paste containing partially oxidized metal particles |
CN104190946A (en) * | 2014-08-29 | 2014-12-10 | 广东风华高新科技股份有限公司 | Making method for high-tap-density surface-modified silver powder |
WO2018123809A1 (en) * | 2016-12-28 | 2018-07-05 | Dowaエレクトロニクス株式会社 | Copper powder and method for manufacturing same |
JP2018109225A (en) * | 2016-12-28 | 2018-07-12 | Dowaエレクトロニクス株式会社 | Copper powder and method for producing same |
CN110114174A (en) * | 2016-12-28 | 2019-08-09 | 同和电子科技有限公司 | Copper powder and its manufacturing method |
US11692241B2 (en) | 2016-12-28 | 2023-07-04 | Dowa Electronics Materials Co., Ltd. | Copper powder and method for producing same |
US12049684B2 (en) | 2016-12-28 | 2024-07-30 | Dowa Electronics Materials Co., Ltd. | Copper powder and method for producing same |
CN112317754A (en) * | 2020-11-18 | 2021-02-05 | 贵州振华电子信息产业技术研究有限公司 | Sheet ball-milling tantalum powder and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5197369B2 (en) | A method of agglomerating and agglomerating metal particles | |
JP7042945B2 (en) | Silver-coated metal powder and its manufacturing method | |
JP6274444B2 (en) | Method for producing copper powder | |
JP4613362B2 (en) | Metal powder for conductive paste and conductive paste | |
TWI803486B (en) | Copper particle and its manufacturing method | |
JPH11264001A (en) | Flake copper powder and its production | |
JP2010013730A (en) | Copper powder for conductive paste, and conductive paste | |
JP2007270312A (en) | Method for manufacturing silver powder, and silver powder | |
JP2010013726A (en) | Copper powder for electroconductive paste, and electroconductive paste | |
JP5522885B2 (en) | Nickel powder, method for producing the same, and conductive paste | |
JP2010196105A (en) | Copper powder for electroconductive paste, and electroconductive paste | |
JP7288133B1 (en) | Silver powder, method for producing silver powder, and conductive paste | |
JP5510531B1 (en) | Silver powder and silver paste | |
CN100339172C (en) | Method for spheroidizing and pelletizing to coagulate metal powder, metal powder and electrolytic capacitor anode | |
KR20150092193A (en) | Silver powder | |
KR20150028970A (en) | Silver powder | |
JP2008179851A (en) | Method for manufacturing silver powder, and silver powder | |
JP2006161128A (en) | Nickel slurry, production method therefor, and nickel paste or nickel ink using the nickel slurry | |
JP2008223096A (en) | Method for manufacturing flaky silver powder | |
JP4433743B2 (en) | Method for producing copper fine particles | |
CN116060610B (en) | Silver-coated copper powder and preparation method and application thereof | |
JP2017039990A (en) | Copper powder, method for producing the same, and conductive paste using the same | |
JP2020196928A (en) | Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method | |
JP2011089156A (en) | Metal fine particle, and method for producing the same | |
JP2006183110A (en) | Silver-copper composite powder and method for producing silver-copper composite powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080701 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090407 |