JP4583164B2 - Silver-copper composite powder and method for producing silver-copper composite powder - Google Patents

Silver-copper composite powder and method for producing silver-copper composite powder Download PDF

Info

Publication number
JP4583164B2
JP4583164B2 JP2004379826A JP2004379826A JP4583164B2 JP 4583164 B2 JP4583164 B2 JP 4583164B2 JP 2004379826 A JP2004379826 A JP 2004379826A JP 2004379826 A JP2004379826 A JP 2004379826A JP 4583164 B2 JP4583164 B2 JP 4583164B2
Authority
JP
Japan
Prior art keywords
silver
powder
copper
composite powder
copper composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004379826A
Other languages
Japanese (ja)
Other versions
JP2006183110A (en
Inventor
卓也 佐々木
貴彦 坂上
卓 藤本
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004379826A priority Critical patent/JP4583164B2/en
Publication of JP2006183110A publication Critical patent/JP2006183110A/en
Application granted granted Critical
Publication of JP4583164B2 publication Critical patent/JP4583164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銀銅複合粉及びその銀銅複合粉を得る際の均一な銀と銅との相互拡散が可能で、しかも良好な粉体特性を有し、微粒化、均粒化された製品を得るための製造方法に関する。   The present invention is a silver-copper composite powder and a product that is capable of uniform diffusion of silver and copper when obtaining the silver-copper composite powder, has good powder characteristics, and is atomized and uniformized The present invention relates to a manufacturing method for obtaining

従来より、導電性ペースト等に用いられるフィラー材料として耐酸化性や比抵抗が優れることから銀粉が多用されてきている。しかし、銀のマイグレーションを嫌う用途では、銅粉が使用されているが、銅には酸化しやすいという弱点がある。そこで、銀のマイグレーションと、銅の酸化しやすさという双方の弱点を補う特性を持つフィラーとして、銀銅複合粉の使用も見られる。   Conventionally, silver powder has been widely used as a filler material used for conductive pastes and the like because of its excellent oxidation resistance and specific resistance. However, copper powder is used in applications that dislike silver migration, but copper has a weak point of being easily oxidized. Therefore, the use of silver-copper composite powder is also seen as a filler having characteristics that compensate for both weaknesses of silver migration and copper oxidation.

銀銅複合粉の工業的な製法としては、特許文献1(特開2000−144203号公報)の実施例に記載されているように、アトマイズ法が一般的である。このアトマイズ法では、融点以上に加熱した溶湯を噴霧冷却することで粉体粒子を生成するため、2種類以上の金属の混合あるいは合金粒子を生成するのが比較的容易であるが、反面そのプロセスの特性上微粒化、均粒化に限界があるのが一般的である。具体的には噴霧後の粉体自体は1〜数十μm程度の幅広い粒度分布を持つのが通常であり、仮に中心粒子径5μm以下といった微粒の粉体を得ようとする場合には、分級操作により微粒部分を選別する必要があった。   As an industrial method for producing silver-copper composite powder, an atomizing method is generally used as described in the examples of Patent Document 1 (Japanese Patent Laid-Open No. 2000-144203). In this atomizing method, powder particles are generated by spray cooling a molten metal heated to a temperature higher than the melting point. Therefore, it is relatively easy to generate a mixture of two or more metals or alloy particles. Generally, there is a limit to atomization and equalization due to the characteristics of Specifically, the powder itself after spraying usually has a wide particle size distribution of about 1 to several tens of μm. If a fine powder having a center particle diameter of 5 μm or less is to be obtained, classification is performed. It was necessary to sort out the fine particles by operation.

一方、微粒粉体の製造に適した製造方法としては、従来より湿式還元法があるが、原理上金属元素固有の電気化学的な特性によりその反応条件が決まるため、多種の金属を均一に同時析出させることが困難である。   On the other hand, as a production method suitable for the production of fine powder, there is a conventional wet reduction method. However, in principle, the reaction conditions are determined by the electrochemical characteristics unique to the metal element. It is difficult to deposit.

また、銀銅複合微粒子としては、例えば特許文献2(特開平1−119602号公報)に示されるように、従来より湿式還元法による銀被覆銅粉があるが、表層の分布がほぼ銀のみとなるため、導電性フィラーとして用いた場合に粒子表面の接点において銀、銅両者の複合した特性が得られ難いという問題があった。   In addition, as silver-copper composite fine particles, for example, as disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 1-1119602), there is conventionally silver-coated copper powder by a wet reduction method, but the distribution of the surface layer is almost silver only. Therefore, when used as a conductive filler, there is a problem that it is difficult to obtain a composite characteristic of both silver and copper at the contact point on the particle surface.

特開2000−144203号公報JP 2000-144203 A 特開平1−119602号公報JP-A-1-119602

上述のように、銀銅複合粉は、銀粉と銅粉の各々の欠点を解消する目的で使用されるものであるが、微粒化、均粒化された銀銅複合粉を効率よく得るための製造方法は確立されていない。   As described above, the silver-copper composite powder is used for the purpose of eliminating the respective disadvantages of the silver powder and the copper powder. However, the silver-copper composite powder is used to efficiently obtain the finely divided and uniform silver-copper composite powder. A manufacturing method has not been established.

従って、本発明の目的は、均一に銀と銅とが分散し、しかも良好な粉体特性を有し、微粒化、均粒化された銀銅複合粉を提供し、このような銀銅複合粉を市場に安価に供給するための生産性に優れた製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a silver-copper composite powder in which silver and copper are uniformly dispersed, and have good powder characteristics, and are atomized and uniformed. An object of the present invention is to provide a production method with excellent productivity for supplying powder to the market at a low cost.

そこで、本発明者等は、上記課題を解決すべく検討の結果、湿式還元法により銀被覆銅微粒子を調製した後、湿式熱処理を行うことによって上記目的を達成する銀銅複合粉を得ることに想到した。   Therefore, as a result of studies to solve the above problems, the present inventors have obtained silver-copper composite powder that achieves the above objects by performing wet heat treatment after preparing silver-coated copper fine particles by a wet reduction method. I came up with it.

<本件発明に係る銀銅複合粉>
本件発明に係る銀銅複合粉は、銀と銅とを含む銀銅複合粉であって、銅粉の粉粒表面に湿式法で銀コート層を形成し、その銀コート銅粉を50℃〜200℃の温度の溶液中で、30分〜120分加熱し、銀と銅とを熱的に相互拡散させて得られ、銀含有量が20wt%〜55wt%、残部銅及び不可避不純物であり、CIE1976L表色系で得られるL値=56〜78、a値=−0.5〜−0.1、b値=10.0〜12.0である色調を備えることを特徴とする。
<Silver copper composite powder according to the present invention>
Silver copper composite powder according to the present invention is a silver copper composite powder containing silver and copper, the silver-coated layer formed by a wet process particulate surface of the copper powder, the silver-coated copper powder 50 ° C. ~ It is obtained by heating in a solution at a temperature of 200 ° C. for 30 minutes to 120 minutes and thermally interdiffusing silver and copper, and the silver content is 20 wt% to 55 wt%, the remaining copper and inevitable impurities, CIE1976L * a * b * provided with a color tone of L * value = 56 to 78, a * value = −0.5 to −0.1, b * value = 10.0 to 12.0 obtained in the color system It is characterized by that.

また、本件発明に係る銀銅複合粉の内、略球状の粉粒からなる銀銅複合粉は、以下のA.〜C.の粉体特性を備えることが好ましい。   In addition, among the silver-copper composite powders according to the present invention, the silver-copper composite powder composed of substantially spherical particles is as follows. ~ C. It is preferable to have the following powder characteristics.

A.レーザー回折散乱式粒度分布測定法による体積累積平均粒径D50が0.3μm〜6.0μm。
B.レーザー回折散乱式粒度分布測定法による体積累積最大粒径Dmaxが20.0μm以下。
C.比表面積が0.2m/g以上。
A. Cumulative volume-average particle size D 50 by laser diffraction scattering particle size distribution measuring method 0.3Myuemu~6.0Myuemu.
B. The volume cumulative maximum particle size D max by laser diffraction scattering type particle size distribution measurement method is 20.0 μm or less.
C. Specific surface area is 0.2 m 2 / g or more.

更に、本件発明に係る銀銅複合粉の内、フレーク状の粉粒からなる銀銅複合粉は、以下のa.〜c.の粉体特性を備える事が好ましい。   Furthermore, among the silver-copper composite powder according to the present invention, the silver-copper composite powder composed of flaky powder particles has the following a. ~ C. It is preferable to have the following powder characteristics.

a.レーザー回折散乱式粒度分布測定法による体積累積平均粒径D50が1.0μm〜10.0μm。
b.レーザー回折散乱式粒度分布測定法による体積累積最大粒径Dmaxが40.0μm以下。
c.粉粒のアスペクト比(厚さ/[D50])が0.02〜0.5。
a. Cumulative volume-average particle size D 50 by laser diffraction scattering particle size distribution measuring method 1.0Myuemu~10.0Myuemu.
b. The volume cumulative maximum particle size D max by the laser diffraction / scattering particle size distribution measurement method is 40.0 μm or less.
c. The aspect ratio (thickness / [D 50 ]) of the powder is 0.02 to 0.5.

<本件発明に係る銀銅複合粉の製造方法>
本件発明に係る銀銅複合粉の製造方法は、銅粉を添加した水溶液中にキレート化剤を添加して得られた分散液に、銀含有溶液を添加して反応させ、さらに濾過して銅粉の粉粒表面に銀コート層を形成した銀コート銅粉を用い、当該銀コート銅粉を50℃〜200℃の温度の溶液中で、30分〜120分加熱処理する湿式熱処理により銀と銅とを熱的に相互拡散させた後、濾過し、アルコール洗浄し、乾燥することを特徴とするものである。
<Method for producing silver-copper composite powder according to the present invention>
In the method for producing a silver-copper composite powder according to the present invention , a silver-containing solution is added to and reacted with a dispersion obtained by adding a chelating agent to an aqueous solution to which copper powder is added, and further filtered to obtain copper. a silver-coated copper powder particulate surface to form a silver coating layer on the powder, in the silver-coated copper powder 50 ° C. to 200 DEG at a temperature of ° C. solution of silver by wet heat treatment for heat treatment for 30 minutes to 120 minutes The copper is thermally interdiffused and then filtered, washed with alcohol, and dried.

そして、本件発明に係る銀銅複合粉の製造方法において、分散液中の銅粉重量を100重量部としたとき、銀として20重量部〜95重量部を含有する銀含有溶液を、前記分散液に添加することが好ましい。   And in the manufacturing method of the silver copper composite powder which concerns on this invention, when the copper powder weight in a dispersion liquid is 100 weight part, the silver containing solution containing 20 weight part-95 weight part as silver is said dispersion liquid. It is preferable to add to.

また、本件発明に係る銀銅複合粉の製造方法において、粉粒形状が、略球形状又はフレーク形状の銅粉を用いることが出来る。   Moreover, in the manufacturing method of the silver-copper composite powder which concerns on this invention, the powder particle shape can use the substantially spherical shape or flake-shaped copper powder.

また、上記キレート化剤として、エチレンジアミンテトラ酢酸塩を用いることが好ましい。   Moreover, it is preferable to use ethylenediaminetetraacetate as the chelating agent.

本件発明に係る銀銅複合粉は、良好な粉体特性を有し、微粒化、均粒化された銀銅複合粉である。そして、当該銀銅複合粉は、銀と銅との分布状態が良好であるため銀マイグレーション現象を抑制し、銀の持つ電気的良導体としての特性を有効に活用出来る。また、本発明の製造方法によって、良好な粉体特性を有し、微粒化、均粒化された銀銅複合粉が得られる。そして、この銀銅複合粉は、粉粒の表面における銀と銅との分布状態が良好であり、銀及び銅の複合した良好な特性を持つ銀銅複合粉の量産化を容易とする。   The silver-copper composite powder according to the present invention is a silver-copper composite powder that has good powder characteristics and is atomized and uniform. And since the said silver-copper composite powder has the favorable distribution state of silver and copper, it can suppress a silver migration phenomenon and can utilize the characteristic as an electrical good conductor which silver has effectively. In addition, by the production method of the present invention, a finely divided and uniform silver-copper composite powder having good powder characteristics can be obtained. And this silver copper composite powder has the favorable distribution state of silver and copper in the surface of a granular material, and makes mass production of the silver copper composite powder with the favorable characteristic which silver and copper compounded easy.

以下、本発明に係る銀銅複合粉及びその製造方法を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the silver-copper composite powder and the method for producing the same according to the present invention will be described.

<本件発明に係る銀銅複合粉>
本件発明に係る銀銅複合粉は、銅粉の粉粒表面に湿式法で銀コート層を形成し、その銀コート銅粉を50℃〜200℃の温度の溶液中で、30分〜120分加熱し、銀と銅とを熱的に相互拡散させて得られ、銀含有量が20wt%〜55wt%、残部銅及び不可避不純物であり、CIE1976L表色系で得られるL値=56〜78、a値=−0.5〜−0.1、b値=10.0〜12.0である色調を備えることを特徴とする。その結果、従来のアトマイズ法で得られた銀銅複合粉と比べ、異なる特徴を有する。
<Silver copper composite powder according to the present invention>
The silver-copper composite powder according to the present invention forms a silver coat layer on the surface of copper powder particles by a wet method, and the silver-coated copper powder is in a solution at a temperature of 50 ° C. to 200 ° C. for 30 minutes to 120 minutes. L * obtained by heating and thermal interdiffusion of silver and copper, silver content of 20 wt% to 55 wt%, balance copper and inevitable impurities, and obtained in CIE 1976 L * a * b * color system It has a color tone of value = 56 to 78, a * value = −0.5 to −0.1, b * value = 10.0 to 12.0. As a result, it has different characteristics compared with the silver-copper composite powder obtained by the conventional atomization method.

ここで、銅粉の粉粒表面への銀コート層の形成は、電気化学的な手法により形成した銀層であることが好ましい。電気化学的手法とは、置換析出法、無電解メッキ法を意図したものである。即ち、銅粉と銀粉とを攪拌混合して、銅粉の粉粒表面へ銀を固着させる等のメカノケミカル的な手法で形成した等に比べ、後述する湿式熱処理により、相互拡散が容易だからである。 Here, the formation of the silver coat layer on the surface of the copper powder is preferably a silver layer formed by an electrochemical technique. The electrochemical method is intended for displacement deposition and electroless plating. In other words, compared to the case where the copper powder and silver powder are mixed by stirring and formed by a mechanochemical method such as fixing silver to the surface of the copper powder particles, mutual diffusion is easy by wet heat treatment described later. is there.

そして、本件発明に係る銀銅複合粉は、銀含有量が20wt%〜55wt%、残部銅及び不可避不純物である組成とするものである。ここで、銀含有量が20wt%未満の場合には、製品の銀銅複合粉を導電性ペースト等に加工して形成する導体の導体抵抗の改善が出来ず、銀を含有させる意義が無くなる。一方、銀含有量を55wt%を超えるものとすると、銀層が厚くなりすぎて銅と銀との拡散が不十分となり、マイグレーションを防止する効果は得られず、成分的に不均一な銀銅複合粉が得られやすく、経済的に高価となるだけで好ましくない。   And the silver-copper composite powder which concerns on this invention is set as the composition whose silver content is 20 wt%-55 wt%, remainder copper and an unavoidable impurity. Here, when the silver content is less than 20 wt%, the conductor resistance of the conductor formed by processing the product silver-copper composite powder into a conductive paste or the like cannot be improved, and the significance of containing silver is lost. On the other hand, if the silver content exceeds 55 wt%, the silver layer becomes too thick, the diffusion of copper and silver becomes insufficient, the effect of preventing migration cannot be obtained, and the component-uneven silver copper A composite powder is easily obtained and is not preferable because it is economically expensive.

更に、本件発明に係る銀銅複合粉は、その粉粒の表層部における銀と銅との成分量として、銀が60wt%以下、残部銅(但し、一定の不可避不純物を含む)であることが好ましい。このような粉粒の表層部における銀と銅との成分量を化学的分析手法を用いて測定することは困難である。そこで、本件発明者等は、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析を採用することとした、このときの電子ビームの加速電圧は15keV、観察倍率5000倍以上の条件で、簡易定量分析した結果である。この結果、粉粒の表層部における銀の含有量が60wt%を超えると銀マイグレーションの起こりやすい傾向があり、高価な銀の無駄遣いとなる。そして、銀の含有量が10wt%以上でなければ、銀の良好な導電性を活用出来ない。そこで、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析において、銀含有量が10wt%〜60wt%の範囲にあることが好ましい。   Furthermore, the silver-copper composite powder according to the present invention has a silver content of 60 wt% or less and the remaining copper (however, including certain inevitable impurities) as the amount of silver and copper in the surface layer portion of the particle. preferable. It is difficult to measure the amount of components of silver and copper in the surface layer of such a powder using a chemical analysis technique. Therefore, the present inventors decided to adopt a simple quantitative analysis in the particle surface layer portion using the energy dispersive EPMA, the acceleration voltage of the electron beam at this time is 15 keV, the observation magnification is 5000 times or more, It is the result of simple quantitative analysis. As a result, when the silver content in the surface layer portion of the powder particles exceeds 60 wt%, silver migration tends to occur, and expensive silver is wasted. And if silver content is not more than 10 wt%, the favorable electroconductivity of silver cannot be utilized. Therefore, in the simple quantitative analysis in the particle surface layer portion using energy dispersive EPMA, the silver content is preferably in the range of 10 wt% to 60 wt%.

また、本件発明に係る銀銅複合粉は、粉体としてみたときの色調に特徴を有する。本件発明に係る銀銅複合粉は、CIE1976L表色系で得られるL値=56〜78、a値=−0.5〜−0.1、b値=10.0〜12.0として表される色調を備える。 In addition, the silver-copper composite powder according to the present invention is characterized by a color tone when viewed as a powder. Silver copper composite powder according to the present invention, CIE1976L * a * b * obtained by the color system L * value = 56 to 78, a * value = -0.5~-0.1, b * value = 10. It has a color tone represented as 0 to 12.0.

ここで、CIE1976L表色系は、最も標準的に使用される色差であり、特に、その説明は必要のないものと考える。念のために記載しておくが、L値とは、明暗を数値化した値であり、数値の大きな程、明るい色調であることを意味する。a値=とは、CIE1976L表色系の中の色相と彩度とを表し、赤−緑推移線の位置を示す座標値である。b*値とは、CIE1976L表色系の中の色相と彩度とを表し、黄−青推移線の位置を示す座標値である。 Here, the CIE 1976 L * a * b * color system is a color difference that is most commonly used, and it is considered that the description thereof is not particularly necessary. It should be noted that the L * value is a value obtained by digitizing light and dark, and the larger the value, the brighter the color tone. “a * value =” represents a hue and saturation in the CIE 1976 L * a * b * color system, and is a coordinate value indicating the position of the red-green transition line. The b * value represents a hue and saturation in the CIE 1976 L * a * b * color system, and is a coordinate value indicating the position of the yellow-blue transition line.

本件発明に係る銀銅複合粉のL値は、56〜78の範囲に収まる。従って、目視によれば、かなり暗い色調として捉えられる。色彩とは、物が光を受け、そこから反射した光が人間の視覚により捉えられ、明暗、色調として認識されるものである。そして、物の表面で光が乱反射され、反射光が少なくなれば暗く黒い物として認識される。従って、本件発明に係る銀銅複合粉の表面は、ある一定の凹凸を持ち、粉体としての比表面積は広くなっていると考えられる。本件発明に係る銀銅複合粉の比表面積を現実に測定し、アトマイズ法で得られた同等の粒径の製品と比べたときの比表面積は、確かに大きくなる。このことは実施例及び比較例を通じて具体的に言及する。このL値の値が56より小さく暗い色調となると、後述する湿式熱処理による酸化進行が顕著になり、得られた銀銅複合粉を導電性ペースト等へ加工し、導体を形成した際の導体抵抗が上昇する傾向にある。そして、L値が78より大きく明るい色調となると、銀コート層と芯材である銅との相互拡散が不十分で、銀と銅との均一な分散化が進行していない。 The L * value of the silver-copper composite powder according to the present invention falls within the range of 56 to 78. Therefore, visually, it is perceived as a rather dark tone. Color means that an object receives light and the light reflected from the object is captured by human vision and recognized as light and dark, and color tone. Then, light is irregularly reflected on the surface of the object, and if the reflected light is reduced, it is recognized as a dark and black object. Therefore, it is considered that the surface of the silver-copper composite powder according to the present invention has certain irregularities and the specific surface area as a powder is widened. When the specific surface area of the silver-copper composite powder according to the present invention is actually measured and compared with a product having an equivalent particle size obtained by the atomization method, the specific surface area is surely increased. This will be specifically mentioned through Examples and Comparative Examples. When the L * value is smaller than 56 and darker, the oxidation progresses by wet heat treatment, which will be described later, becomes significant, and the resulting silver-copper composite powder is processed into a conductive paste or the like to form a conductor. Resistance tends to increase. When the L * value is greater than 78 and the color tone becomes brighter, mutual diffusion between the silver coat layer and copper as the core material is insufficient, and uniform dispersion of silver and copper does not proceed.

そして、本件発明に係る銀銅複合粉のa値は、−0.5〜−0.1の範囲に収まり、赤よりも緑の強い色相と彩度とを備えることを意味している。更に、本件発明に係る銀銅複合粉のb値は、10.0〜12.0の範囲に収まり、青よりも黄の強い色相と彩度とを備えることを意味している。これらのことから、本件発明に係る銀銅複合粉の色相と彩度とは、黄緑色のダークな色調を備えていることが分かる。現段階において、本件発明に係る銀銅複合粉のa値及びb値が、製品品質とどのような関係にあるのかが明確ではないが、銀銅複合粉粒の表層領域の銀の含有量と一定の関係があるように思われる。 The a * value of the silver-copper composite powder according to the present invention falls within the range of -0.5 to -0.1, which means that it has a hue and saturation stronger than green than red. Furthermore, the b * value of the silver-copper composite powder according to the present invention falls within the range of 10.0 to 12.0, and has a hue and saturation that are stronger than yellow than blue. From these, it can be seen that the hue and saturation of the silver-copper composite powder according to the present invention have a dark yellow-green color tone. At this stage, it is not clear how the a * value and b * value of the silver-copper composite powder according to the present invention are related to the product quality, but the silver content in the surface layer region of the silver-copper composite powder There seems to be a certain relationship with quantity.

以上に述べてきた銀銅複合粉のCIE1976L表色系で得られるL値、a値、b値は、銀銅複合粉の銀と銅との分散化レベルを推し量るための代替え指標として用いる事も可能であり、特にL値を工程管理における製品品質の指標とすることは有効である。 The L * value, a * value, and b * value obtained by the CIE 1976 L * a * b * color system of the silver-copper composite powder described above are an estimate of the dispersion level of silver and copper in the silver-copper composite powder. Therefore, it is effective to use the L * value as an indicator of product quality in process management.

以上に述べてきた銀銅複合粉は、芯材に用いる銅粉として、その粉粒形状に特段の限定はない。従って、粉粒形状が略球状又はフレーク状の銅粉粒を用いることができる。従って、本件発明に係る銀銅複合粉は、微粒で、粒度分布に優れた、従来にない製品である。   The silver-copper composite powder that has been described above is not particularly limited in the shape of the powder as the copper powder used for the core material. Accordingly, copper particles having a substantially spherical shape or flake shape can be used. Therefore, the silver-copper composite powder according to the present invention is an unprecedented product with fine particles and excellent particle size distribution.

本件発明に係る銀銅複合粉の内、略球状の粉粒からなる銀銅複合粉は、以下のA.〜C.の粉体特性を備えるものとすることができる。   Among the silver-copper composite powders according to the present invention, the silver-copper composite powder composed of substantially spherical particles is as follows. ~ C. The powder characteristics can be provided.

粉体特性A.は、レーザー回折散乱式粒度分布測定法による体積累積平均粒径D50が0.3μm〜6.0μmである。レーザー回折散乱式粒度分布測定法による体積累積粒径は、凝集粒子であっても、一粒子として捉える。従って、本件発明に係る銀銅複合粉を構成する粉粒は、一次粒子が一定レベルで凝集を起こしているとしても、体積累積平均粒径D50を0.3μm〜6.0μmの範囲に収める事ができる。現実に、体積累積平均粒径D50が0.3μm〜6.0μmの銀銅複合粉を、走査型電子顕微鏡を用いて、その観察像から一次粒子径を測定た平均一次粒子径が0.2μm〜4.0μmとして観察出来る。従って、プリント配線板の層間導通を得るために用いる径100μm以下のビアホール孔内への充填性にも何ら問題のないレベルとなる。 Powder characteristics Has a volume cumulative average particle diameter D 50 of 0.3 μm to 6.0 μm as measured by a laser diffraction / scattering particle size distribution measurement method. The volume cumulative particle size determined by the laser diffraction / scattering particle size distribution measurement method is regarded as one particle even if it is an aggregated particle. Thus, powder particles that constitute the silver copper composite powder according to the present invention, even primary particles are caused aggregation at a constant level, keep the volume accumulated average particle diameter D 50 in the range of 0.3μm~6.0μm I can do things. In fact, silver copper composite powder having a volume cumulative mean particle diameter D 50 0.3Myuemu~6.0Myuemu, using a scanning electron microscope, the average primary particle diameter was measured primary particle size from that observed image 0. It can be observed as 2 μm to 4.0 μm. Therefore, there is no problem in the filling property into the via hole having a diameter of 100 μm or less used for obtaining the interlayer conduction of the printed wiring board.

また、本件発明に係る銀銅複合粉を特定する上での、粉体特性には含めていないが、レーザー回折散乱式粒度分布測定法による体積累積粒径D90も、粉体としての粒度分布の良好さを推し量る上での要素となる。上述のように体積累積平均粒径D50が0.3μm〜6.0μmの銀銅複合粉の体積累積粒径D90は、0.5μm〜10.0μmの範囲となる。 In addition, although not included in the powder characteristics in specifying the silver-copper composite powder according to the present invention, the volume cumulative particle size D 90 by the laser diffraction scattering type particle size distribution measuring method is also the particle size distribution as the powder. It is an element in estimating the goodness of the. As described above, the volume cumulative particle size D 90 of the silver-copper composite powder having a volume cumulative average particle size D 50 of 0.3 μm to 6.0 μm is in the range of 0.5 μm to 10.0 μm.

粉体特性B.は、レーザー回折散乱式粒度分布測定法による体積累積最大粒径Dmaxが20.0μm以下である。ここで、下限値を特に規定していないが、敢えて規定するとしたら、工業的に安定生産可能な範囲として1.0μmである。この粉体特性から、粉粒の凝集状態を含めた上での最大粒径を読み取ることが出来る。このようなレベルの粗粒であれば、プリント配線板の層間導通を得るために用いる径100μm以下のビアホール孔内への充填性にも何ら問題のないレベルとなる。 Powder characteristics Has a volume cumulative maximum particle size D max of 20.0 μm or less by a laser diffraction / scattering particle size distribution measurement method. Here, the lower limit is not particularly defined, but if it is intentionally defined, it is 1.0 μm as an industrially stable range. From this powder characteristic, it is possible to read the maximum particle diameter including the aggregation state of the powder grains. With such a level of coarse particles, there is no problem in the filling property of via holes having a diameter of 100 μm or less used for obtaining interlayer conduction of the printed wiring board.

粉体特性C.は、本件発明に係る銀銅複合粉の比表面積が0.2m/g以上というものである。この比表面積は、粉粒表面の凹凸状態を表し、比表面積が高いほどペーストに加工したときの粘度上昇を招き取り扱いにくくなるが、一方では比表面積が高いほど、粉粒同士の焼結が容易になり、低温焼結が可能となる性質に関わってくる。そこで、現実に得られた本件発明に係る銀銅複合粉の比表面積は、0.2m/g〜3.0m/gの範囲となるのが一般的であるが、現在に於いて、上限値がどの程度となるかの限界を特定し得ていない。本件発明に係る銀銅複合粉の比表面積が、一応0.2m/g〜3.0m/gの範囲に収まると考えると、導電性ペーストに加工したときの著しい粘度上昇を起こすこともなく、良好な粉粒の焼結特性を両立出来る範囲と言える。また、この比表面積は、銀銅複合粉の粉粒表面の状態を表し、上述の色調に影響を与えるものであるから、後述する製造方法を採用した場合の銀銅複合粉の色調との相関関係があると考えられる。 Powder characteristics C.I. The specific surface area of the silver-copper composite powder according to the present invention is 0.2 m 2 / g or more. This specific surface area represents the uneven state of the powder surface, and the higher the specific surface area, the higher the viscosity when processed into a paste, making it difficult to handle. On the other hand, the higher the specific surface area, the easier the powder particles to sinter. And is related to the property that enables low-temperature sintering. Therefore, the specific surface area of the silver copper composite powder according to the present invention obtained in reality, it become in the range of 0.2m 2 /g~3.0m 2 / g is generally, at the present, It has not been possible to specify the limit of the upper limit. The specific surface area of the silver copper composite powder according to the present invention, when considered prima facie within a range of 0.2m 2 /g~3.0m 2 / g, also cause significant viscosity increase when processed into a conductive paste In other words, it can be said that good sintering characteristics of the powder can be achieved. Moreover, since this specific surface area represents the state of the particle surface of the silver-copper composite powder and affects the above-mentioned color tone, it correlates with the color tone of the silver-copper composite powder when the production method described later is adopted. There seems to be a relationship.

更に、略球状の粉粒からなる銀銅複合粉の特定可能な粉体特性が存在する。タップ充填密度であるが、上記粉体特性を備えるフレーク状銀銅複合粉の場合には、1.0g/cm〜5.0g/cmの範囲となる。 Furthermore, there are identifiable powder characteristics of the silver-copper composite powder composed of substantially spherical particles. Is a tap bulk density, in the case of flaky silver-copper composite powder comprising the powder characteristics is a range of 1.0g / cm 3 ~5.0g / cm 3 .

そして、本件発明に係る銀銅複合粉の内、フレーク状の粉粒からなる銀銅複合粉は、以下のa.〜c.の粉体特性を備えるものとすることができる。このフレーク状の銀銅複合粉は、扁平形状をしていることから、フレーク状粉単独又はフレーク状粉と略球状分との混合で用いることで、導電性ペースト等に加工して形成した導体の導体電気抵抗を、低くする目的で使用することが出来る。   And among the silver-copper composite powder which concerns on this invention, the silver-copper composite powder which consists of a flaky powder particle is the following a. ~ C. The powder characteristics can be provided. Since this flaky silver-copper composite powder has a flat shape, it is a conductor formed by processing into a conductive paste or the like by using the flaky powder alone or a mixture of the flaky powder and a substantially spherical portion. It can be used for the purpose of lowering the electrical resistance of the conductor.

粉体特性a.は、レーザー回折散乱式粒度分布測定法による体積累積平均粒径D50が1.0μm〜10.0μmである。上述のように、レーザー回折散乱式粒度分布測定法による体積累積粒径は、凝集粒子であっても、一粒子として捉える。従って、本件発明に係る銀銅複合粉を構成するフレーク状粉粒は、一次粒子が一定レベルで凝集を起こしていることを考えると、凝集を起こしていたとしても、体積累積平均粒径D50を上記範囲に収める事ができ、微粒のフレーク粉であると言える。現実に、体積累積平均粒径D50が上記範囲にある銀銅複合粉を、走査型電子顕微鏡を用いて、その観察像から一次粒子径(長径)を測定した平均一次粒子径が1.0μm〜7.0μmとして観察出来る。従って、プリント配線板の層間導通を得るために用いる径100μm以下のビアホール孔内への充填性にも何ら問題のないレベルとなる。 Powder characteristics a. The volume accumulated average particle diameter D 50 by laser diffraction scattering particle size distribution measuring method is 1.0Myuemu~10.0Myuemu. As described above, the volume cumulative particle diameter determined by the laser diffraction / scattering particle size distribution measurement method is regarded as one particle even if it is an aggregated particle. Therefore, the flake-like powder particles constituting the silver-copper composite powder according to the present invention have a volume cumulative average particle diameter D 50 even if they are aggregated considering that the primary particles are aggregated at a certain level. In the above range, it can be said that it is a fine flake powder. In fact, silver copper composite powder having a volume cumulative mean particle diameter D 50 is in the above range, using a scanning electron microscope, an average primary particle diameter of 1.0μm was measured primary particle diameter (major axis) from the observation image It can be observed as ˜7.0 μm. Therefore, there is no problem in the filling property into the via hole having a diameter of 100 μm or less used for obtaining the interlayer conduction of the printed wiring board.

また、本件発明に係るフレーク状の粉粒からなる銀銅複合粉を特定する上での、粉体特性には含めていないが、ここでもレーザー回折散乱式粒度分布測定法による体積累積粒径D90が、粉体としての粒度分布の良好さを推し量る上での要素となる。上述のように体積累積平均粒径D50が1.0μm〜10.0μmのフレーク状の銀銅複合粉の体積累積粒径D90は、3.0μm〜20.0μmの範囲となる。アトマイズ法を用いて製造した球状粉を物理的に加工して得られた通常のフレーク品では、体積累積粒径D90の値と体積累積平均粒径D50の値との間に3倍を超えるような粗粒が存在するのが通常であり、体積累積粒径D90の値と体積累積平均粒径D50の値との間に大きな差異が無く、粒度分布としてみれば極めてシャープになっていることが想像出来る。 In addition, when specifying the silver-copper composite powder composed of flaky powder particles according to the present invention, it is not included in the powder characteristics, but here also the volume cumulative particle size D by the laser diffraction scattering particle size distribution measurement method 90 is an element in estimating the good particle size distribution as a powder. As described above, the volume cumulative particle size D 90 of the flaky silver-copper composite powder having a volume cumulative average particle size D 50 of 1.0 μm to 10.0 μm is in the range of 3.0 μm to 20.0 μm. In a normal flake product obtained by physically processing a spherical powder produced using the atomization method, the value between the value of the volume cumulative particle size D 90 and the value of the volume cumulative average particle size D 50 is 3 times. In general, there is a coarse particle exceeding the value, and there is no large difference between the value of the volume cumulative particle size D 90 and the value of the volume cumulative average particle size D 50 , and the particle size distribution becomes extremely sharp. I can imagine that.

粉体特性b.は、レーザー回折散乱式粒度分布測定法による体積累積最大粒径Dmaxが40.0μm以下である。この粉体特性から、粉粒の凝集状態を含めた上での最大粒径を読み取ることが出来る。ここでも体積累積最大粒径Dmaxは、上述の体積累積粒径D90の値と体積累積平均粒径D50の値との関係で見れば、ある意味異常値を示すと考えられる。しかしながら、アトマイズ法を用いて製造した球状粉を物理的に加工して得られた通常のフレーク品では、体積累積最大粒径Dmaxが80μm以上となり、場合によっては100μmを超える場合もあることを考えるに、本件発明に係るフレーク状の銀銅複合粉の場合の体積累積最大粒径Dmaxが40.0μm以下で、このレベルであれば、プリント配線板の層間導通を得るために用いる径100μm以下のビアホール孔内への充填性にも大きな問題は生じない。 Powder characteristics b. Has a volume cumulative maximum particle diameter D max of 40.0 μm or less as measured by a laser diffraction / scattering particle size distribution measurement method. From this powder characteristic, it is possible to read the maximum particle diameter including the aggregation state of the powder grains. Again cumulative volume maximum particle diameter D max is the perspective in relation to the values of the cumulative volume-average particle diameter D 50 of the above-described cumulative volume particle diameter D 90, it would indicate a sense outliers. However, in a normal flake product obtained by physically processing a spherical powder produced using the atomizing method, the volume cumulative maximum particle size Dmax is 80 μm or more, and in some cases it may exceed 100 μm. Considering this, the volume cumulative maximum particle diameter Dmax in the case of the flaky silver-copper composite powder according to the present invention is 40.0 μm or less, and at this level, the diameter used to obtain the interlayer conduction of the printed wiring board is 100 μm. There is no major problem with the filling property in the following via hole.

粉体特性c.は、粉粒のアスペクト比(厚さ/[D50])が0.02〜0.5である。ここで言うアスペクト比は、フレーク状粉を構成する粉粒の厚さと前記体積累積平均粒径D50とで表されるアスペクト比([厚さ]/[D50])の値が0.02〜0.5としている。このアスペクト比は、フレーク粉の加工度を表すものであると言える。従って、アスペクト比の値が0.02未満の場合には、粉粒の厚さが薄くなりすぎ、粉粒内部の転位密度の上昇及び結晶粒の微細化が急激に起こり始め、抵抗の上昇を引き起こすと共に粗粒の発生が顕著となるのである。これに対し、アスペクト比の値が0.5を超えると、加工度が低く扁平率が低いため、粉粒同士の十分な接触界面面積の改善が行えず、形成した導体の抵抗を下げる事が出来なくなるのである。 Powder characteristics c. The aspect ratio (thickness / [D 50 ]) of the powder particles is 0.02 to 0.5. As for the aspect ratio here, the value of the aspect ratio ([thickness] / [D 50 ]) represented by the thickness of the powder particles constituting the flaky powder and the volume cumulative average particle diameter D50 is 0.02 to 0.02. 0.5. This aspect ratio can be said to represent the degree of processing of the flake powder. Therefore, when the aspect ratio value is less than 0.02, the thickness of the powder grain becomes too thin, the dislocation density inside the powder grain and the refinement of crystal grains begin to occur rapidly, and the resistance increases. As well as causing the occurrence of coarse grains. On the other hand, if the aspect ratio exceeds 0.5, the degree of processing is low and the flatness is low, so that the sufficient contact interface area between the powder particles cannot be improved, and the resistance of the formed conductor may be lowered. It will not be possible.

以上に述べてきた粉体特性に関しては、以下に述べる製造方法で用いる芯材としての銅粉の基本的粉体特性により左右されるものであると考えられるが、銀銅複合粉の製造過程において粒子凝集を起こせば粉体特性は劣化するのであり、製造過程において粒子凝集を極力回避出来る製造方法を見いだすことが出来て、初めて製造可能な製品である。   Regarding the powder characteristics described above, it is thought that it depends on the basic powder characteristics of the copper powder as the core material used in the manufacturing method described below. If particle agglomeration occurs, the powder characteristics deteriorate, and it is a product that can be produced for the first time by finding a production method that can avoid particle agglomeration as much as possible in the production process.

<本発明に係る銀銅複合粉の製造方法>
本発明に係る製造方法は、上述したように、「銅粉を添加した水溶液中にキレート化剤を添加して得られた分散液に、銀含有溶液を添加して反応させ、さらに濾過して銅粉の粉粒表面に銀コート層を形成した銀コート銅粉を用い、当該銀コート銅粉を50℃〜200℃の温度の溶液中で、30分〜120分加熱処理する湿式熱処理により銀と銅とを熱的に相互拡散させた後、濾過し、アルコール洗浄し、乾燥することを特徴とする銀銅複合粉の製造方法。」である。
<Method for producing silver-copper composite powder according to the present invention>
As described above, the production method according to the present invention is as follows. “To a dispersion obtained by adding a chelating agent to an aqueous solution to which copper powder has been added, a silver-containing solution is added and reacted, and further filtered. a silver-coated copper powder in granular surface of the copper powder to form a silver coating layer, the silver-coated copper powder in temperature solution of 50 ° C. to 200 DEG ° C., silver by wet heat treatment for heat treatment for 30 minutes to 120 minutes And a method of producing a silver-copper composite powder, wherein the copper and copper are thermally interdiffused, followed by filtration, alcohol washing, and drying.

芯材としての銅粉: ここで用いられる銅粉は、通常の電解法、還元法、アトマイズ法、機械的粉砕法等から得られる銅粉であり、その形状については特に制限はないが、略球形状又はフレーク形状が好ましく用いられる。また、銅粉は前処理したものが望ましく、前処理としては分級、希硫酸による洗浄、アルカリ性溶液による脱脂等の処理が挙げられる。例えば、硫酸洗浄純水に銅粉を添加し、攪拌後、希硫酸を加え、攪拌し、リパルプ洗浄を行った前処理銅粉が好ましく用いられる。 Copper powder as a core material: The copper powder used here is a copper powder obtained from a usual electrolytic method, reduction method, atomization method, mechanical pulverization method, etc., and there is no particular limitation on its shape, A spherical shape or a flake shape is preferably used. The copper powder is preferably pretreated, and examples of the pretreatment include classification, washing with dilute sulfuric acid, and degreasing with an alkaline solution. For example, pretreated copper powder obtained by adding copper powder to sulfuric acid-washed pure water, stirring, dilute sulfuric acid, stirring, and performing repulp washing is preferably used.

特に、本件発明に係る銀銅複合粉の内、略球状の粉粒からなる銀銅複合粉であって、上述のA.〜C.の粉体特性を備えるものを製造する場合には、以下のA’.〜C’.の粉体特性を持つ、略球状の銅粉を芯材として用いることが好ましい。   In particular, among the silver-copper composite powder according to the present invention, it is a silver-copper composite powder composed of substantially spherical powder particles, and the A. ~ C. In the case of manufacturing a product having the following powder characteristics, A ′. ~ C '. It is preferable to use a substantially spherical copper powder having the following powder characteristics as a core material.

芯材としての銅粉の粉体特性A’.は、レーザー回折散乱式粒度分布測定法による体積累積平均粒径D50が0.2μm〜5.0μmである。この範囲でなければ、上述した銀含有量(20wt%〜55wt%)となる範囲の銀コート銅粉を製造し、更に湿式熱処理した後の銀銅複合粉の粉体特性としての、体積累積平均粒径D50を0.3μm〜6.0μmの範囲に収めることが困難となる。 Powder characteristics of copper powder as a core material A ′. Has a volume cumulative average particle diameter D 50 of 0.2 μm to 5.0 μm as measured by a laser diffraction / scattering particle size distribution measurement method. If it is not this range, the volume accumulation average as a powder characteristic of the silver copper composite powder after manufacturing the silver coat copper powder of the range used as the silver content (20 wt%-55 wt%) mentioned above, and also wet-heat-treating. It becomes difficult to keep the particle size D 50 in the range of 0.3 μm to 6.0 μm.

芯材としての銅粉の粉体特性B’.は、レーザー回折散乱式粒度分布測定法による体積累積最大粒径Dmaxが15.0μm以下である。この範囲でなければ、上述した銀含有量(20wt%〜55wt%)となる範囲の銀コート銅粉を製造し、更に湿式熱処理した後の銀銅複合粉の粉体特性としての、体積累積最大粒径Dmaxを20.0μm以下の範囲に収めることが困難となる。 Powder characteristics of copper powder as a core material B ′. Has a volume cumulative maximum particle diameter D max of 15.0 μm or less as measured by a laser diffraction / scattering particle size distribution measurement method. If this range is not satisfied, the volume cumulative maximum as the powder characteristics of the silver-copper composite powder after producing the silver-coated copper powder in the range of the silver content (20 wt% to 55 wt%) described above and further wet-treating it. It becomes difficult to keep the particle size D max in the range of 20.0 μm or less.

そして、芯材としての銅粉の粉体特性C’.は、比表面積が0.1m/g以上である。この範囲でなければ、上述した銀含有量(20wt%〜55wt%)となる範囲の銀コート銅粉を製造し、更に湿式熱処理した後の銀銅複合粉の粉体特性としての、比表面積が0.2m/g以上を達成出来ない。また、芯材としての銅粉の比表面積が0.1m/g未満の場合には、銀コート銅粉を製造する場合の銀コート層の析出が不均一になる傾向にあり、湿式熱処理した後の粉粒表面での均一な銀と銅との分散組織が得られにくい傾向にある。 And the powder characteristic C '. Has a specific surface area of 0.1 m 2 / g or more. If it is not this range, the specific surface area as a powder characteristic of the silver copper composite powder after manufacturing the silver coat copper powder of the range used as the silver content (20 wt%-55 wt%) mentioned above, and also wet-heat-treating. 0.2 m 2 / g or more cannot be achieved. In addition, when the specific surface area of the copper powder as the core material is less than 0.1 m 2 / g, the precipitation of the silver coat layer in the case of producing the silver coat copper powder tends to be non-uniform, and wet-heat-treated It tends to be difficult to obtain a uniform dispersed structure of silver and copper on the surface of the subsequent powder grains.

また、本件発明に係る銀銅複合粉の内、フレーク状の粉粒からなる銀銅複合粉であって、上述のa.〜c.の粉体特性を備えるものを製造する場合には、以下のa’.〜c’.の粉体特性を持つ、フレーク状の銅粉を芯材として用いることが好ましい。   Moreover, among the silver-copper composite powders according to the present invention, a silver-copper composite powder comprising flaky powder particles, the a. ~ C. In the case of manufacturing a product having the following powder characteristics, the following a '. ~ C '. It is preferable to use flaky copper powder having the following powder characteristics as a core material.

芯材としての銅粉の粉体特性a’.は、レーザー回折散乱式粒度分布測定法による体積累積平均粒径D50が1.0μm〜8.0μmである。この範囲でなければ、上述した銀含有量(20wt%〜55wt%)となる範囲の銀コート銅粉を製造し、更に湿式熱処理した後の銀銅複合粉の粉体特性としての、体積累積平均粒径D50を1.0μm〜10.0μmの範囲に収めることが困難となる。 Powder characteristics of copper powder as a core material a ′. The volume accumulated average particle diameter D 50 by laser diffraction scattering particle size distribution measuring method is 1.0Myuemu~8.0Myuemu. If it is not this range, the volume accumulation average as a powder characteristic of the silver copper composite powder after manufacturing the silver coat copper powder of the range used as the silver content (20 wt%-55 wt%) mentioned above, and also wet-heat-treating. It becomes difficult to keep the particle size D 50 in the range of 1.0 μm to 10.0 μm.

芯材としての銅粉の粉体特性b’.は、レーザー回折散乱式粒度分布測定法による体積累積最大粒径Dmaxが30.0μm以下である。この範囲でなければ、上述した銀含有量(20wt%〜55wt%)となる範囲の銀コート銅粉を製造し、更に湿式熱処理した後の銀銅複合粉の粉体特性としての、体積累積最大粒径Dmaxを40.0μm以下の範囲に収めることが困難となる。 Powder characteristics of copper powder as a core material b '. Has a volume cumulative maximum particle size D max of 30.0 μm or less by a laser diffraction / scattering particle size distribution measurement method. If this range is not satisfied, the volume cumulative maximum as the powder characteristics of the silver-copper composite powder after producing the silver-coated copper powder in the range of the silver content (20 wt% to 55 wt%) described above and further wet-treating it. It becomes difficult to keep the particle size D max in the range of 40.0 μm or less.

そして、芯材としての銅粉の粉体特性c’.は、粉粒のアスペクト比(厚さ/[D50])が0.02〜0.5である。この範囲でなければ、上述した銀含有量(20wt%〜55wt%)となる範囲の銀コート銅粉を製造し、更に湿式熱処理した後の銀銅複合粉の粉体特性としての、粉粒のアスペクト比(厚さ/[D50])が0.02〜0.5を達成出来ない。また、芯材としての銅粉の粉粒のアスペクト比を0.02未満の粒径との相対的関係に於いて、薄くしようとすると、生産上のバラツキが大きく粗粒が発生しやすく好ましくないのである。 And the powder characteristic of copper powder as a core material c '. The aspect ratio (thickness / [D 50 ]) of the powder particles is 0.02 to 0.5. If it is not this range, the silver coating copper powder of the range used as the silver content (20 wt%-55 wt%) mentioned above is manufactured, and also as a powder characteristic of the silver copper composite powder after carrying out wet heat processing, The aspect ratio (thickness / [D 50 ]) cannot be 0.02 to 0.5. In addition, if the aspect ratio of the copper powder particles as the core material is made relatively thin in relation to the particle size of less than 0.02, it is not preferable because coarse production tends to occur due to large variations in production. It is.

上述した如きフレーク銅粉を安定して製造するためには、従来のヒドラジン還元法に代表される湿式法やアトマイズ法に代表される乾式法等の手法で得られた略球形の銅粉を、直接、ボールミル、ビーズミル等の粉砕機にかけ、メディアであるボールやビーズにより銅粉の粉粒を粉砕することで、粉粒を塑性変形させ扁平化させることでフレーク状にしても得ることは出来ない。一定の凝集状態にあり粉粒の凝集状態を解消することなく圧縮変形を行っても、粉粒同士の凝集状態が保たれたまま圧縮変形を受け、凝集状態のままのフレーク銅粉が得られ、粉粒同士が分散した状態にはならないからである。   In order to stably produce the flake copper powder as described above, a substantially spherical copper powder obtained by a method such as a wet method represented by a conventional hydrazine reduction method or a dry method represented by an atomization method, It is not possible to obtain a flake shape by directly deforming and flattening the powder particles by pulverizing the copper powder particles with balls or beads, which are media, by directly applying to a pulverizer such as a ball mill or a bead mill. . Even if it is compressed and deformed without eliminating the agglomerated state of the particles, it is subjected to compression deformation while maintaining the agglomerated state of the particles, and flake copper powder in the agglomerated state is obtained. This is because the powder particles are not dispersed.

従って、本件発明者等は、まず略球形の状態の銅粉の凝集状態を破壊し、凝集粒子を分散化させる解粒処理を行い、その後、粉粒をフレーク状に圧縮変形する方法を採用することが好ましい。例えば、略球形状の粉粒からなる銅粉を、凝集状態にある乾燥した銅粉を遠心力を利用した風力サーキュレータを用いて凝集した銅粉を円周軌道を描くように吹き上げ、その飛程中で凝集した粉粒同士を衝突させる。また、凝集状態にある銅粉を含有した銅粉スラリーを、遠心力を利用した流体ミルを用いて、銅粉スラリーを円周軌道を描くように高速でフローさせ、このときに発生する遠心力により凝集した粉粒同士を溶媒中で相互に衝突させ、解粒作業を行うのである。そして、この解粒処理の終了した略球形の銅粉を、高エネルギーボールミルを用いて処理することで、銅粉の粉粒を圧縮変形させ、フレーク銅粉とする方法を採用することが好ましい。ここで言う高エネルギーボールミルとは、ビーズミル、アトライター等のように銅粉を乾燥させた状態で行うか、銅粉スラリーの状態で行うかは問わず、メディアを用いて、銅粉の粉粒を圧縮して塑性変形させることのできる装置の総称として用いている。   Accordingly, the inventors of the present invention first adopt a method of breaking the agglomerated state of the substantially spherical copper powder, performing a pulverization treatment to disperse the agglomerated particles, and then compressing and deforming the powder particles into flakes. It is preferable. For example, copper powder composed of substantially spherical powder particles is blown up to form a circular trajectory using a wind circulator using centrifugal force to dry copper powder in an agglomerated state, and its range The agglomerated powder particles collide with each other. In addition, the copper powder slurry containing copper powder in an agglomerated state is flowed at high speed to draw a circular orbit using a fluid mill using centrifugal force, and the centrifugal force generated at this time The powder particles agglomerated by the above are collided with each other in a solvent, and the pulverization operation is performed. And it is preferable to employ | adopt the method of carrying out the compression deformation of the powder particle | grains of copper powder by processing the substantially spherical copper powder which this pulverization process complete | finished using a high energy ball mill, and making it flake copper powder. The high energy ball mill referred to here is a powder of copper powder using a medium regardless of whether it is performed in a dried state of copper powder or in a state of copper powder slurry, such as a bead mill or an attritor. It is used as a general term for devices that can be compressed and plastically deformed.

銀コート銅粉の製造: 上述の如き銅粉を芯材として用いて銀コート銅粉を製造するのであるが、本件発明に係る製造方法で用いる銀コート銅粉は、湿式法で製造したものを用いることが好ましい。湿式法で銅粉の表面に銀コート層を形成すると、厳密に言えば、その銀コート層は純粋な銀層ではなく、芯材である銅粉の溶出した銅成分を含んだ組成となる傾向にある。そして、このような銅成分を含有した銀コート層を形成することで、後述する湿式熱処理による銀と銅との低温域での相互拡散が容易となる。 Production of silver-coated copper powder: Silver-coated copper powder is produced by using the copper powder as described above as a core material. The silver-coated copper powder used in the production method according to the present invention is produced by a wet method. It is preferable to use it. Strictly speaking, when a silver coat layer is formed on the surface of copper powder by a wet method, the silver coat layer tends not to be a pure silver layer, but to have a composition containing a copper component eluted from copper powder as a core material. It is in. And by forming such a silver coat layer containing a copper component, mutual diffusion in a low temperature region between silver and copper by a wet heat treatment described later is facilitated.

銀コート銅粉を湿式法で製造する場合、銅粉を添加した水溶液中にキレート化剤を添加して分散液とし、そこに銀含有溶液を添加して反応させ、さらに濾過して銅粉の粉粒表面に銀コート層を形成したものを用いる事が好ましい。銀コート層の厚さ制御が容易で均一な膜厚の形成が可能だからである。   When silver-coated copper powder is produced by a wet method, a chelating agent is added to an aqueous solution to which copper powder has been added to form a dispersion, to which a silver-containing solution is added and reacted, and further filtered to obtain a copper powder. It is preferable to use one having a silver coat layer formed on the surface of the powder particles. This is because the thickness of the silver coat layer can be easily controlled and a uniform film thickness can be formed.

ここに用いられるキレート化剤は、銅イオンと安定な錯体を形成するものであり、銀イオンと反応しないものが望ましい。このようなキレート化剤としては、エチレンジアミンテトラ酢酸塩、トリエチレンジアミン、ジエチレントリアミン五酢酸、N,N,N′,N′−テトラエチルエチレンジアミン、ジエチレンジアミン、フェナントロリン、エチレンジオキシビス(エチルアミン)−N,N,N′,N′−四酢酸、ニトリロ三酢酸、ピコリロ酸及びこれらの組み合わせが用いられる。これらの中でエチレンジアミンテトラ酢酸塩(EDTA)を用いることが、銅のキレート錯体の安定性、試薬の安価性、作業性の点で優れているので好ましく用いられる。   The chelating agent used here forms a stable complex with copper ions, and preferably does not react with silver ions. Such chelating agents include ethylenediaminetetraacetate, triethylenediamine, diethylenetriaminepentaacetic acid, N, N, N ′, N′-tetraethylethylenediamine, diethylenediamine, phenanthroline, ethylenedioxybis (ethylamine) -N, N , N ′, N′-tetraacetic acid, nitrilotriacetic acid, picolinic acid and combinations thereof are used. Of these, ethylenediaminetetraacetate (EDTA) is preferably used because it is excellent in terms of the stability of the copper chelate complex, the inexpensiveness of the reagent, and the workability.

銅粉に対するキレート化剤の添加量は、銅粉100重量部に対して、キレート化剤1重量部〜50重量部、好ましくは5重量部〜40重量部、さらに好ましくは10重量部〜35重量部である。上記添加量の範囲において、銅粉表面上での銅の水酸化物や酸化物を銅のキレート錯体に変え、銅粉表面への銀コートを速やかに、かつ効率よく行うことができる。従って、キレート化剤添加量が1重量部未満の場合には、後の銀コートが良好に行えない。一方、キレート化剤添加量が50重量部を超えても、銅粉表面への銀コート速度は上昇せず、コストを考えたときの工業的採算性を確保出来ない。そして、より好ましいとした範囲は、量産性を考慮した場合の工程安定性を考慮した結果の範囲である。   The amount of the chelating agent added to the copper powder is 1 part by weight to 50 parts by weight, preferably 5 parts by weight to 40 parts by weight, and more preferably 10 parts by weight to 35 parts by weight with respect to 100 parts by weight of the copper powder. Part. In the range of the above addition amount, the copper hydroxide or oxide on the copper powder surface can be changed to a copper chelate complex, and silver coating on the copper powder surface can be performed quickly and efficiently. Therefore, when the amount of the chelating agent added is less than 1 part by weight, the subsequent silver coating cannot be performed satisfactorily. On the other hand, even if the addition amount of the chelating agent exceeds 50 parts by weight, the silver coating speed on the surface of the copper powder does not increase, and industrial profitability when cost is considered cannot be ensured. The more preferable range is a range of results in consideration of process stability in consideration of mass productivity.

また、本発明に係る製造方法では、キレート化剤に加えて、必要に応じて種々の添加剤を加えることもできる。かかる添加剤としては、光沢剤や展延性向上のための塩化鉛、フェロシアン化カリウムやラウリン酸等の分散剤等が挙げられる。   Moreover, in the manufacturing method which concerns on this invention, in addition to a chelating agent, various additives can also be added as needed. Examples of such additives include brighteners and dispersants such as lead chloride, potassium ferrocyanide and lauric acid for improving spreadability.

本発明に係る製造方法では、銅粉を添加した水溶液にキレート化剤を添加、攪拌して得られた分散液に、銀含有溶液を加えて反応させる。ここで用いる銀含有溶液には、特に限定はないが、分散液中の銅粉重量を100重量部としたとき、銀として20重量部〜95重量部を含有するように添加することが好ましい。銅粉重量に対する銀の含有量が20重量部未満の場合には、銅粉の粉粒表面への銀コート量が、不足し本件発明に係る銀銅複合粉に求められる最低の銀含有量を達成し得ない。一方、銅粉重量に対する銀の含有量が95重量部を超える場合には、銅粉の粉粒表面への銀コート量が、本件発明に係る銀銅複合粉に求められる銀含有量の範囲を超える傾向が高く、しかも、銅粉の粉粒表面の銀コート層の厚さも不均一となる傾向にある。   In the production method according to the present invention, a silver-containing solution is added and reacted with a dispersion obtained by adding and stirring a chelating agent to an aqueous solution to which copper powder has been added. Although there is no limitation in the silver containing solution used here, when the copper powder weight in a dispersion liquid is 100 weight part, it is preferable to add so that 20 weight part-95 weight part may be contained as silver. If the silver content relative to the copper powder weight is less than 20 parts by weight, the silver coating amount on the copper powder particle surface is insufficient, and the minimum silver content required for the silver-copper composite powder according to the present invention is reduced. Cannot be achieved. On the other hand, when the silver content with respect to the copper powder weight exceeds 95 parts by weight, the silver coating amount on the surface of the copper powder particles is within the range of the silver content required for the silver-copper composite powder according to the present invention. In addition, the thickness of the silver coat layer on the surface of the copper powder particles tends to be non-uniform.

そして、銀含有溶液として、最も工程安定性に優れるのが硝酸銀溶液である。ここで、硝酸銀溶液を用いる場合の濃度は、例えば10g/l〜300g/lに調整して用いられる。硝酸銀溶液は、20℃〜60℃に調整し、10分〜60分かけて添加することが好ましい。また、銅粉100重量部に対して、硝酸銀を約30重量部〜150重量部添加することが好ましい。上記範囲を外れると上述の銀含有量の範囲を外れる傾向がある。   As the silver-containing solution, the silver nitrate solution is most excellent in process stability. Here, the concentration in the case of using a silver nitrate solution is adjusted to, for example, 10 g / l to 300 g / l. The silver nitrate solution is preferably adjusted to 20 to 60 ° C. and added over 10 to 60 minutes. Moreover, it is preferable to add about 30 to 150 parts by weight of silver nitrate with respect to 100 parts by weight of copper powder. If it is out of the above range, it tends to be out of the above range of silver content.

上記分散液に銀含有溶液を添加することによって、即時に置換反応が開始し、銅粉の粉粒表面に銀が析出する。銀含有溶液の添加時及び添加後に分散液を攪拌することにより反応が一層促進されると同時に、反応層内における不均一な反応を防止するのである。   By adding a silver-containing solution to the dispersion, a substitution reaction starts immediately, and silver is deposited on the surface of the copper powder. The reaction is further promoted by stirring the dispersion during and after the addition of the silver-containing solution, and at the same time, non-uniform reaction in the reaction layer is prevented.

その後、攪拌された分散液と銀イオン溶液との混合溶液を濾過、洗浄することにより、銀コート銅粉が調製される。   Thereafter, a silver-coated copper powder is prepared by filtering and washing the mixed solution of the stirred dispersion and the silver ion solution.

湿式熱処理(銀銅複合粉の製造): 本件発明に係る製造方法では、以上のようにして得られた銀コート銅粉を純水中に添加した後、湿式熱処理を行う。湿式熱処理は50℃〜200℃の温度で、30分〜120分攪拌することによりなされる。このように湿式熱処理を行うことによって、銅中に銀コート層の銀が拡散し、銀と銅との均一な分散化がなされる。厳密に言えば、粉粒の表面から中心部に向かって銀濃度の勾配があり、高銀濃度から低銀濃度に変化していると考えられる。通常、異種金属間の相互拡散を起こさせる場合には、更に高い温度での加熱を必要とする。しかしながら、電気化学的な還元反応等により析出した金属層は、活性化した状態にあり、低温での加熱により結晶組織の転位の再編成等を起こしやすい結晶構造を持つ。更に、当初から銀コート層に一定量の銅が含まれていることもあり、低温での相互拡散が容易に行えると考える。そして、このような加熱を溶媒中で行うのは、大気との接触を極力防止し、粉粒表面の無用な酸化、汚染を防止するためである。 Wet heat treatment (production of silver-copper composite powder): In the production method according to the present invention, the silver-coated copper powder obtained as described above is added to pure water, and then wet heat treatment is performed. The wet heat treatment is performed by stirring at a temperature of 50 ° C. to 200 ° C. for 30 minutes to 120 minutes. By performing the wet heat treatment in this way, the silver of the silver coat layer diffuses into the copper, and the silver and copper are uniformly dispersed. Strictly speaking, it is considered that there is a gradient of silver concentration from the surface of the powder grain toward the central portion, and the silver concentration is changed from a high silver concentration to a low silver concentration. Usually, in order to cause mutual diffusion between different kinds of metals, heating at a higher temperature is required. However, a metal layer deposited by an electrochemical reduction reaction or the like is in an activated state and has a crystal structure that is likely to cause rearrangement of crystal structure dislocations by heating at a low temperature. Furthermore, since a certain amount of copper is contained in the silver coat layer from the beginning, it is considered that interdiffusion at a low temperature can be easily performed. The reason why such heating is performed in a solvent is to prevent contact with the atmosphere as much as possible and to prevent unnecessary oxidation and contamination of the powder particle surface.

上記湿式熱処理後、濾過し、次いでアルコール洗浄し、乾燥することにより、銀銅複合粉が製造される。このときのアルコール洗浄は特に必須のものではない。水分の揮散を容易にするために用いるのであるからである。アルコール洗浄には、メタノール、エタノールが一般的に用いられる。   After the wet heat treatment, the resultant is filtered, then washed with alcohol, and dried to produce a silver-copper composite powder. The alcohol cleaning at this time is not particularly essential. This is because it is used to facilitate the evaporation of moisture. For alcohol cleaning, methanol and ethanol are generally used.

本発明に係る製造方法により得られた銀銅複合粉は、種々の用途に用いることができ、例えば導電性ペースト、導電性インク、導電性塗料、導電性樹脂等の導電性フィラーとして利用することができる。 以下、実施例及び比較例に基づいて本発明を具体的に説明する。   The silver-copper composite powder obtained by the production method according to the present invention can be used in various applications, for example, as a conductive filler for conductive paste, conductive ink, conductive paint, conductive resin, etc. Can do. Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.

<芯材である銅粉の硫酸洗浄>
純水1.33リットルに、体積累積平均粒径D50が1.0μmの略球状の粉粒からなる銅粉200gを添加し、5分攪拌した後、20%硫酸溶液を50g加え、20分攪拌し、1リットルの純水で3回リパルプ洗浄し、前処理銅粉とした。
<Sulfuric acid washing of copper powder as core material>
To 1.33 liters of pure water, 200 g of copper powder composed of substantially spherical particles having a volume cumulative average particle diameter D 50 of 1.0 μm was added, stirred for 5 minutes, and then added with 50 g of 20% sulfuric acid solution for 20 minutes. The mixture was stirred and repulped with 1 liter of pure water three times to obtain a pretreated copper powder.

<銀コート銅粉の調製>
純水1リットルに上記前処理銅粉200gを添加し、攪拌後、EDTA26.6gを加え、5分攪拌して分散液を得た。次いで、硝酸銀94.4gを900mlの純水に溶解した硝酸銀溶液を40℃に保持し、上記分散液に30分かけて攪拌下で加えて置換反応を行った。さらに、5分間攪拌後、濾過、洗浄し、銀コート銅粉を調製した。
<Preparation of silver-coated copper powder>
200 g of the pretreated copper powder was added to 1 liter of pure water, and after stirring, 26.6 g of EDTA was added and stirred for 5 minutes to obtain a dispersion. Next, a silver nitrate solution in which 94.4 g of silver nitrate was dissolved in 900 ml of pure water was maintained at 40 ° C., and added to the dispersion over 30 minutes with stirring to perform a substitution reaction. Further, after stirring for 5 minutes, filtration and washing were performed to prepare silver-coated copper powder.

<銀銅複合粉の製造>
純水1.3リットルに、上記銀コート銅粉を添加し、80℃の液温で60分攪拌し、湿式熱処理を行った後、濾過し、次いでメタノール洗浄、乾燥を行い、銀銅複合粉を製造した。
<Manufacture of silver-copper composite powder>
The above silver-coated copper powder is added to 1.3 liters of pure water, stirred at a liquid temperature of 80 ° C. for 60 minutes, subjected to wet heat treatment, filtered, then washed with methanol and dried, and then a silver-copper composite powder. Manufactured.

このようにして製造された銀銅複合粉の粒度分布(D50、D90、Dmax)、比表面積及びタップ充填密度の測定と組成を表す化学分析等の結果を表1に示す。なお、表1では、粉体特性(D50、D90、Dmax、比表面積(SSA)、タップ充填密度(T.D))、粉粒を溶解してICP分析装置を用いた化学定量分析結果(表では「化学分析による含有量」と表示)、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析結果(表では「EDXによる表層部の成分量」と表示)、色差を銀コート銅粉から銀銅複合粉に変化した状態が分かるように示した。 Table 1 shows the results of chemical analysis and the like indicating the particle size distribution (D 50 , D 90 , D max ), specific surface area, and tap packing density of the silver-copper composite powder produced as described above and the composition of the tap filling density. In Table 1, the powder characteristics (D 50 , D 90 , D max , specific surface area (SSA), tap filling density (TD)), chemical quantitative analysis using ICP analyzer after dissolving the powder particles Results (displayed as “content by chemical analysis” in the table), simple quantitative analysis results at the particle surface layer using energy-dispersed EPMA (displayed as “component amount of surface layer by EDX” in the table), color difference as silver It showed so that the state which changed from the coat copper powder to the silver copper composite powder might be understood.

Figure 0004583164
Figure 0004583164

この表1から分かるように、銀コート銅粉を湿式熱処理し銀銅複合粉としても、粉体特性の内D50、D90、Dmax、タップ充填密度(T.D)に関しての変化はあまり無い。しかしながら、比表面積(SSA)の値が変化しており、銀コート銅粉の比表面積に比べ、湿式熱処理した銀銅複合粉の比表面積が大きくなっている。 As can be seen from Table 1, even when the silver-coated copper powder is wet-heat-treated to form a silver-copper composite powder, there is not much change in the powder characteristics among D 50 , D 90 , D max and tap filling density (TD). No. However, the value of the specific surface area (SSA) is changing, and the specific surface area of the wet-heat treated silver-copper composite powder is larger than that of the silver-coated copper powder.

そして、湿式熱処理を行う前後の銀コート銅粉と銀銅複合粉との銀及び銅の各含有量の化学定量分析結果に関しては、湿式熱処理により変化しないことが分かる。これに対して、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析結果を見ると、銀コート銅粉としての表層での銀量が55.8wt%であるのに対し、湿式熱処理後の銀銅複合粉では表層での銀量が33.9wt%と少なくなっており、芯材である銅粉内に確実に拡散したことが理解出来る。   And it turns out that it does not change with wet heat processing about the chemical-quantitative-analysis result of each content of silver and copper of the silver coat copper powder and silver copper composite powder before and after performing wet heat processing. On the other hand, when the simple quantitative analysis result in the particle surface part using the energy dispersive EPMA is seen, the amount of silver in the surface layer as the silver coated copper powder is 55.8 wt%, but after the wet heat treatment In the silver-copper composite powder, the amount of silver in the surface layer was as low as 33.9 wt%, and it can be understood that the silver powder was surely diffused into the copper powder as the core material.

粒度分布の測定は、銀銅複合粉0.1gをSNディスパーサント5468の0.1%水溶液(サンノプコ社製)と混合し、超音波ホモジナイザ(日本精機製作所製 US−300T)で5分間分散させた後、レーザー回折散乱式粒度分布測定装置 Micro Trac HRA 9320−X100型(Leeds+Northrup社製)を用いて行った。平均粒径D50はレーザー回折散乱法で求められる累積体積が50%の時点における粒径(μm)であり、D90はレーザー回折散乱法で求められる累積体積が90%の時点における粒径(μm)であり、最大粒径Dmaxはレーザー回折散乱法で求められる累積体積が最大の粒径(μm)である。比表面積は、島津式比表面積測定装置SS−10を用いた透過法で求めた値である。また、タップ充填密度は、銀銅複合粉200gを精秤し、150cmのメスシリンダーに入れ、ストローク40mmで1000回の落下を繰り返しタッピングした後、銀銅合金粉の容積を求め、得たものである。また、色差の測定は、乾燥した状態で銀コート銅粉又は銀銅複合粉を10kg/mmのプレス圧力でタブレット状に加工し色差測定試料として調製し、この色差測定試料をスガ試験器株式会社製 SMカラーコンピューター SM−4を用いて測定した。 For the measurement of particle size distribution, 0.1 g of silver-copper composite powder was mixed with a 0.1% aqueous solution of SN Dispersant 5468 (manufactured by San Nopco) and dispersed with an ultrasonic homogenizer (US-300T, manufactured by Nippon Seiki Seisakusho) for 5 minutes. Thereafter, the measurement was performed using a laser diffraction / scattering particle size distribution analyzer, Micro Trac HRA 9320-X100 (Leeds + Northrup). The average particle diameter D 50 was particle size ([mu] m) at the time the cumulative volume is 50% as determined by a laser diffraction scattering method, D 90 is the particle diameter at the time the cumulative volume of 90% as determined by a laser diffraction scattering method ( μm), and the maximum particle size D max is the particle size (μm) having the maximum cumulative volume determined by the laser diffraction scattering method. The specific surface area is a value determined by a transmission method using a Shimadzu specific surface area measuring device SS-10. The tap filling density was obtained by accurately weighing 200 g of silver-copper composite powder, putting it in a 150 cm 3 graduated cylinder, repeatedly tapping 1000 drops at a stroke of 40 mm, and then obtaining the volume of the silver-copper alloy powder. It is. In addition, the color difference is measured by preparing silver-coated copper powder or silver-copper composite powder into a tablet shape at a press pressure of 10 kg / mm 2 in a dry state, and preparing it as a color difference measurement sample. The measurement was performed using a SM color computer SM-4 manufactured by company.

銀と銅との分散化レベル及び表面粗さの代替え指標として用いることの出来る色差を見るに、湿式熱処理前の銀コート銅粉においては、L値=60.22、a値=−1.35、b値=9.31であり、a値及びb値から、本件発明に係る銀銅複合粉よりは赤及び青の強い傾向にあることが分かる。これに対し、湿式熱処理後の銀銅複合粉ではL値=63.53、a値=−0.22、b値=10.21であり、本件発明で適正とするL値=56〜78、a値=−0.5〜−0.1、b値=10.0〜12.0の範囲に入っていることが確認出来た。 In view of the color difference that can be used as an alternative index of the dispersion level and surface roughness of silver and copper, L * value = 60.22, a * value = −1 in the silver-coated copper powder before wet heat treatment .35, b * value = 9.31, and it can be seen from the a * value and b * value that red and blue tend to be stronger than the silver-copper composite powder according to the present invention. On the other hand, in the silver-copper composite powder after the wet heat treatment, L * value = 63.53, a * value = −0.22, b * value = 10.21, and the L * value that is appropriate in the present invention = It was confirmed that it was in the range of 56 to 78, a * value = −0.5 to −0.1, b * value = 10.0 to 12.0.

純水1リットルに、実施例1で用いたのと同様の前処理銅粉200gを添加し、攪拌後、EDTA44.4gを加え、5分攪拌して分散液を得た。次いで、硝酸銀157.4gを900mlの純水に溶解した硝酸銀溶液を40℃に保持し、上記分散液に30分かけて攪拌下で加えて置換反応を行った。さらに、5分間攪拌後、濾過、洗浄し、銀被覆銅微粒子を調製した。   To 1 liter of pure water, 200 g of pretreated copper powder similar to that used in Example 1 was added, and after stirring, 44.4 g of EDTA was added and stirred for 5 minutes to obtain a dispersion. Next, a silver nitrate solution in which 157.4 g of silver nitrate was dissolved in 900 ml of pure water was kept at 40 ° C., and added to the dispersion under stirring for 30 minutes to carry out a substitution reaction. Further, after stirring for 5 minutes, filtration and washing were performed to prepare silver-coated copper fine particles.

得られた銀被覆銅微粒子を実施例1と同様に湿式熱処理、濾過、メタノール洗浄、乾燥を行い、銀銅複合粉を製造した。   The obtained silver-coated copper fine particles were subjected to wet heat treatment, filtration, methanol washing and drying in the same manner as in Example 1 to produce silver-copper composite powder.

このようにして製造された銀銅複合粉の粒度分布(D50、D90、Dmax)、比表面積及びタップ充填密度の測定と化学分析等を実施例1と同様に行い、その結果を表2に示す。 Measurement of the particle size distribution (D 50 , D 90 , D max ), specific surface area and tap packing density and chemical analysis of the silver-copper composite powder produced in this manner were performed in the same manner as in Example 1, and the results are shown in Table 1. It is shown in 2.

Figure 0004583164
Figure 0004583164

この表2から分かるように、銀コート銅粉を湿式熱処理し銀銅複合粉としても、粉体特性の内D50、D90、Dmax、タップ充填密度に関しての変化はあまり無い。しかしながら、比表面積(SSA)の値が変化しており、銀コート銅粉の比表面積に比べ、湿式熱処理した銀銅複合粉の比表面積が大きくなっている。 As can be seen from Table 2, even when the silver-coated copper powder is wet-heat treated to form a silver-copper composite powder, there is not much change in D 50 , D 90 , D max and tap filling density among the powder characteristics. However, the value of the specific surface area (SSA) is changing, and the specific surface area of the wet-heat treated silver-copper composite powder is larger than the specific surface area of the silver-coated copper powder.

そして、湿式熱処理を行う前後の銀コート銅粉と銀銅複合粉との銀及び銅の各含有量の化学定量分析結果に関しては、湿式熱処理により変化しないことが分かる。これに対して、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析結果を見ると、銀コート銅粉としての表層での銀量が59.4wt%であるのに対し、湿式熱処理後の銀銅複合粉では表層での銀量が47.0wt%と少なくなっており、芯材である銅粉内に確実に拡散したことが理解出来る。   And it turns out that it does not change with wet heat processing about the chemical-quantitative-analysis result of each content of silver and copper of the silver coat copper powder and silver copper composite powder before and after performing wet heat processing. On the other hand, when the simple quantitative analysis result in the particle surface part using the energy dispersion type EPMA is seen, the amount of silver in the surface layer as the silver-coated copper powder is 59.4 wt%, but after the wet heat treatment In the silver-copper composite powder, the amount of silver in the surface layer is as small as 47.0 wt%, and it can be understood that the silver powder was surely diffused into the copper powder as the core material.

湿式熱処理前の銀コート銅粉の色差は、L値=59.65、a値=−1.49、b値=9.19であり、a値及びb値から、本件発明に係る銀銅複合粉よりは赤及び青の強い傾向にあることが分かる。これに対し、湿式熱処理後の銀銅複合粉ではL値=58.26、a値=−0.29、b値=10.16であり、本件発明で適正とするL値=56〜78、a値=−0.5〜−0.1、b値=10.0〜12.0の範囲に入っていることが確認出来た。 The color difference of the silver-coated copper powder before the wet heat treatment is L * value = 59.65, a * value = −1.49, b * value = 9.19. From the a * value and the b * value, the present invention It can be seen that red and blue tend to be stronger than the silver-copper composite powder according to. On the other hand, in the silver-copper composite powder after the wet heat treatment, L * value = 58.26, a * value = −0.29, b * value = 10.16, and L * value that is appropriate in the present invention = It was confirmed that it was in the range of 56 to 78, a * value = −0.5 to −0.1, b * value = 10.0 to 12.0.

純水1リットルに、実施例1で用いたのと同様の前処理銅粉200gを添加し、攪拌後、EDTA62.2gを加え、5分攪拌して分散液を得た。次いで、硝酸銀220.4gを900mlの純水に溶解した硝酸銀溶液を40℃に保持し、上記分散液に30分かけて攪拌下で加えて置換反応を行った。さらに、5分間攪拌後、濾過、洗浄し、銀被覆銅微粒子を調製した。   To 1 liter of pure water, 200 g of the pretreated copper powder similar to that used in Example 1 was added, and after stirring, 62.2 g of EDTA was added and stirred for 5 minutes to obtain a dispersion. Next, a silver nitrate solution obtained by dissolving 220.4 g of silver nitrate in 900 ml of pure water was kept at 40 ° C., and added to the dispersion over 30 minutes with stirring to perform a substitution reaction. Further, after stirring for 5 minutes, filtration and washing were performed to prepare silver-coated copper fine particles.

得られた銀被覆銅微粒子を実施例1と同様に湿式熱処理、濾過、メタノール洗浄、乾燥を行い、銀銅複合粉を製造した。   The obtained silver-coated copper fine particles were subjected to wet heat treatment, filtration, methanol washing and drying in the same manner as in Example 1 to produce silver-copper composite powder.

このようにして製造された銀銅複合粉の粒度分布(D50、D90、Dmax)、比表面積及びタップ充填密度の測定と化学分析等を実施例1と同様に行い、その結果を表3に示す。 Measurement of the particle size distribution (D 50 , D 90 , D max ), specific surface area and tap packing density and chemical analysis of the silver-copper composite powder produced in this manner were performed in the same manner as in Example 1, and the results are shown in Table 1. 3 shows.

Figure 0004583164
Figure 0004583164

この表3から分かるように、銀コート銅粉を湿式熱処理し銀銅複合粉としても、粉体特性の内D50、D90、Dmax、タップ充填密度に関しての変化はあまり無い。しかしながら、比表面積(SSA)の値が変化しており、銀コート銅粉の比表面積に比べ、湿式熱処理した銀銅複合粉の比表面積が大きくなっている。 As can be seen from Table 3, even when the silver-coated copper powder is wet-heat treated to form a silver-copper composite powder, there is not much change in D 50 , D 90 , D max and tap filling density among the powder characteristics. However, the value of the specific surface area (SSA) is changing, and the specific surface area of the wet-heat treated silver-copper composite powder is larger than the specific surface area of the silver-coated copper powder.

そして、湿式熱処理を行う前後の銀コート銅粉と銀銅複合粉との銀及び銅の各含有量の化学定量分析結果に関しては、湿式熱処理により変化しないことが分かる。これに対して、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析結果を見ると、銀コート銅粉としての表層での銀量が69.3wt%であるのに対し、湿式熱処理後の銀銅複合粉では表層での銀量が51.6wt%と少なくなっており、芯材である銅粉内に確実に拡散したことが理解出来る。   And it turns out that it does not change with wet heat processing about the chemical-quantitative-analysis result of each content of silver and copper of the silver coat copper powder and silver copper composite powder before and after performing wet heat processing. On the other hand, when the simple quantitative analysis result in the particle surface part using the energy dispersive EPMA is seen, the amount of silver in the surface layer as the silver coated copper powder is 69.3 wt%, but after the wet heat treatment In the silver-copper composite powder, the amount of silver in the surface layer is as small as 51.6 wt%, and it can be understood that the silver powder was surely diffused into the copper powder as the core material.

湿式熱処理前の銀コート銅粉の色差は、L値=61.89、a値=−1.69、b値=9.57であり、a値及びb値から、本件発明に係る銀銅複合粉よりは赤及び青の強い傾向にあることが分かる。これに対し、湿式熱処理後の銀銅複合粉ではL値=60.23、a値=−0.38、b値=10.35であり、本件発明で適正とするL値=56〜78、a値=−0.5〜−0.1、b値=10.0〜12.0の範囲に入っていることが確認出来た。 The color difference of the silver-coated copper powder before the wet heat treatment is L * value = 61.89, a * value = −1.69, b * value = 9.57. From the a * value and the b * value, the present invention It can be seen that red and blue tend to be stronger than the silver-copper composite powder according to. On the other hand, in the silver-copper composite powder after the wet heat treatment, L * value = 60.23, a * value = −0.38, b * value = 10.35, and L * value that is appropriate in the present invention = It was confirmed that it was in the range of 56 to 78, a * value = −0.5 to −0.1, b * value = 10.0 to 12.0.

原料銅粉として体積累積平均粒径D50が3.2μm、アスペクト比が0.1のフレーク状銅粉を用いた以外は実施例1と同様にして、湿式熱処理、濾過、メタノール洗浄、乾燥を行い、フレーク状の銀銅複合粉を製造した。 Cumulative volume-average particle size D 50 as the raw material of copper powder 3.2 .mu.m, except that the aspect ratio using the flaky copper powder of 0.1 in the same manner as in Example 1, a wet heat treatment, filtration, washed with methanol, and dried To produce a flaky silver-copper composite powder.

このようにして製造されたフレーク状の銀銅複合粉の粒度分布(D50、D90、Dmax)及び比表面積の測定、化学分析等を実施例1と同様に行い、その結果を表4に示す。 Measurement of the particle size distribution (D 50 , D 90 , D max ) and specific surface area of the flaky silver-copper composite powder produced in this way, chemical analysis, etc. were carried out in the same manner as in Example 1, and the results are shown in Table 4. Shown in

Figure 0004583164
Figure 0004583164

この表4から分かるように、銀コート銅粉を湿式熱処理し銀銅複合粉としても、粉体特性の内D50、D90、Dmax、タップ充填密度に関しての変化はあまり無い。しかしながら、比表面積(SSA)の値が変化しており、銀コート銅粉の比表面積に比べ、湿式熱処理した銀銅複合粉の比表面積が大きくなっている。 As can be seen from Table 4, even when the silver-coated copper powder is wet-heat-treated to form a silver-copper composite powder, there is not much change in D 50 , D 90 , D max and tap filling density among the powder characteristics. However, the value of the specific surface area (SSA) is changing, and the specific surface area of the wet-heat treated silver-copper composite powder is larger than the specific surface area of the silver-coated copper powder.

そして、湿式熱処理を行う前後の銀コート銅粉と銀銅複合粉との銀及び銅の各含有量の化学定量分析結果に関しては、湿式熱処理により変化しないことが分かる。これに対して、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析結果を見ると、銀コート銅粉としての表層での銀量が55.1wt%であるのに対し、湿式熱処理後の銀銅複合粉では表層での銀量が34.5wt%と少なくなっており、芯材である銅粉内に確実に拡散したことが理解出来る。   And it turns out that it does not change with wet heat processing about the chemical-quantitative-analysis result of each content of silver and copper of the silver coat copper powder and silver copper composite powder before and after performing wet heat processing. On the other hand, when the simple quantitative analysis result in the particle surface layer part using energy dispersion type EPMA is seen, the amount of silver in the surface layer as a silver coat copper powder is 55.1 wt%, but after wet heat treatment In the silver-copper composite powder, the amount of silver in the surface layer is as small as 34.5 wt%, and it can be understood that the silver powder was surely diffused into the copper powder as the core material.

湿式熱処理前の銀コート銅粉の色差は、L値=70.52、a値=−1.33、b値=9.01であり、a値及びb値から、本件発明に係る銀銅複合粉よりは赤及び青の強い傾向にあることが分かる。これに対し、湿式熱処理後の銀銅複合粉ではL値=73.12、a値=−0.25、b値=10.01であり、本件発明で適正とするL値=56〜78、a値=−0.5〜−0.1、b値=10.0〜12.0の範囲に入っていることが確認出来た。 The color difference of the silver-coated copper powder before the wet heat treatment is L * value = 70.52, a * value = −1.33, b * value = 9.01, and from the a * value and the b * value, the present invention It can be seen that red and blue tend to be stronger than the silver-copper composite powder according to. On the other hand, in the silver-copper composite powder after the wet heat treatment, L * value = 73.12, a * value = −0.25, b * value = 10.01, and L * value that is appropriate in the present invention = It was confirmed that it was in the range of 56 to 78, a * value = −0.5 to −0.1, b * value = 10.0 to 12.0.

原料銅粉として実施例4で用いたフレーク状銅粉を用いた以外は実施例2と同様に湿式熱処理、濾過、メタノール洗浄、乾燥を行い、フレーク状の銀銅複合粉を製造した。   Except that the flaky copper powder used in Example 4 was used as the raw material copper powder, wet heat treatment, filtration, methanol washing and drying were performed in the same manner as in Example 2 to produce a flaky silver-copper composite powder.

このようにして製造されたフレーク状の銀銅複合粉の粒度分布(D50、D90、Dmax)及び比表面積の測定、化学分析等を実施例1と同様に行い、その結果を表5に示す。 Measurement of the particle size distribution (D 50 , D 90 , D max ) and specific surface area of the flaky silver-copper composite powder produced in this way, chemical analysis, etc. were carried out in the same manner as in Example 1, and the results are shown in Table 5. Shown in

Figure 0004583164
Figure 0004583164

この表5から分かるように、銀コート銅粉を湿式熱処理し銀銅複合粉としても、粉体特性の内D50、D90、Dmax、タップ充填密度に関しての変化はあまり無い。しかしながら、比表面積(SSA)の値が変化しており、銀コート銅粉の比表面積に比べ、湿式熱処理した銀銅複合粉の比表面積が大きくなっている。 As can be seen from Table 5, even when the silver-coated copper powder is wet-heat-treated to form a silver-copper composite powder, there is not much change in D 50 , D 90 , D max and tap filling density among the powder characteristics. However, the value of the specific surface area (SSA) is changing, and the specific surface area of the wet-heat treated silver-copper composite powder is larger than the specific surface area of the silver-coated copper powder.

そして、湿式熱処理を行う前後の銀コート銅粉と銀銅複合粉との銀及び銅の各含有量の化学定量分析結果に関しては、湿式熱処理により変化しないことが分かる。これに対して、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析結果を見ると、銀コート銅粉としての表層での銀量が57.8wt%であるのに対し、湿式熱処理後の銀銅複合粉では表層での銀量が48.0wt%と少なくなっており、芯材である銅粉内に確実に拡散したことが理解出来る。   And it turns out that it does not change with wet heat processing about the chemical-quantitative-analysis result of each content of silver and copper of the silver coat copper powder and silver copper composite powder before and after performing wet heat processing. On the other hand, when the simple quantitative analysis result in the particle surface layer part using energy dispersion type EPMA is seen, the amount of silver in the surface layer as the silver coat copper powder is 57.8 wt%, but after the wet heat treatment In the silver-copper composite powder, the amount of silver in the surface layer was as small as 48.0 wt%, and it can be understood that the silver powder was surely diffused into the copper powder as the core material.

湿式熱処理前の銀コート銅粉の色差は、L値=73.23、a値=−1.52、b値=9.23であり、a値及びb値から、本件発明に係る銀銅複合粉よりは赤及び青の強い傾向にあることが分かる。これに対し、湿式熱処理後の銀銅複合粉ではL値=72.15、a値=−0.32、b値=10.12であり、本件発明で適正とするL値=56〜78、a値=−0.5〜−0.1、b値=10.0〜12.0の範囲に入っていることが確認出来た。 The color difference of the silver-coated copper powder before the wet heat treatment is L * value = 73.23, a * value = −1.52, b * value = 9.23. From the a * value and the b * value, the present invention It can be seen that red and blue tend to be stronger than the silver-copper composite powder according to. On the other hand, in the silver-copper composite powder after the wet heat treatment, L * value = 72.15, a * value = −0.32, b * value = 10.12, and L * value that is appropriate in the present invention = It was confirmed that it was in the range of 56 to 78, a * value = −0.5 to −0.1, b * value = 10.0 to 12.0.

原料銅粉として実施例4で用いたフレーク状銅粉を用いた以外は実施例3と同様に湿式熱処理、濾過、メタノール洗浄、乾燥を行い、フレーク状の銀銅複合粉を製造した。   Except that the flaky copper powder used in Example 4 was used as the raw material copper powder, wet heat treatment, filtration, methanol washing and drying were performed in the same manner as in Example 3 to produce a flaky silver-copper composite powder.

このようにして製造されたフレーク状の銀銅複合粉の粒度分布(D50、D90、Dmax)及び比表面積の測定、化学分析等を実施例1と同様に行い、その結果を表6に示す。 Measurement of the particle size distribution (D 50 , D 90 , D max ) and specific surface area, chemical analysis, etc. of the flaky silver-copper composite powder produced in this manner was carried out in the same manner as in Example 1, and the results are shown in Table 6. Shown in

Figure 0004583164
Figure 0004583164

この表6から分かるように、銀コート銅粉を湿式熱処理し銀銅複合粉としても、粉体特性の内D50、D90、Dmax、タップ充填密度に関しての変化はあまり無い。しかしながら、比表面積(SSA)の値が変化しており、銀コート銅粉の比表面積に比べ、湿式熱処理した銀銅複合粉の比表面積が大きくなっている。 As can be seen from Table 6, even when the silver-coated copper powder is wet-heat-treated to obtain a silver-copper composite powder, there is not much change in D 50 , D 90 , D max and tap filling density among the powder characteristics. However, the value of the specific surface area (SSA) is changing, and the specific surface area of the wet-heat treated silver-copper composite powder is larger than that of the silver-coated copper powder.

そして、湿式熱処理を行う前後の銀コート銅粉と銀銅複合粉との銀及び銅の各含有量の化学定量分析結果に関しては、湿式熱処理により変化しないことが分かる。これに対して、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析結果を見ると、銀コート銅粉としての表層での銀量が66.3wt%であるのに対し、湿式熱処理後の銀銅複合粉では表層での銀量が52.5wt%と少なくなっており、芯材である銅粉内に確実に拡散したことが理解出来る。   And it turns out that it does not change with wet heat processing about the chemical-quantitative-analysis result of each content of silver and copper of the silver coat copper powder and silver copper composite powder before and after performing wet heat processing. On the other hand, when the simple quantitative analysis result in the particle surface layer part using energy dispersion type EPMA is seen, the amount of silver in the surface layer as a silver coat copper powder is 66.3 wt%, but after wet heat treatment In the silver-copper composite powder, the amount of silver in the surface layer was as small as 52.5 wt%, and it can be understood that the silver powder was surely diffused into the copper powder as the core material.

湿式熱処理前の銀コート銅粉の色差は、L値=74.24、a値=−1.75、b値=9.52であり、a値及びb値から、本件発明に係る銀銅複合粉よりは赤及び青の強い傾向にあることが分かる。これに対し、湿式熱処理後の銀銅複合粉ではL値=74.31、a値=−0.42、b値=10.33であり、本件発明で適正とするL値=56〜78、a値=−0.5〜−0.1、b値=10.0〜12.0の範囲に入っていることが確認出来た。 The color difference of the silver-coated copper powder before the wet heat treatment is L * value = 74.24, a * value = −1.75, b * value = 9.52, and the present invention is based on the a * value and the b * value. It can be seen that red and blue tend to be stronger than the silver-copper composite powder according to. On the other hand, in the silver-copper composite powder after the wet heat treatment, L * value = 74.31, a * value = −0.42, b * value = 10.33, and L * value that is appropriate in the present invention = It was confirmed that it was in the range of 56 to 78, a * value = −0.5 to −0.1, b * value = 10.0 to 12.0.

比較例Comparative example

(比較例1)
銀−銅合金溶湯を用い、アトマイズ法により球状の銀銅複合粉を製造した。この銀銅複合粉の粒度分布(D50、D90、Dmax)、比表面積及びタップ充填密度の測定、化学分析等を実施例1と同様に行い、その結果を表7に示す。
(Comparative Example 1)
Using a silver-copper alloy melt, spherical silver-copper composite powder was produced by the atomizing method. Measurement of particle size distribution (D 50 , D 90 , D max ), specific surface area and tap packing density, chemical analysis, and the like of this silver-copper composite powder were performed in the same manner as in Example 1, and the results are shown in Table 7.

Figure 0004583164
Figure 0004583164

この表7から分かるように、アトマイズ法で得られた銀銅複合粉の粉体特性を、上記実施例に係る銀銅複合粉と比較すると、粉体特性の内D50、D90、Dmax、タップ充填密度に関しての変化はあまり無い。しかしながら、比表面積(SSA)の値が小さく、粉粒表面が滑らかであることが理解出来る。 As can be seen from Table 7, when the powder characteristics of the silver-copper composite powder obtained by the atomization method are compared with the silver-copper composite powder according to the above examples, among the powder characteristics, D 50 , D 90 , D max There is not much change in tap packing density. However, it can be understood that the value of the specific surface area (SSA) is small, and the powder particle surface is smooth.

しかしながら、アトマイズ法で得られた銀銅複合粉の銀及び銅の各含有量の化学定量分析結果に関しては、銀含有量が72.1wt%と高くなっている。これは、銀含有量を高くしなければ銀−銅合金としての均一な溶湯を製造することが困難なためである。そして、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析結果を見ると、表層での銀量が63.9wt%と高くなっており、この表層銀量であれば、銀と銅との双方の長所を兼ね備えた銀銅複合粉とはならないことが理解出来る。   However, regarding the chemical quantitative analysis results of the silver and copper contents of the silver-copper composite powder obtained by the atomization method, the silver content is as high as 72.1 wt%. This is because it is difficult to produce a uniform molten metal as a silver-copper alloy unless the silver content is increased. And when the simple quantitative analysis result in the particle surface layer part using energy dispersion type EPMA is seen, the amount of silver in a surface layer is as high as 63.9 wt%, and if it is this surface layer silver amount, silver and copper and It can be understood that it is not a silver-copper composite powder that has the advantages of both.

(比較例2)
銀−銅合金溶湯を用い、アトマイズ法により得られた銀銅複合粉を用いて、この粉粒を従来法で物理的に塑性変形させフレーク状の銀銅複合粉を製造した。この銀銅複合粉の銅合金粉の粒度分布(D50、D90、Dmax)、比表面積及びタップ充填密度の測定、化学分析等を実施例1と同様に行い、その結果を表8に示す。なお、このフレーク粉のアスペクト比は、0.1である。
(Comparative Example 2)
Using a silver-copper alloy melt, a silver-copper composite powder obtained by the atomizing method was used to physically plastically deform the powder particles by a conventional method to produce a flaky silver-copper composite powder. Measurement of the particle size distribution (D 50 , D 90 , D max ), specific surface area and tap packing density of this silver-copper composite powder, chemical analysis, etc. were carried out in the same manner as in Example 1, and the results are shown in Table 8. Show. In addition, the aspect ratio of this flake powder is 0.1.

Figure 0004583164
Figure 0004583164

この表7から分かるように、アトマイズ法で得られた銀銅複合粉の粉体特性を、上記実施例に係る銀銅複合粉と比較すると、粉体特性の内D50、D90、Dmax、タップ充填密度に関しての変化はあまり無い。しかしながら、比表面積(SSA)の値が小さく、粉粒表面が滑らかであることが理解出来る。 As can be seen from Table 7, when the powder characteristics of the silver-copper composite powder obtained by the atomization method are compared with the silver-copper composite powder according to the above examples, among the powder characteristics, D 50 , D 90 , D max There is not much change in tap packing density. However, it can be understood that the value of the specific surface area (SSA) is small, and the powder particle surface is smooth.

しかしながら、アトマイズ法で得られた銀銅複合粉の銀及び銅の各含有量の化学定量分析結果に関しては、銀含有量が71.8wt%と高くなっている。これは、銀含有量を高くしなければ銀−銅合金としての均一な溶湯を製造することが困難なためである。そして、エネルギー分散型EPMAを用いた粉粒表層部における簡易定量分析結果を見ると、表層での銀量が62.1wt%と高くなっており、この表層銀量であれば、銀と銅との双方の長所を兼ね備えた銀銅複合粉とはならないことが理解出来る。   However, regarding the chemical quantitative analysis results of the silver and copper contents of the silver-copper composite powder obtained by the atomization method, the silver content is as high as 71.8 wt%. This is because it is difficult to produce a uniform molten metal as a silver-copper alloy unless the silver content is increased. And when the simple quantitative analysis result in the particle surface layer part using energy dispersion type EPMA is seen, the amount of silver in the surface layer is as high as 62.1 wt%. It can be understood that it is not a silver-copper composite powder that has the advantages of both.

<実施例と比較例との対比>
最初に、略球状の粉粒からなる銀銅複合粉に関して、実施例1〜実施例3と比較例1とを対比する。実施例1〜実施例3の各実施例で得られた銀銅複合粉は、その粉体特性が本件発明に係る銀−銅合金に要求される粉体特性の全てを満たしていることが分かる。粉体特性の観点から見れば、実施例1〜実施例3は、比較例1に比して微粒化、均粒化され、タップ充填密度が同等であると言える。従って、比較例1は、本件発明に係る銀銅複合粉に要求される粉体特性を満たし得えず、実施例1〜実施例3に比べて、比較例1は粒子が大きく且つ比表面積が小さいことが分かる。
<Contrast between Example and Comparative Example>
First, Examples 1 to 3 and Comparative Example 1 are compared with respect to the silver-copper composite powder composed of substantially spherical particles. It can be seen that the silver-copper composite powder obtained in each of Examples 1 to 3 has all the powder characteristics required for the silver-copper alloy according to the present invention. . From the viewpoint of powder characteristics, it can be said that Examples 1 to 3 are finer and more uniform than Comparative Example 1 and have the same tap filling density. Accordingly, Comparative Example 1 cannot satisfy the powder characteristics required for the silver-copper composite powder according to the present invention, and Comparative Example 1 has larger particles and a specific surface area than Examples 1 to 3. I understand that it is small.

また、フレーク状の粉粒からなる銀銅複合粉に関して、実施例3〜実施例6と比較例2とを対比する。実施例3〜実施例6の各実施例で得られた銀銅複合粉は、その粉体特性が本件発明に係る銀銅複合粉に要求される粉体特性の全てを満たしていることが分かる。粉体特性の観点から見れば、実施例3〜実施例4は、比較例2に比して微粒化、均粒化されている。従って、比較例2は、本件発明に係る銀銅複合粉に要求される粉体特性を満たし得えず、実施例3〜実施例6に比べて、比較例2は粒子が大きく且つ比表面積が小さいことが分かる。   Moreover, Example 3-Example 6 and the comparative example 2 are contrasted regarding the silver-copper composite powder which consists of flake-like powder particles. It can be seen that the silver-copper composite powder obtained in each of Examples 3 to 6 has all the powder characteristics required for the silver-copper composite powder according to the present invention. . From the viewpoint of powder characteristics, Examples 3 to 4 are finer and more uniform than Comparative Example 2. Therefore, Comparative Example 2 cannot satisfy the powder characteristics required for the silver-copper composite powder according to the present invention, and Comparative Example 2 has larger particles and a specific surface area than Examples 3 to 6. I understand that it is small.

本件発明に係る銀銅複合粉は、従来の銀銅複合粉には見られない良好な粉体特性を有し、微粒化、均粒化された銀銅複合粉である。そして、当該銀銅複合粉は、銀と銅との分散状態が良好であるため銀マイグレーション現象を抑制し、銀の持つ電気的良導体としての特性を有効に活用でき、特に導電性ペースト、導電性インク、導電性塗料、導電性樹脂等の導電性フィラーとして好適に使用することができる。   The silver-copper composite powder according to the present invention is a silver-copper composite powder that has good powder characteristics not found in conventional silver-copper composite powder and is atomized and uniform. And since the silver-copper composite powder has a good dispersion state of silver and copper, the silver migration phenomenon can be suppressed, and the characteristics of silver as an electrical good conductor can be effectively utilized. It can be suitably used as a conductive filler such as ink, conductive paint, conductive resin.

また、本件発明に係る製造方法によって、良好な粉体特性を有し、微粒化、均粒化された上記銀銅複合粉が得られる。そして、この銀銅複合粉は、粉粒の表面における銀と銅との分散が良好であるが、新たな製造設備を必要とするものではなく、従来の設備を利用して銀及び銅の複合した良好な特性を持つ銀銅複合粉の量産化を容易とする。従って、安価で高品質の銀銅複合粉を市場に提供出来る。   Moreover, the said silver-copper composite powder which has favorable powder characteristics, and was atomized and equalized by the manufacturing method which concerns on this invention is obtained. And this silver-copper composite powder has good dispersion of silver and copper on the surface of the grain, but it does not require new production equipment, it is a composite of silver and copper using conventional equipment. This facilitates mass production of silver-copper composite powder having good characteristics. Therefore, inexpensive and high-quality silver-copper composite powder can be provided to the market.

Claims (6)

銀と銅とを含む銀銅複合粉であって、
銅粉の粉粒表面に湿式法で銀コート層を形成し、その銀コート銅粉を50℃〜200℃の温度の溶液中で、30分〜120分加熱し、銀と銅とを熱的に相互拡散させて得られ、
銀含有量が20wt%〜55wt%、残部銅及び不可避不純物であり、
CIE1976L表色系で得られるL値=56〜78、a値=−0.5〜−0.1、b値=10.0〜12.0である色調を備えることを特徴とする銀銅複合粉。
A silver-copper composite powder containing silver and copper,
A silver coat layer is formed on the surface of the copper powder particles by a wet method, and the silver-coated copper powder is heated in a solution at a temperature of 50 ° C. to 200 ° C. for 30 minutes to 120 minutes to thermally convert silver and copper. Obtained by interdiffusion,
The silver content is 20 wt% to 55 wt%, the remaining copper and inevitable impurities,
CIE1976L * a * b * provided with a color tone of L * value = 56 to 78, a * value = −0.5 to −0.1, b * value = 10.0 to 12.0 obtained in the color system A silver-copper composite powder characterized by that.
請求項1に記載の銀銅複合粉であって、以下のA.〜C.の粉体特性を備える略球状の粉粒からなる銀銅複合粉。
A.レーザー回折散乱式粒度分布測定法による体積累積平均粒径D50が0.3μm〜6.0μm。
B.レーザー回折散乱式粒度分布測定法による体積累積最大粒径Dmaxが20.0μm以下。
C.比表面積が0.2m/g以上。
The silver-copper composite powder according to claim 1, wherein: ~ C. A silver-copper composite powder comprising substantially spherical powder particles having the following powder characteristics.
A. Cumulative volume-average particle size D 50 by laser diffraction scattering particle size distribution measuring method 0.3Myuemu~6.0Myuemu.
B. The volume cumulative maximum particle size D max by laser diffraction scattering type particle size distribution measurement method is 20.0 μm or less.
C. Specific surface area is 0.2 m 2 / g or more.
請求項1に記載の銀銅複合粉であって、以下のa.〜c.の粉体特性を備えるフレーク状の粉粒からなる銀銅複合粉。
a.レーザー回折散乱式粒度分布測定法による体積累積平均粒径D50が1.0μm〜10.0μm。
b.レーザー回折散乱式粒度分布測定法による体積累積最大粒径Dmaxが40.0μm以下。
c.粉粒のアスペクト比(厚さ/[D50])が0.02〜0.5。
The silver-copper composite powder according to claim 1, wherein the following a. ~ C. A silver-copper composite powder composed of flaky particles having the following powder characteristics.
a. Cumulative volume-average particle size D 50 by laser diffraction scattering particle size distribution measuring method 1.0Myuemu~10.0Myuemu.
b. The volume cumulative maximum particle size D max by the laser diffraction / scattering particle size distribution measurement method is 40.0 μm or less.
c. The aspect ratio (thickness / [D 50 ]) of the powder is 0.02 to 0.5.
請求項1〜請求項3のいずれかに記載の銀銅複合粉の製造方法であって、
銅粉を添加した水溶液中にキレート化剤を添加して得られた分散液に、銀含有溶液を添加して反応させ、さらに濾過して銅粉の粉粒表面に銀コート層を形成した銀コート銅粉を用い、
当該銀コート銅粉を50℃〜200℃の温度の溶液中で、30分〜120分加熱処理する湿式熱処理により銀と銅とを熱的に相互拡散させた後、濾過し、アルコール洗浄し、乾燥することを特徴とする銀銅複合粉の製造方法。
A method for producing a silver-copper composite powder according to any one of claims 1 to 3,
Silver with a silver coating layer formed on the surface of copper powder particles by adding a silver-containing solution to the dispersion obtained by adding a chelating agent to an aqueous solution containing copper powder and reacting. Using coated copper powder,
After a temperature of the solution in the silver-coated copper powder 50 ° C. to 200 DEG ° C., silver and copper thermally by interdiffusion by a wet heat treatment for heat treatment for 30 minutes to 120 minutes, filtered, washed with alcohol, A method for producing a silver-copper composite powder, which comprises drying.
分散液中の銅粉重量を100重量部としたとき、銀として20重量部〜95重量部を含有するように銀含有溶液を、前記分散液に添加するものである請求項に記載の銀銅複合粉の製造方法。 The silver according to claim 4 , wherein a silver-containing solution is added to the dispersion so as to contain 20 parts by weight to 95 parts by weight as silver when the weight of the copper powder in the dispersion is 100 parts by weight. A method for producing a copper composite powder. 上記キレート化剤がエチレンジアミンテトラ酢酸塩である請求項又は請求項に記載の銀銅複合粉の製造方法。 The method for producing a silver-copper composite powder according to claim 4 or 5 , wherein the chelating agent is ethylenediaminetetraacetate.
JP2004379826A 2004-12-28 2004-12-28 Silver-copper composite powder and method for producing silver-copper composite powder Active JP4583164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379826A JP4583164B2 (en) 2004-12-28 2004-12-28 Silver-copper composite powder and method for producing silver-copper composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379826A JP4583164B2 (en) 2004-12-28 2004-12-28 Silver-copper composite powder and method for producing silver-copper composite powder

Publications (2)

Publication Number Publication Date
JP2006183110A JP2006183110A (en) 2006-07-13
JP4583164B2 true JP4583164B2 (en) 2010-11-17

Family

ID=36736438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379826A Active JP4583164B2 (en) 2004-12-28 2004-12-28 Silver-copper composite powder and method for producing silver-copper composite powder

Country Status (1)

Country Link
JP (1) JP4583164B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617688B2 (en) 2005-05-30 2013-12-31 Sumitomo Electric Industries, Ltd. Conductive paste and multilayer printed wiring board using the same
WO2013073068A1 (en) 2011-11-16 2013-05-23 エム・テクニック株式会社 Method for producing silver-copper alloy particles
JP6002994B2 (en) 2011-11-16 2016-10-05 エム・テクニック株式会社 Solid metal alloy
WO2013090344A1 (en) 2011-12-13 2013-06-20 Ferro Corporation Electrically conductive polymeric compositons, contacts, assemblies, and methods
CN102990061B (en) * 2012-11-07 2014-11-12 宁波广博纳米新材料股份有限公司 Preparation method of tightly-combined silver-coated copper powder
JP6224933B2 (en) * 2013-07-16 2017-11-01 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
CN103949635B (en) * 2014-05-13 2016-05-11 中南大学 A kind of preparation method of flaky silver coated copper powder
CN104575684B (en) * 2015-01-08 2017-01-04 安徽凤阳德诚科技有限公司 A kind of composite conducting silver slurry containing gold copper powder
TWI668709B (en) 2017-07-25 2019-08-11 日商千住金屬工業股份有限公司 Method for synthesizing copper-silver alloy, forming method of conducting part, copper-silver alloy and conducting part
JP2019206760A (en) * 2019-07-03 2019-12-05 Dowaエレクトロニクス株式会社 Metal composite powder and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192805A (en) * 1997-09-17 1999-04-06 Sumitomo Metal Mining Co Ltd Copper alloy powder and its production
JP2001011502A (en) * 1999-06-24 2001-01-16 Dowa Mining Co Ltd Copper powder, its manufacture, and electrical conductive paste using the same
JP2003105404A (en) * 2001-09-28 2003-04-09 Mitsui Mining & Smelting Co Ltd Producing method for silver coated copper powder, silver coated copper powder obtained by the producing method, conductive paste using the silver coated copper powder and printed circuit board using the conductive paste
JP2004068111A (en) * 2002-08-08 2004-03-04 Mitsui Mining & Smelting Co Ltd Silver coated flake copper powder and method for manufacturing silver coated flake copper powder and conductive paste using silver coated flake copper powder
JP2004156062A (en) * 2002-11-01 2004-06-03 Mitsui Mining & Smelting Co Ltd Double layer-coated copper powder, method for production thereof, and conductive paste obtained by using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192805A (en) * 1997-09-17 1999-04-06 Sumitomo Metal Mining Co Ltd Copper alloy powder and its production
JP2001011502A (en) * 1999-06-24 2001-01-16 Dowa Mining Co Ltd Copper powder, its manufacture, and electrical conductive paste using the same
JP2003105404A (en) * 2001-09-28 2003-04-09 Mitsui Mining & Smelting Co Ltd Producing method for silver coated copper powder, silver coated copper powder obtained by the producing method, conductive paste using the silver coated copper powder and printed circuit board using the conductive paste
JP2004068111A (en) * 2002-08-08 2004-03-04 Mitsui Mining & Smelting Co Ltd Silver coated flake copper powder and method for manufacturing silver coated flake copper powder and conductive paste using silver coated flake copper powder
JP2004156062A (en) * 2002-11-01 2004-06-03 Mitsui Mining & Smelting Co Ltd Double layer-coated copper powder, method for production thereof, and conductive paste obtained by using the same

Also Published As

Publication number Publication date
JP2006183110A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP5080731B2 (en) Fine silver particle-attached silver-copper composite powder and method for producing the fine silver particle-attached silver-copper composite powder
Songping et al. Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI
EP2026924B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
EP2752270B1 (en) Solder powder, and solder paste using solder powder
US20070079665A1 (en) Fine particulate silver powder and production method thereof
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
CA2534107A1 (en) Fine-grain silver powder and process for producing the same
JP4583164B2 (en) Silver-copper composite powder and method for producing silver-copper composite powder
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
JP4651533B2 (en) Method for producing copper particles
US20080042111A1 (en) Copper-Containing Tin Powder, Method for Producing the Copper-Containing Tin Powder and Electro-Conductive Paste Using the Copper-Containing Tin Powder
JP5778941B2 (en) Method for producing silver-coated flake copper powder
JP4969794B2 (en) Method for producing tin powder
JP4144695B2 (en) Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
KR20210104167A (en) Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP2012152782A (en) Solder powder and method for producing the same
JP2012076086A (en) Solder powder and paste for solder using the powder
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP4451760B2 (en) Method for producing spherical NiP fine particles and method for producing conductive particles for anisotropic conductive film
JP4331538B2 (en) Copper-coated graphite powder and method for producing the same
JP2017201062A (en) Method for producing silver-coated copper alloy powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Ref document number: 4583164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140910

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250