JPH0671428B2 - ウリカーゼのdna配列および製法 - Google Patents

ウリカーゼのdna配列および製法

Info

Publication number
JPH0671428B2
JPH0671428B2 JP63203239A JP20323988A JPH0671428B2 JP H0671428 B2 JPH0671428 B2 JP H0671428B2 JP 63203239 A JP63203239 A JP 63203239A JP 20323988 A JP20323988 A JP 20323988A JP H0671428 B2 JPH0671428 B2 JP H0671428B2
Authority
JP
Japan
Prior art keywords
uricase
dna
plasmid
gene
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63203239A
Other languages
English (en)
Other versions
JPH0253488A (ja
Inventor
達朗 執行
浩二 杉原
雄治 高本
仁愛 高塩
稔 上村
和巳 山本
良夫 小嶋
俊郎 菊地
重典 愛水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sapporo Breweries Ltd
Toyobo Co Ltd
Original Assignee
Sapporo Breweries Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Breweries Ltd, Toyobo Co Ltd filed Critical Sapporo Breweries Ltd
Priority to JP63203239A priority Critical patent/JPH0671428B2/ja
Priority to GB8917690A priority patent/GB2221910B/en
Priority to DE19893927061 priority patent/DE3927061C2/de
Publication of JPH0253488A publication Critical patent/JPH0253488A/ja
Priority to US07/906,029 priority patent/US5955336A/en
Publication of JPH0671428B2 publication Critical patent/JPH0671428B2/ja
Priority to US08/469,649 priority patent/US5728562A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0044Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7)
    • C12N9/0046Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7) with oxygen as acceptor (1.7.3)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はウリカーゼのDNA配列および製法に関し、詳し
くはウリカーゼをコードする遺伝子を含有するDNA配
列,該DNA配列を有するプラスミド,該プラスミドを有
する形質転換体および該形質転換体を用いてウリカーゼ
を製造する方法に関する。
ウリカーゼ(uricase、EC 1.7.3.3)は尿酸を加水分解
してアラントインと過酸化水素および炭酸ガスを生成す
る作用を触媒する酵素であり、血中あるいは尿中の尿酸
の測定に使用される。
〔従来の技術、発明が解決しようとする課題〕
従来、ウリカーゼは、例えばキャンディダ(Candida)
属に属し、ウリカーゼ生産能を有する微生物を尿酸存在
下に培養し、培養物からウリカーゼを採取することによ
り製造されている(特公昭42−5192)。
しかしながら、この方法はウリカーゼの収率が十分でな
く、効率よくウリカーゼを製造する方法の開発が望まれ
ている。
〔課題を解決するための手段〕 本発明者らは、ウリカーゼをコードする遺伝子を含有す
るDNA配列,該DNA配列を有するプラスミド,該プラスミ
ドを有する形質転換体および該形質転換体を用いてウリ
カーゼを製造する方法について検討した。まず、本発明
者らが自然界より分離した、安定性のよいウリカーゼを
生産する好熱性微生物であるバチルス・エスピー(TB-9
0(FERMBP−795、特開昭61−280272)の有するウリカー
ゼ遺伝子をクローニングし、該遺伝子のDNA配列を決定
した。次いで、該DNA配列を有するプラスミドを得、さ
らに該プラスミドを含む形質転換体を創製し、該形質転
換体を用いるウリカーゼの製造方法について検討し、本
発明を完成するに至った。
すなわち本発明は、下記のアミノ酸配列を有するウリカ
ーゼをコードする遺伝子を含有するDNA配列,該DNA配列
を有するプラスミド,該プラスミドを有する形質転換体
および該形質転換体を用いてウリカーゼを製造する方法
に関する。
本発明のウリカーゼをコードする遺伝子は下記のアミノ
酸配列および塩基配列で特定される。
本発明のウリカーゼ遺伝子を含むプラスミドは、前記バ
チルス・エスピー TB−90株の染色体DNAから遺伝子ラ
イブラリーを作製し、抗ウサギ抗ウリカーゼ抗体を用い
て該ライブラリーをスクリーニングし、本発明のウリカ
ーゼ遺伝子を含むファージDNAより、ウリカーゼ遺伝子
を含むDNA断片を単離し、プラスミドと連結することに
より得ることができる。
よく知られているように、多くのアミノ酸についてはそ
れをコードする遺伝子DNA配列は複数存在する。その塩
基配列は一義的には決らず多数の可能性があり得る。本
発明者等により明らかにされたバチルス・エスピー TB
−90株のウリカーゼのアミノ酸配列をコードする遺伝子
の場合も、そのDNA塩基配列は、天然の遺伝子の塩基配
列以外にも多数の可能性があり、本発明のDNA配列は、
天然のDNA塩基配列のみに限定されるものではなく、本
発明により明らかにされたウリカーゼのアミノ酸配列を
コードする他のDNA配列も含むものである。
また、遺伝子組換え技術によれば、基本となるDNAの特
定の部位に、該DNAがコードするものの基本的な特性を
変化させることなく、あるいはその特性を改善するよう
に、人為的に変異を起こすことができる。本発明により
提供される、天然の塩基配列を有するDNAあるいは天然
のものとは異なる塩基配列を有するDNAに関しても、同
様に人為的に挿入,欠失,置換を行うことにより天然の
遺伝子を同等あるいは改善された特性とすることが可能
であり、本発明はそのような変異遺伝子をも含むもので
ある。
本発明のバチルス・エスピー TB−90株のウリカーゼ遺
伝子を大腸菌の適当な発現ベクター、例えば1acプロモ
ーターを保持する発現ベクターpUC18(東洋紡)、大腸
菌の強力なプロモーターであるtacプロモーターとrrnB
リボソームRNAのターミネーターを保持する発現ベクタ
ーpKK233-3(ファルマシア社)、trpプロモーターを保
持する発現ベクターpDR720(ファルマシア社)、誘導可
能な発現ベクターpPL-Lambda(ファルマシア社)等に連
結することにより大腸菌の微生物菌体内でバチルス・エ
スピー TB−90株のウリカーゼを生産させる発現ベクタ
ーを構築することができる。さらに、例えば枯草菌と大
腸菌とのシャトル・ベクターpHY300PLK(東洋紡)やプ
ラスミドベクターpUB110(J.Bacteriol.,134,318-329,1
978)等に連結することにより枯草菌の微生物菌体内及
び培養液中でバチルス・エスピー TB−90株のウリカー
ゼを生産させる組換えプラスミドを構築することができ
る。
本発明のウリカーゼ遺伝子を保持する組換えプラスミド
を大腸菌や枯草菌等の宿主微生物へ導入することにより
菌体内及び菌体外でウリカーゼを生産する形質転換体を
得ることができる。
このようにして製造された形質転換微生物を適当な培
地、条件で培養することによりウリカーゼを大量生産す
ることが可能である。この場合、例えば培養初期に誘導
剤イソプロピルチオガラクトシド等を添加することによ
りウリカーゼの生産を有利に行うことができる。
培養後のウリカーゼの単離は、例えば菌体をリゾチーム
で処理、あるいは超音波等の手段を用いて破砕したり、
または培養液より抽出・分離・精製することにより行う
ことができる。
また、大腸菌や枯草菌の宿主−ベクター系のみならず、
酵母,シュードモナス菌あるいは放線菌等の宿主−ベク
ター系も利用可能であり、各々の宿主−ベクター系の特
徴を活かしたウリカーゼの大量生産が行える。
〔実施例〕
以下に実施例を挙げ、さらに本発明を詳細に説明する。
本発明は以下の実施例のみに限定されるものではなく、
本発明の技術分野に於ける通常の変更をすることができ
る。
実施例1 ウリカーゼ遺伝子のクローニング ステップ1 抗ウサギ抗ウリカーゼ抗体の調製 バチルス・エスピー TB−90株の培養液より抽出・精製
したウリカーゼをウサギに投与し、免疫することによ
り、抗ウサギ抗ウリカーゼ抗血清を得ることができる。
この抗血清の抗体価は、ELISA法では102〜103、オクタ
ロニー法では16倍であった。次に、抗血清の精製を行
い、抗血清10mlからプロテインAセファロースカラムク
ロマトグラフィー(4ml)により、抗ウリカーゼ抗体IgG
8.9mlが得られた。
ステップ2 バチルス・エスピー TB−90株のファージ
DNAライブラリーの作製 ブイヨン培地(肉エキス 5g,ペプトン10g,NaCl5gを加
えて1Lとして作製した液体培地、pH7.2)で培養したバ
チルス・エスピー TB−90株の菌体約2.5gより、Doi R.
H.の方法(Recombinat Technigues,ed.Rodriguez et a
l.,p162,Addison-Wesley Publishing Company,1983)あ
るいはKoizumi J.らの方法(Biotech.Bioeng.,27,721-7
28,1985)に従って染色体DNAを調製した。
この結果、OD260/OD280=1.8程度のかなり純粋な染色体
DNAを約900μg調製することができた。次に制限酵素Sa
u3AIを用いて、常法により前記DNAを部分分解し、5%
〜20%ショ糖密度勾配遠心分離を行って2〜20kb画分の
DNAを調製した。
ラムダファージ・クローニングベクターEMBL3arms(東
洋紡)1μgに前記の染色体DNAのSau3AI部分分解物0.4
μgを混合し、T4DNAリガーゼ(東洋紡)1ユニットで
連結させ、ラムダDNA in vitro packaging kit(Gigapa
ck Gold、東洋紡)でパッケージングを行い、E.coli Q3
59株に感染させ、プレート当り約2000個のプラークがで
きるように撤いた。
ステップ3 プラークハイブリダイゼーションによるウ
リカーゼ遺伝子クローンの単離 上記の精製IgGに西洋ワサビパーオキシダーゼ(HRPO)
を加え、IgG-HRPOコンジュゲートを作製した。このコン
ジュゲートを用いて、Gene Expressin Kit(ベーリンガ
ー・マンハイム社)によりウリカーゼ遺伝子クローンの
単離を行った。このときの検出感度は100pgであった。
前記のファージDNAライブラリーをスクリーニングした
ところ、青みがかった緑色に発色したポジティブクロー
ンが得られ、特に発色に強いクローンを選択し、プラー
クがすべて発色するまでファージの純化を行った。その
結果、ファージ1と3を選択し、E.coli Q359株に感染
させ、その培養上清についてウリカーゼ活性を測定した
ところ、各々7mU/ml又は9mU/mlであった。
バチルス・エスピー TB−90株のウリカーゼ遺伝子の解
析 単離したポジティブファージクローン1と3のファージ
DNAを常法(Molecular Cloning,ed.Maniatis et al.,p8
5,Cold Spring Harbor Laboratory U.S.A.,1982)に従
って調製し、制限酵素BamHIとSalIを用いて切断し、0.8
%アガロースゲル電気泳動で分析したところ、ファージ
1と3ともにSalIで1断片として切り出すことができる
各々18kbと15kbのDNAが挿入されていた。さらに、制限
酵素BamHI、SphI、KpnIを用いて挿入DNAの制限酵素切断
地図を作製したところ、ファージ1は、ファージ3を含
み、両者は共通部分を有することが判った。次に、ファ
ージ1のファージDNAを制限酵素SalIで切断し、アガロ
ースゲルから18kbの挿入DNA断片を抽出し(方法はベク
ターDNA、榊佳之著、講談社、p67に従った。)、これを
プローブとするサザーン・ハイブリダイゼーション(J.
Mol.Biol.,98,503-517,1975)を行ったところ、ファー
ジ1の18kb DNA断片は、ファージ3の15kb DNA断片のみ
ならず、TB−90株の染色体DNAともハイブリダイズし
た。このことから、ウリカーゼ活性を示すファージ1と
3のDNAは共通部分を含み、バチルス・エスピー TB−9
0株の染色体DNAに由来する挿入DNA断片を有しているこ
とが判った。
次に、ファージ3のファージDNAより15kb DNA断片を前
述と同様の方法で単離し、SalIで切断したプラスミド・
ベクターpUC18に連結後、さらにサブクローニングし、
挿入DNA断片中のウリカーゼ遺伝子領域を特定し、ウリ
カーゼ遺伝子を含む4.8kb BamHI−SphI断片を持つpUOD3
1と名付けた組換えプラスミドを得た。このプラスミド
の制限酵素切断地図を図2の上部中央に示す。
続いて、各種制限酵素で切断したDNA断片をベクターpUC
18と19にサブクローニングした後、BirnboimとDolyらの
方法(Nucleic Acids Res.,,1513-1523,1979)により
DNA断片を含むプラスミドDNAを調製した。得られたDNA
を18μlのTE(10mM トリス−塩酸(pH7.4),1mM EDT
A)に懸濁後、2μlの2N NaOHを加え、室温で5分間放
置し、8μlの5M酢酸アンモニウムを加え、100μlの
冷エタノールを加え、エタノール沈澱を行った。これら
のプラスミドDNAについて、M13Sequencing Kit(東洋
紡)と[α−32P]dCTP(400Ci/mmol、アマシャム・ジ
ャパン)を用いて、塩基配列の決定を行った。
決定した塩基配列を図1に示す。バチルス・エスピー
TB−90株のウリカーゼ遺伝子は開始コドンATGから始ま
り、ストップコドンTGAで終わる999塩基のコーティング
領域をもち、図1に示すように332個のアミノ酸をコー
ドしていた。
バチルス・エスピー TB−90株のウリカーゼ遺伝子の大
腸菌内発現を目的とした発現プラスミドpUOD316とpKU1
の構築 ウリカーゼ遺伝子を含む約10μgの組換えプラスミドpU
OD31にEcoRIとHincIIを加え、30μlのMバッファー(1
0mMトリス−塩酸(pH7.5)、10mM MgCl2、1mMジチオス
レイトール、50mM NaCl)中で37℃2時間反応後、反応
液を0.1μg/mlの臭化エチジウムを含む0.8%のアガロー
スゲル電気泳動を行い、前述の方法で1.4kbのEcoRI−Hi
ncII DNA断片を単離した。
次に、1μgの発現ベクターpUC18(東洋紡)とpKK223-
3(ファルマシア社)を各々EcoRIとHincII及びEcoRIとS
maIで切断し、前述と同様の方法で各々2.7kb及び4.6kb
のDNA断片を単離した。
次に、最初に調製した1.4kb EcoRI−HincII DNA断片1
μgを発現ベクターpUC18とpKK223-3各々1μgずつに
混合し、5ユニットのT4DNAリガーゼ(東洋紡)を加
え、45μlのリガーゼ反応液(66mMトリス−塩酸(pH7.
6)、6.6mM MgCl2、10mMジチオスレイトール、1.0mM AT
P)中で16℃、6時間反応した。
その後、Hanahanの方法(J.Mol.Biol.,166,557,1983)
に従い、リガーゼ反応を行った反応液で大腸菌JM109株
(宝酒造)を形質転換した。50μg/mlのアンピシリンを
含むLブロス平板固体培地(トリプトン(ディフコ社)
10g,イーストエキストラクト(ディフコ社)5g、NaCl5
g,粉末寒天15gを1Lを蒸留水に溶解させた培地(pH7.
2))に出現したアンピシリン耐性コロニーを培養し、B
irnboimとDolyの方法によりプラスミドDNAを調製し、各
種の制限酵素で切断後、アガロースゲル電気泳動で分析
して1.4kb EcoRI-HincII DNA断片が各々の発現ベクター
に正しく挿入されていることを確認した。pUC18と連結
したものをpUOD316,pKK223-3と連結したものをpKU1と各
々名付けた。組換えプラスミドpUOD31からの発現プラス
ミドpUOD316とpKU1の構築方法を図2に示す。
大腸菌でのウリカーゼの生産 構築した各発現プラスミドpUOD316,pKU1をHanahanの方
法に従い、大腸菌JM109株へ導入し、得られた大腸菌組
換え体JM109/pUOD316とJM109/pKU1が生産するウリカー
ゼの同定・分析を以下のように行った。
各大腸菌をLブロス液体培地中で37℃、一晩培養した。
0.1mlの培養液を、10mlのLブロス液体培地に移し、37
℃で培養し、OD660の値が0.2に達した時、最終濃度1mM
のイソプロピルチオガラクトンを添加した。さらに、37
℃で培養を継続し、16時間後、培養液1.0mlを分取し、
0.5mlの抽出バッファー(50mMホウ酸バッファー(pH8.
0)、10mM EDTA・3Na、0.3%Triton X−100、0.3% リ
ゾチーム)を加え、37℃で10分間インキュベートした
後、遠心操作(12,000rpm,10分)により溶菌液の上清を
得た。この上清20μlを同量のサンプル処理液(62.5mM
トリス−塩酸(pH6.8),2%SDS,10% グリセロール,5
% 2−メルカプトエタノール,0.001%BPB)に懸濁
後、100℃で5分間熱処理し、Laemmliらの方法(Natur
e,227,680-685,1970)に従ってSDS−ポリアクリルアミ
ドゲル電気泳動にかけた。泳動後、ゲルをクーマシーブ
リリアンドブルーで染色し、脱色、乾燥後、瀘紙に固定
した。その結果、発現プラスミドを含む大腸菌JM109株
では、分子量約35Kのウリカーゼのバンドが検出され、
この蛋白バンドは抗ウリカーゼ抗体(IgG)と特異的な
交叉反応を示した。ゲル上の各蛋白バンドをデンシトメ
ーターで測定したところ、大腸菌JM109/pUOD316及びJM1
09/pKU1は、各々全菌体蛋白当り各々1%、3%のウリ
カーゼを生産した。従って、これらの大腸菌組換え体
は、効率よくバチルス・エスピーTB-株のウリカーゼを
生産していることが確認された。大腸菌JM109/pUOD316
はFERM BP−1979,大腸菌JM109/pKU1はFERM BP−1980と
してそれぞれ微工研に寄託されている。
実施例2 ウリカーゼ遺伝子の枯草菌での発現用組換えプラスミド
pEB2の構築 実施例1と同様の方法で得られた大腸菌の組換えプラス
ミドpUOD31よりウリカーゼ遺伝子を含む3.0kb BamHI−B
glII断片を単離、抽出した。次に、大腸菌・枯草菌シャ
トル・ベクターpHY300PLK(東洋紡)2μgを制限酵素B
amHIで切断し、T4 DNAリガーゼ2ユニットでウリカーゼ
遺伝子を含む3.0kb BamHI−BglI断片2μgと連結し、
大腸菌C600株をHanhanの方法で形質転換し、50μg/mlの
アンピシリンを含むLブロス平板固体培地でアンピシリ
ン耐性株を選択した。このようにした得た形質転換株の
中のウリカーゼ活性を示すC600株よりBirnboimらの方法
によりプラスミドDNAを調製し、この組換えプラスミド
をpEB2と名付けた。このプラスミドの構築方法を図3に
示す。次に、このプラスミドを用いてRodriguezらの方
法(Recombinant DNA Techniques,ed.Rodriguez et a
l.,p184-186,Addison-Wesley Pubulishing Company,198
3)に従い、コンピテントセルを作成し、枯草菌ISW1214
株(東洋紡)を形質転換した。次に、15μg/mlのテトラ
サイクリンと0.2%のグルコースを含むLブロス平板固
体培地にまき、37℃で一晩培養した。その結果、テトラ
サイクリン耐性株を選択することにより、組換えプラス
ミドpEB2で形質転換された枯草菌を得ることができた。
この形質転換体を15μg/mlのテトラサイクリンと0.2%
のグルコースを含むLブロス液体培地中で37℃で一晩培
養した後、前述のRodriguezらの方法(Recombinant DNA
Techniques,ed.Rodrigues et al.,p164-165,Addison-W
esley Publishing Company,1983)に従ってプラスミド
を単離・抽出した。この形質転換体のプラスミドを各種
の制限酵素で切断して、アガロースゲル電気泳動にかけ
ることによって、このプラスミドはベクターpHY300PLK
にウリカーゼ遺伝子を含む3.0kbのBamHI-BglII断片が挿
入された組換えプラスミドpEB2を保持していることが確
認された。
枯草菌でのウリカーゼの生産 ウリカーゼ遺伝子を含む組換えプラスミドpEB2を枯草菌
ISW1214株へ導入して得られた枯草菌組換え体ISW1214/p
EB2(FERM BP−1981)が生産するウリカーゼの同定・分
析を以下のように行った。
枯草菌組換え体を15μg/mlのテトラサイクリンと0.2%
のグルコースを含むLブロス液体培地中で37℃、一晩培
養した。培養後、培養液1.0mlを分取し、8,000rpmで5
分間遠心にかけ、培養上清と菌体に分けた。菌体は前述
の1.0mlの抽出バッファーに懸濁し、37℃で10分間イン
キュベートした後、遠心操作(12,000rpm,10分)により
溶菌液の上清を得た。次に、培養上清と菌体の溶菌液の
上清との各々20μlを同量の前述のサンプル処理液に懸
濁後、100℃で5分間熱処理し、Laemmliらの方法に従っ
てSDS−ポリアクリルアミドゲル電気泳動を行った。泳
動後、ゲルをクーマシーブリリアントブルーで染色し、
脱色、乾燥後、瀘紙に固定した。その結果、組換えプラ
スミドpEB2を含む枯草菌ISW1214株では、培養上清及び
菌体の溶菌液の上清のいずれの場合でも、分子量約35K
のウリカーゼのバンドが検出され、この蛋白バンドは抗
ウリカーゼ抗体(IgG)と特異的な交叉反応を示した。
ゲル上の各蛋白バンドをデンシトメーターで測定したと
ころ、枯草菌ISW1214/pEB2は、菌体内に全菌体蛋白当り
0.6%のウリカーゼを生産した。また、培養上清、つま
り菌体外には、菌体内の40%に当たる量のウリカーゼが
生産されていた。従って、枯草菌組換え体ISW1214/pEB2
は、菌体内及び菌体外にウリカーゼを生産することが判
った。
〔発明の効果〕
以上詳述したように、本発明によりウリカーゼをコード
するDNA配列及びプラスミドを得ることができて、遺伝
子工学的にウリカーゼの生産等が可能になった。例え
ば、従来のウリカーゼに比較して安定性のよいウリカー
ゼをコードするDNA配列、かかるDNA配列を有するプラス
ミド、かかるプラスミドを含む形質転換体の利用による
遺伝子工学的ウリカーゼの生産が可能になったものであ
り、産業の発達に寄与するものである。
【図面の簡単な説明】
図1(その1,その2)は、バチルス・エスピー TB−90
株のウリカーゼをコードする遺伝子のDNA配列及び対応
するアミノ酸配列を示す図面である。 図2は、バチルス・エスピー TB−90株のウリカーゼを
コードするDNA配列を有する大腸菌の組換えプラスミドp
UOD31からの発現プラスミドpUOD316及びpKU1の構築方法
を示す図面である。黒色及び白色のボックスは、各々ウ
リカーゼ遺伝子を含むDNA断片及びlacまたはtacプロモ
ーター部分を示している。ligationとは、T4DNAリガー
ゼによるDNA断片の連結反応を示す。 図3は、バチルス・エスピー TB−90株のウリカーゼを
コードするDNA配列を有する枯草菌の組換えプラスミドp
EB2の構築方法を示す図面である。黒色及び白色のボッ
クスとligationは、図2と同様のものを示す。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:07) (C12N 1/21 C12R 1:19) (C12N 9/06 A C12R 1:19) (72)発明者 高本 雄治 静岡県焼津市岡当目10番地 サッポロビー ル株式会社応用開発研究所内 (72)発明者 高塩 仁愛 静岡県焼津市岡当目10番地 サッポロビー ル株式会社応用開発研究所内 (72)発明者 上村 稔 静岡県焼津市岡当目10番地 サッポロビー ル株式会社応用開発研究所内 (72)発明者 山本 和巳 福井県敦賀市東洋町10番24号 東洋紡績株 式会社敦賀酵素工場内 (72)発明者 小嶋 良夫 福井県敦賀市東洋町10番24号 東洋紡績株 式会社敦賀酵素工場内 (72)発明者 菊地 俊郎 福井県敦賀市東洋町10番24号 東洋紡績株 式会社敦賀酵素工場内 (72)発明者 愛水 重典 福井県敦賀市東洋町10番24号 東洋紡績株 式会社敦賀酵素工場内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】下記のアミノ酸配列を有するウリカーゼを
    コードする遺伝子を含有するDNA配列。
  2. 【請求項2】下記のアミノ酸配列を有するウリカーゼを
    コードする遺伝子を含有するDNA配列を有するプラスミ
    ド。
  3. 【請求項3】下記のアミノ酸配列を有するウリカーゼを
    コードする遺伝子を含有するDNA配列を有するプラスミ
    ドを含む形質転換体。
  4. 【請求項4】下記のアミノ酸配列を有するウリカーゼを
    コードする遺伝子を含有するDNA配列を有するプラスミ
    ドを含む形質転換体を培地に培養してウリカーゼを蓄積
    せしめ、該ウリカーゼを採取することを特徴とするウリ
    カーゼの製造法。
JP63203239A 1988-08-17 1988-08-17 ウリカーゼのdna配列および製法 Expired - Fee Related JPH0671428B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63203239A JPH0671428B2 (ja) 1988-08-17 1988-08-17 ウリカーゼのdna配列および製法
GB8917690A GB2221910B (en) 1988-08-17 1989-08-02 A uricase gene and production of uricase
DE19893927061 DE3927061C2 (de) 1988-08-17 1989-08-16 Uricase-codierende DNA-Sequenzen und Verfahren zur Herstellung von Uricase
US07/906,029 US5955336A (en) 1988-08-17 1992-06-26 DNA sequence for uricase and manufacturing process of uricase
US08/469,649 US5728562A (en) 1988-08-17 1995-06-06 Isolated recombinant uricase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63203239A JPH0671428B2 (ja) 1988-08-17 1988-08-17 ウリカーゼのdna配列および製法

Publications (2)

Publication Number Publication Date
JPH0253488A JPH0253488A (ja) 1990-02-22
JPH0671428B2 true JPH0671428B2 (ja) 1994-09-14

Family

ID=16470745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63203239A Expired - Fee Related JPH0671428B2 (ja) 1988-08-17 1988-08-17 ウリカーゼのdna配列および製法

Country Status (3)

Country Link
JP (1) JPH0671428B2 (ja)
DE (1) DE3927061C2 (ja)
GB (1) GB2221910B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656530B1 (fr) * 1989-12-29 1994-09-23 Sanofi Sa Gene recombinant pour une expression dans les cellules eucaryotes d'une proteine telle que l'urate oxydase.
NZ234453A (en) * 1989-07-13 1993-01-27 Sanofi Sa Recombinant dna encoding urate oxidase, and vector, host, protein and pharmaceutical compositions associated therewith
GB2249099B (en) * 1990-09-26 1995-05-03 Squibb & Sons Inc Squalene synthetase
GB9108354D0 (en) * 1991-04-18 1991-06-05 Solicitor For The Affairs Of H Nucleotide probes
JP2971218B2 (ja) * 1991-12-04 1999-11-02 協和醗酵工業株式会社 ウリカーゼ遺伝子およびウリカーゼの製造法
JP4890132B2 (ja) * 2006-07-20 2012-03-07 東洋紡績株式会社 ウリカーゼの比活性を向上させる方法、および比活性の向上した改変型ウリカーゼ
JP4890134B2 (ja) * 2006-07-20 2012-03-07 東洋紡績株式会社 ウリカーゼの安定性を向上させる方法、および安定性の向上した改変型ウリカーゼ
JP4890133B2 (ja) * 2006-07-20 2012-03-07 東洋紡績株式会社 安定な尿酸測定試薬

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671425B2 (ja) * 1985-06-05 1994-09-14 サッポロビール株式会社 ウリカ−ゼおよびその製造法
WO1988008450A1 (en) * 1987-05-01 1988-11-03 Birdwell Finlayson Gene therapy for metabolite disorders

Also Published As

Publication number Publication date
GB2221910B (en) 1992-11-04
DE3927061C2 (de) 1993-12-02
GB8917690D0 (en) 1989-09-20
GB2221910A (en) 1990-02-21
DE3927061A1 (de) 1990-03-08
JPH0253488A (ja) 1990-02-22

Similar Documents

Publication Publication Date Title
Cornet et al. Characterization of two cel (cellulose degradation) genes of Clostridium thermocellum coding for endoglucanases
EP0454478B1 (en) Cephalosporin acetylhydrolase gene and protein encoded by said gene
RU2023723C1 (ru) Способ получения сериновой протеазы, штамм щелочефильных bacillus-продуцент сериновой протеазы
Shevchik et al. Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family
Geber et al. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization
JPH0543348B2 (ja)
HU205386B (en) Process for expressing cloned lysostaphin gene and for producing dna fragment containing the gene, expression vector and transformed host cell
EP0579360A2 (en) Hyperthermophiles alpha-amylase gene
JPH0671428B2 (ja) ウリカーゼのdna配列および製法
JPH1084978A (ja) 改良されたリボフラビン生産
EP0228009A2 (en) DNA strand coding for alpha-acetolactate decarboxylase and yeast transformed with the DNA strand
JP3380133B2 (ja) 新規なニトリルヒドラターゼ
US5955336A (en) DNA sequence for uricase and manufacturing process of uricase
US5290916A (en) Purified glucanase enzymes
KR100786514B1 (ko) 유산균 내에서 복제가 가능한 대장균-락토바실러스 셔틀벡터 및 그 응용
US4745062A (en) Plasmid vectors for cloning and expression of a protein in a microorganism, comprising at least one promoter for expression of β-glucosidase in yeasts; microorganisms containing these plasmids; a fermentation process and the enzymes obtained
US5229286A (en) Cloning and overexpression of glucose-6-phosphate dehydrogenase from leuconostoc dextranicus
JP3426633B2 (ja) ビールの製造法
Cho et al. Catabolite repression of the xylanase gene (xynA) expression in Bacillus stearothermophilus no. 236 and B. subtilis
US5728562A (en) Isolated recombinant uricase
US5457037A (en) Cloning of the gene coding the isoamylase enzyme and its use in the production of said enzyme
WO2000063354A1 (fr) Nouveau gene amidase
CN108342400A (zh) 重组表达草酸氧化酶的基因工程菌及其构建方法和应用
EP0261009B1 (fr) Sequence d'ADN exercant une fonction se manifestant par une surproduction de protéines exocellulaires par diverses souches de bacillus, et vecteurs contenant cette séquence
JPH07143880A (ja) 超耐熱性α−アミラーゼ遺伝子

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees