JP2007245077A - Catalyst and hydrogen production apparatus using the same - Google Patents

Catalyst and hydrogen production apparatus using the same Download PDF

Info

Publication number
JP2007245077A
JP2007245077A JP2006074833A JP2006074833A JP2007245077A JP 2007245077 A JP2007245077 A JP 2007245077A JP 2006074833 A JP2006074833 A JP 2006074833A JP 2006074833 A JP2006074833 A JP 2006074833A JP 2007245077 A JP2007245077 A JP 2007245077A
Authority
JP
Japan
Prior art keywords
catalyst
powder
hydrogen
methanol
quasicrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006074833A
Other languages
Japanese (ja)
Inventor
Yasushi Kaneko
泰 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006074833A priority Critical patent/JP2007245077A/en
Publication of JP2007245077A publication Critical patent/JP2007245077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst the catalytic characteristics of which are stable even at high temperature and which is inexpensive and to provide a hydrogen production apparatus. <P>SOLUTION: The catalyst is obtained by using powder of a Cu-based quasicrystal containing Cu as a main constituent element. The Cu-based quasicrystal containing Ga, MG and Sc is preferable particularly since Cu of high concentration can be incorporated therein. The catalyst is suitable as a catalyst for steam reforming of methanol. The hydrogen production apparatus is used for producing hydrogen from a mixture of methanol and water by using the catalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、触媒に関し、例えばメタノール水蒸気改質反応を進行させて水素を生成させる触媒およびそれを用いて水素を生成する水素生成装置に関する。   The present invention relates to a catalyst, for example, a catalyst for generating hydrogen by causing a methanol steam reforming reaction to proceed, and a hydrogen generator for generating hydrogen using the catalyst.

近年注目されている燃料電池発電は、化学エネルギーを電力として取り出す発電システムである。この方法はSOやNOの排出量が抑えられとともに、高発電効率に起因してCO排出量が低減できることから、地球温暖化の防止に貢献できる環境負荷の少ない発電方式として期待されている。この燃料電池では燃料となる水素と酸素を反応させて水が生成する際の化学エネルギーを電気エネルギーとして利用する。この水素を生成する方法としては、メタノールに代表される炭化水素の水蒸気改質反応が有望視されている。メタノールは常温、常圧において液体であるため、輸送や貯蔵に有利であることから、メタノール水蒸気改質反応は、燃料電池自動車等の輸送手段、移動手段に使用する水素の供給源として注目されている。メタノール水蒸気改質においては、Cu/ZnOに代表される銅系触媒が高い活性を示していることが知られており、該触媒の製造方法も種々提案されている(例えば、特許文献1)。一方、触媒として準結晶Al合金粒子を用いたものも提案されている(例えば、特許文献2)。 Fuel cell power generation, which has attracted attention in recent years, is a power generation system that extracts chemical energy as electric power. This method is expected as a power generation method with low environmental impact that can contribute to the prevention of global warming because it can reduce the amount of SO x and NO x emissions and reduce CO 2 emissions due to high power generation efficiency. Yes. In this fuel cell, chemical energy when water is generated by reacting hydrogen and oxygen as fuel is used as electrical energy. As a method for generating hydrogen, a steam reforming reaction of hydrocarbons represented by methanol is considered promising. Since methanol is a liquid at normal temperature and pressure, it is advantageous for transportation and storage. Therefore, the methanol steam reforming reaction is attracting attention as a hydrogen supply source for transportation and transportation means such as fuel cell vehicles. Yes. In methanol steam reforming, it is known that a copper-based catalyst represented by Cu / ZnO exhibits high activity, and various methods for producing the catalyst have been proposed (for example, Patent Document 1). On the other hand, a catalyst using quasicrystalline Al alloy particles as a catalyst has been proposed (for example, Patent Document 2).

特開平6−312142号公報JP-A-6-312142 特開2004−290881号公報Japanese Patent Laid-Open No. 2004-290881

メタノール水蒸気改質用Cu/ZnO触媒には、自動車燃料電池等の実用に供される場合のように、高温において使用される際に、Cu微粒子のシンタリングが生じることにより表面積が減少し、触媒特性が低減してしまうといった問題があった。一方、準結晶Al合金粒子を用いた触媒は、微細な1次粒子を得やすいという利点はあるが、高価な貴金属であるPdを含むためコストが高くなるなどの問題があった。したがって、これらの触媒を用いた燃料電池等の水素生成装置も、水素生成能、価格を両立したものとは言えなかった。そこで本発明では、これらの問題に鑑み、例えば300℃以上の高温においても触媒特性が安定で、安価な触媒およびそれを用いた水素生成装置を提供することを目的とした。   The Cu / ZnO catalyst for methanol steam reforming has a reduced surface area due to sintering of Cu fine particles when used at high temperatures, as in the case of practical use in automobile fuel cells, etc. There was a problem that the characteristics were reduced. On the other hand, the catalyst using the quasicrystalline Al alloy particles has an advantage of easily obtaining fine primary particles, but has a problem that the cost increases because it contains Pd which is an expensive noble metal. Therefore, it cannot be said that hydrogen generating apparatuses such as fuel cells using these catalysts have both hydrogen generating ability and cost. Therefore, in view of these problems, the present invention has an object to provide an inexpensive catalyst having stable catalytic characteristics even at a high temperature of, for example, 300 ° C. or more, and a hydrogen generator using the catalyst.

発明者等は、上記課題を解決すべく鋭意検討した結果、本発明を完成するに至った。本発明の触媒は、Cuを主構成元素とするCu系準結晶の粉末を用いることを特徴とする。Cuを主構成元素とする準結晶の粉末は触媒として活性を示し、しかも貴金属を必須としないため材料費を低く抑えることことができる。Cuを主構成元素とするとは、構成元素のうち原子比でCuが最も多いことを意味する。   The inventors have intensively studied to solve the above problems, and as a result, have completed the present invention. The catalyst of the present invention is characterized by using Cu-based quasicrystalline powder containing Cu as a main constituent element. The quasicrystalline powder containing Cu as a main constituent element shows activity as a catalyst, and since no precious metal is essential, the material cost can be kept low. “Cu as a main constituent element” means that Cu is the most in the atomic ratio among the constituent elements.

また、前記触媒において、Ga、MgおよびScを含有することが好ましい。Cuの他にGa、MgおよびScを含有した系は、特に高Cu濃度で安定な準結晶を実現するので、触媒活性を示すCu系準結晶として有効である。   The catalyst preferably contains Ga, Mg and Sc. A system containing Ga, Mg, and Sc in addition to Cu is effective as a Cu-based quasicrystal exhibiting catalytic activity because it realizes a stable quasicrystal particularly at a high Cu concentration.

さらに、前記触媒において、前記粉末の平均粒径が1〜50μmであることが好ましい。平均粒径が1μm未満となると粉末の酸化や高温にした時の粉末の焼結が顕著になり、一方、50μmを超えると比表面積が小さくなり過ぎるため、触媒としての機能が弱まる。ここで、平均粒径とは、レーザー回折型粒径分布測定器によって測定した平均粒径d50である。 Furthermore, in the catalyst, the powder preferably has an average particle size of 1 to 50 μm. When the average particle size is less than 1 μm, the powder is oxidized or sintered when the temperature is increased, and when the average particle size is more than 50 μm, the specific surface area becomes too small and the function as a catalyst is weakened. Here, the average particle diameter is an average particle size d 50 measured by a laser diffraction type particle size distribution measuring instrument.

また、本発明の水素生成装置は、前記いずれかの触媒を用いて、メタノールと水との混合物から水素を生成することを特徴とする。前記触媒をメタノールの水蒸気改質反応を利用した水素生成装置に用いることにより、高温においても触媒特性が安定で、安価な水素生成装置を実現しうる。   The hydrogen generator of the present invention is characterized in that hydrogen is generated from a mixture of methanol and water using any one of the above-described catalysts. By using the catalyst in a hydrogen generator using a steam reforming reaction of methanol, it is possible to realize an inexpensive hydrogen generator that has stable catalyst characteristics even at high temperatures.

本発明によれば、高温に対しても触媒特性が安定で、安価な触媒および水素生成装置を提供することができる。   According to the present invention, it is possible to provide an inexpensive catalyst and a hydrogen generator that have stable catalyst characteristics even at high temperatures.

本発明の触媒は、Cuを主構成元素とするCu系準結晶の粉末を用いる。準結晶は、周期性を持たないが、原子配列に高い秩序性を有するものである。このうちCu系の準結晶は、Cuが原子レベルで他の構成元素の原子に担持されている構成とみることもできるものであり、触媒作用を発揮する。従来から知られている準結晶のうち、Cuを含有するものとしては、Al−Cu−Fe系やAl−Cu−Co系などがあるが、いずれもAlを主構成元素とし、Cuの含有量も原子比で30at%以下のものである。これに対して本発明の触媒では、Cuを主構成元素とし、具体的には40at%を超えるCuを含有する準結晶を用いるので、Cuに起因する触媒能を十分に発揮させることができる。また、触媒としての機能を十分に発揮させるためには、比表面積を大きくすることが望ましいため、準結晶は粉末の状態で用いる。準結晶は、非常に脆い性質を持っているので、機械的粉砕で容易に粉末を得ることができる点で、特に優れる。この点は、Cu単体に代表される通常のCu系の金属が、柔らかく、粉砕しにくいことと対照をなす。準結晶は、準結晶相以外の近似結晶やその他の結晶を含んでいていてもよい。例えば、Cu49Ga36Sc15などのCu−Ga−Sc系の近似結晶も用いてもよい。 The catalyst of the present invention uses Cu-based quasicrystalline powder containing Cu as a main constituent element. The quasicrystal does not have periodicity but has high order in the atomic arrangement. Among them, the Cu-based quasicrystal can be regarded as a structure in which Cu is supported by atoms of other constituent elements at the atomic level, and exhibits catalytic action. Among the conventionally known quasicrystals, those containing Cu include Al—Cu—Fe and Al—Cu—Co, but all contain Al as the main constituent element, and the Cu content Also, the atomic ratio is 30 at% or less. On the other hand, in the catalyst of the present invention, Cu is a main constituent element, and specifically, a quasicrystal containing Cu exceeding 40 at% is used, so that the catalytic ability due to Cu can be sufficiently exhibited. Moreover, in order to fully exhibit the function as a catalyst, since it is desirable to enlarge a specific surface area, a quasicrystal is used in the state of a powder. Since the quasicrystal has a very brittle property, it is particularly excellent in that a powder can be easily obtained by mechanical pulverization. This contrasts with the fact that ordinary Cu-based metals represented by simple Cu are soft and difficult to grind. The quasicrystal may contain approximate crystals other than the quasicrystalline phase or other crystals. For example, a Cu—Ga—Sc-based approximate crystal such as Cu 49 Ga 36 Sc 15 may also be used.

Cuを主構成元素とするCu系準結晶としては、Cuの他にGa、MgおよびScを含有するCu−Ga−Mg−Sc系準結晶が好ましい。該準結晶は、例えばCu48Ga34MgSc15に代表されるように、Cuの含有量を40at%を超える水準にまで高めることができる。Cu−Ga−Mg−Sc系準結晶は、粉砕性がよく、機械的粉砕等によって容易に粉末化することができる。Cu−Ga−Mg−Sc系準結晶では、Cu、Ga、Mg、Sc以外の元素を含んでもよい。例えば、Gaの一部をInで置換したり、Scの一部を他の希土類元素で置換してもよい。また、CuやGaの一部をZnで置換してもよい。Al−Pd−Mn系準結晶のように高価なPdを必須としないため、安価な触媒を提供することができる。 The Cu-based quasicrystal containing Cu as a main constituent element is preferably a Cu—Ga—Mg—Sc quasicrystal containing Ga, Mg and Sc in addition to Cu. The quasicrystal can increase the Cu content to a level exceeding 40 at%, as represented by Cu 48 Ga 34 Mg 3 Sc 15 , for example. Cu-Ga-Mg-Sc quasicrystals have good pulverization properties and can be easily powdered by mechanical pulverization or the like. The Cu—Ga—Mg—Sc quasicrystal may contain elements other than Cu, Ga, Mg, and Sc. For example, a part of Ga may be replaced with In, or a part of Sc may be replaced with another rare earth element. Further, a part of Cu or Ga may be substituted with Zn. Since expensive Pd is not essential as in the Al—Pd—Mn quasicrystal, an inexpensive catalyst can be provided.

上記準結晶は、以下のようにして製造することができる。Cu等の構成元素を所定の比率で含有するインゴットを、アーク溶解や高周波溶解等によって得る。得られたインゴットを、メノウ乳鉢を備えたライカイ機やボールミルなどによって粉砕して、粉末化する。得られた粉末は、さらに篩い分け等によって分級してもよい。上述のように、本発明に係る準結晶は粉砕性が高いため、粉末の平均粒径を所定の粒径に容易に制御することができる。すなわち、本発明に係る準結晶粉末は、溶解および機械的粉砕という簡易な工程で製造することができるため、かかる点も触媒を安価に製造することに寄与するのである。上述のように、本発明に係る準結晶は容易に粉末化することができるが、粉末の粒径は1〜50μmの範囲とすることが好ましい。粉末の粒径が小さいほど、すなわち比表面積が大きいほど触媒として機能させる上では有利であるが、平均粒径が1μm未満となると酸化しやすくなる他、高温にしたと時の粉末の焼結も進んで有効的な比表面積が低下してしまう。また、取扱いも煩雑となる。平均粒径を1μm以上としておけば、例えば、300℃を超える温度に保持しても、高い触媒能を発揮し、優れた耐熱性を示す。50μmを超えると比表面積が小さくなり触媒としての機能が弱まってしまう。かかる観点からは、より好ましくは、5〜30μmである。   The said quasicrystal can be manufactured as follows. An ingot containing a constituent element such as Cu in a predetermined ratio is obtained by arc melting, high frequency melting or the like. The obtained ingot is pulverized by a raikai machine equipped with an agate mortar, a ball mill or the like, and pulverized. The obtained powder may be further classified by sieving. As described above, since the quasicrystal according to the present invention has high grindability, the average particle size of the powder can be easily controlled to a predetermined particle size. That is, the quasicrystalline powder according to the present invention can be produced by a simple process of dissolution and mechanical pulverization, which contributes to the production of the catalyst at a low cost. As described above, the quasicrystal according to the present invention can be easily pulverized, but the particle size of the powder is preferably in the range of 1 to 50 μm. The smaller the particle size of the powder, that is, the larger the specific surface area is, the more advantageous for functioning as a catalyst. However, when the average particle size is less than 1 μm, the powder is easily oxidized. The effective specific surface area is reduced. In addition, handling is complicated. If the average particle size is set to 1 μm or more, for example, even if it is maintained at a temperature exceeding 300 ° C., it exhibits high catalytic ability and exhibits excellent heat resistance. If it exceeds 50 μm, the specific surface area becomes small and the function as a catalyst is weakened. From this viewpoint, the thickness is more preferably 5 to 30 μm.

上記の本発明に係る準結晶の粉末はメタノールの水蒸気改質反応において触媒として作用する。したがって、前記準結晶の粉末の触媒を用いることによって、水素生成装置を構成することができる。すなわち、触媒として前記準結晶の粉末を用い、メタノールと水との混合物から水素を生成する水素生成装置が実現される。水素生成装置は、前記機能を果たすものであればその構成は特に限定しない。例えば、メタノールと水の供給系と、触媒を備えた反応装置と、反応への熱供給系と、反応装置から発生する水素ガスの精製系と、水素ガスを回収する回収系を備えればよい。反応装置は、流動床反応装置や固定床流通反応装置などを用いることができる。なお、触媒の粉末は、粉末の形態のまま用いてもよいし、ブロック状やシート状のように所定の形に成形されたものを用いてもよい。   The quasicrystalline powder according to the present invention acts as a catalyst in the steam reforming reaction of methanol. Therefore, a hydrogen generator can be configured by using the catalyst of the quasicrystalline powder. That is, a hydrogen generator that generates hydrogen from a mixture of methanol and water using the quasicrystalline powder as a catalyst is realized. The configuration of the hydrogen generator is not particularly limited as long as it performs the above function. For example, a methanol and water supply system, a reaction apparatus provided with a catalyst, a heat supply system for the reaction, a purification system for hydrogen gas generated from the reaction apparatus, and a recovery system for recovering hydrogen gas may be provided. . As the reaction apparatus, a fluidized bed reaction apparatus, a fixed bed flow reaction apparatus or the like can be used. The catalyst powder may be used in the form of a powder, or may be used in a predetermined shape such as a block shape or a sheet shape.

Cu、Ga、Mg、Scを秤量し、グラファイト坩堝に入れ、高周波溶解炉にてアルゴン雰囲気で溶解した。これによりCu49Ga34MgSc15(原子比)のインゴットを得た。前記インゴットをメノウ乳鉢で粉砕した後、篩分けを行い、平均粒径d50の値が20.6μmの粉末を得た。なお、平均粒径は、レーザー回折型湿式粒径分布測定器(堀場製作所製LA−920)により測定した。粉末X線回折法により、前記粉末には正二十面体準結晶相が形成されていることを確認した。BET法で測定した比表面積は、0.209m/gであった。得られた粉末1.0gを秤量し、粉末表面を洗浄すべく、240℃にて100%水素ガス中で1時間前処理を行った。固定床流通式反応装置で水/メタノール=1.5(モル比)の混合液をNキャリアガスにより流通させた。この場合の液空間速度(LHSV:Liquid Hourly Space Velocity)は10/hとした。反応は常圧、温度280〜360℃で行った。昇温速度は2℃/minとした。発生ガスをオンラインガスクロマトグラフィーにより分析し、水素発生速度を測定した。結果を表1に示す。表1に示すように、本実施例の準結晶の粉末は、触媒として機能していることがわかる。特に温度が上昇して300℃を超えると、水素生成速度が向上していることがわかる。280℃における水素生成速度で規格した値も合わせて表1に示すが、280℃の場合と比較しても、水素生成速度は320℃以上では6倍以上、360℃以上では10倍以上と、特に高温での水素生成能に優れることがわかる。また、比較として市販のCu/ZnOの水素生成速度を280℃における水素生成速度で規格化した値を示すが、この場合は360℃でも280℃の1.6倍に留まっており、かかる場合に比べてみても本実施例の準結晶の粉末が特に300℃以上の高温での触媒能に優れていることがわかる。 Cu, Ga, Mg, and Sc were weighed, placed in a graphite crucible, and dissolved in an argon atmosphere in a high-frequency melting furnace. Thereby, an ingot of Cu 49 Ga 34 Mg 3 Sc 15 (atomic ratio) was obtained. After grinding the ingot in an agate mortar, perform sieving, the value of the average particle size d 50 to obtain a powder of 20.6Myuemu. The average particle size was measured with a laser diffraction type wet particle size distribution measuring device (LA-920 manufactured by Horiba, Ltd.). It was confirmed by an X-ray powder diffraction method that an icosahedral quasicrystalline phase was formed in the powder. The specific surface area measured by the BET method was 0.209 m 2 / g. 1.0 g of the obtained powder was weighed and pretreated for 1 hour in 100% hydrogen gas at 240 ° C. in order to clean the powder surface. A mixed solution of water / methanol = 1.5 (molar ratio) was circulated with N 2 carrier gas in a fixed bed flow reactor. The liquid space velocity (LHSV: Liquid Hourly Space Velocity) in this case was 10 / h. The reaction was carried out at normal pressure and a temperature of 280 to 360 ° C. The temperature rising rate was 2 ° C./min. The evolved gas was analyzed by on-line gas chromatography to measure the hydrogen evolution rate. The results are shown in Table 1. As shown in Table 1, it can be seen that the quasicrystalline powder of this example functions as a catalyst. In particular, when the temperature rises and exceeds 300 ° C., it can be seen that the hydrogen production rate is improved. The values specified for the hydrogen production rate at 280 ° C. are shown together in Table 1. Even when compared with the case of 280 ° C., the hydrogen production rate is 6 times or more at 320 ° C. or more, 10 times or more at 360 ° C. or more, It can be seen that the hydrogen generation ability is particularly excellent at high temperatures. Moreover, although the value which normalized the hydrogen production rate of commercially available Cu / ZnO with the hydrogen production rate in 280 degreeC is shown as a comparison, in this case, it is only 1.6 times of 280 degreeC even in 360 degreeC. By comparison, it can be seen that the quasicrystalline powder of this example is excellent in catalytic ability at a high temperature of 300 ° C. or more.

Figure 2007245077
Figure 2007245077

Claims (4)

Cuを主構成元素とするCu系準結晶の粉末を用いた触媒。   A catalyst using a Cu-based quasicrystal powder containing Cu as a main constituent element. Ga、MgおよびScを含有することを特徴とする請求項1に記載の触媒。   The catalyst according to claim 1, containing Ga, Mg and Sc. 前記粉末の平均粒径が1〜50μmであることを特徴とする請求項1または2に記載の触媒。   The catalyst according to claim 1 or 2, wherein the powder has an average particle size of 1 to 50 µm. 請求項1〜3のいずれかに記載の触媒を用いて、メタノールと水との混合物から水素を生成する水素生成装置。   The hydrogen generator which produces | generates hydrogen from the mixture of methanol and water using the catalyst in any one of Claims 1-3.
JP2006074833A 2006-03-17 2006-03-17 Catalyst and hydrogen production apparatus using the same Pending JP2007245077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074833A JP2007245077A (en) 2006-03-17 2006-03-17 Catalyst and hydrogen production apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074833A JP2007245077A (en) 2006-03-17 2006-03-17 Catalyst and hydrogen production apparatus using the same

Publications (1)

Publication Number Publication Date
JP2007245077A true JP2007245077A (en) 2007-09-27

Family

ID=38589924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074833A Pending JP2007245077A (en) 2006-03-17 2006-03-17 Catalyst and hydrogen production apparatus using the same

Country Status (1)

Country Link
JP (1) JP2007245077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112547074A (en) * 2020-12-14 2021-03-26 川化集团有限责任公司 Catalyst for methanol steam reforming hydrogen production, preparation method and application thereof
JP2021113358A (en) * 2015-03-19 2021-08-05 Dowaエレクトロニクス株式会社 Silver-covered metal powder and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021113358A (en) * 2015-03-19 2021-08-05 Dowaエレクトロニクス株式会社 Silver-covered metal powder and method for producing the same
JP7042945B2 (en) 2015-03-19 2022-03-28 Dowaエレクトロニクス株式会社 Silver-coated metal powder and its manufacturing method
CN112547074A (en) * 2020-12-14 2021-03-26 川化集团有限责任公司 Catalyst for methanol steam reforming hydrogen production, preparation method and application thereof

Similar Documents

Publication Publication Date Title
Bobet et al. Hydrogen sorption of Mg-based mixtures elaborated by reactive mechanical grinding
Ouyang et al. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2. 73 and Ni in CeH2. 73-MgH2-Ni nanocomposites
Jalil et al. DESORPTION TEMPERATURE CHARACTERISTIC OF Mg-BASED HYDRIDES CATALYZED BY NANO-SiO 2 PREPARED BY HIGH ENERGY BALL MILLING.
WO2001053550A1 (en) Composite hydrogen storage material of hydrogen storage alloy/carbon nanotube and producing method thereof
Khabbaz et al. Effect of processing parameters on the mechanochemical synthesis of nanocrystalline molybdenum carbide
Lee et al. High‐entropy nanomaterials for advanced electrocatalysis
Qin et al. Selective synthesis and characterization of metallic cobalt, cobalt/platinum, and platinum microspheres
JP4054877B2 (en) Hydrogen generating composite and its production method
Elçiçek et al. Preparation of highly efficient NiB catalyst via triton‐stabilized for alkaline NaBH4 hydrolysis reaction
JP4602926B2 (en) Method for producing alloy powder
JP2011213534A (en) Material for synthesizing ammonia and method for synthesizing ammonia
Zeifert et al. Raney-nickel catalysts produced by mechanical alloying
JP2007245077A (en) Catalyst and hydrogen production apparatus using the same
Zhao et al. Microstructure and hydrogen storage properties of Zr-based AB2-type high entropy alloys
JP2010236084A (en) Hydrogen storage alloy, method of preparing the same and hydrogen storage device
Szajek et al. The electronic and electrochemical properties of the TiFe-based alloys
JP2003212501A (en) Hydrogen production method
Lenain et al. Electrochemical properties of AB5-type hydride-forming compounds prepared by mechanical alloying
EP1721666A1 (en) INTERMETALLIC COMPOUND Ni SB 3 /SB Al CATALYST FOR METHANOL REFORMING AND METHOD FOR REFORMING METHANOL USING SAME
Rajabpour et al. The synergistic effect of catalysts on hydrogen desorption properties of MgH 2–TiO 2–NiO nanocomposite
JP2008073582A (en) Manufacturing method of hydrogen storage material
JP4454239B2 (en) Method for producing heat-resistant catalyst using quasicrystalline Al alloy as a precursor
JP2023061564A (en) Catalyst for hydrogen production
Wang et al. Ti promotes the reaction of Al alloy with water to rapidly generate hydrogen
JP2007046119A (en) METHOD FOR PRODUCING Mg2Ni ALLOY, AND ITS UTILIZATION