JPH0651908B2 - 薄膜多層構造の形成方法 - Google Patents

薄膜多層構造の形成方法

Info

Publication number
JPH0651908B2
JPH0651908B2 JP60298044A JP29804485A JPH0651908B2 JP H0651908 B2 JPH0651908 B2 JP H0651908B2 JP 60298044 A JP60298044 A JP 60298044A JP 29804485 A JP29804485 A JP 29804485A JP H0651908 B2 JPH0651908 B2 JP H0651908B2
Authority
JP
Japan
Prior art keywords
film
gas
forming
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60298044A
Other languages
English (en)
Other versions
JPS62158873A (ja
Inventor
博和 大利
純一 半那
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60298044A priority Critical patent/JPH0651908B2/ja
Priority to US06/946,085 priority patent/US4766091A/en
Priority to EP86310163A priority patent/EP0228295B1/en
Priority to DE8686310163T priority patent/DE3686568T2/de
Priority to CA000526326A priority patent/CA1256593A/en
Publication of JPS62158873A publication Critical patent/JPS62158873A/ja
Publication of JPH0651908B2 publication Critical patent/JPH0651908B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/909Controlled atmosphere

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、たとえば薄膜半導体素子、光起電力素子、電
子写真用の感光デバイス等の薄膜多層構造の形成方法に
関する。
〔従来の技術〕
従来、機能性膜、殊に非晶質乃至多結晶質の半導体膜
は、所望される物理的特性や用途等の観点から個々に適
した成膜方法が採用されている。
例えば、必要に応じて、水素原子(H)やハロゲン原子
(X)等の補償剤で不対電子が補償された非晶質や多結
晶質の非単結晶シリコン(以後「NON−Si(H,
X)」と略記し、その中でも殊に非晶質シリコンを示す
場合には「A−Si(H,X)」、多結晶質シリコンを
示す場合には「poly−Si(H,X)」と記す)膜等の
シリコン系堆積膜(尚、俗に言う微結晶シリコンはA−
Si(H,X)の範疇にはいることは断るまでもない)
の形成には、真空蒸着法、プラズマCVD法、熱CVD
法、反応スパッタリング法、イオンプレーティング法、
光CVD法などが試みられており、一般的には、プラズ
マCVD法が広く用いられ、企業化されている。
〔発明が解決しようとする問題点〕
而乍ら、従来から一般化されているプラズマCVD法に
よるシリコン系堆積膜の形成に於ての反応プロセスは、
従来のCVD法に比較してかなり複雑であり、その反応
機構も不明な点が少なくない。又、その堆積膜の形成パ
ラメータも多く(例えば、基体温度、導入ガスの流量と
比、形成時の圧力、高周波電力、電極構造、反応容器の
構造、排気の速度、プラズマ発生方式など)これらの多
くのパラメータの組み合せによるため、時にはプラズマ
が不安定な状態になり、形成された堆積膜に著しい悪影
響を与えることが少なくなかった。そのうえ、装置特有
のパラメータを装置ごとに選定しなければならず、した
がって製造条件を一般化することがむずかしいというの
が実状であった。
他方、シリコン系堆積膜として電気的、光学的特性を各
用途毎に十分に満足させ得るものを発現させるために
は、現状ではプラズマCVD法によって形成することが
最良とされている。
而乍ら、シリコン系堆積膜の応用用途によっては、大面
積化、膜厚均一性、膜品質の均一性を十分満足させて再
現性のある量産化を図らねばならないため、プラズマC
VD法によるシリコン系堆積膜の形成においては、量産
装置に多大な設備投資が必要となり、またその量産の為
の管理項目も複雑になり、管理許容幅も狭く、装置の調
整も微妙であることから、これらのことが、今後改善す
べき問題点として指摘されている。
又、プラズマCVD法の場合には、成膜される基体の配
されている成膜空間に於いて高周波或いはマイクロ波等
によって直接プラズマを発生している為に、発生する電
子や多数のイオン種が成膜過程に於いて膜にダメージを
与え膜品質の低下、膜品質の不均一化の要因となってい
る。
特に、多層構造を有する半導体素子の場合、各層間の界
面状態が素子の特性に大きく影響することが知られてい
る。そこで、たとえば電子写真用感光体を作製する場合
には、基体上に光反射防止層、電荷注入阻止層、感光
層、表面保護層および光吸収増加層を堆積する際、原料
ガス種、流量、プラズマ放電強度等が各層ごとに大きく
異なるために、放電を止めて完全なガス交換を行った
り、ガス種、流量、プラズマ放電強度を徐々に変化させ
て変化層を設けたり、又は各堆積層を別々の堆積室で形
成したりすることで、各堆積層間の界面状態を良好にし
て素子特性の向上が図られている。しかしながら、これ
らいずれの方法によっても、素子特性の満足のゆく変化
向上は認められなかった。
上述の如く、シリコン系堆積膜の形成に於ては、解決さ
れるべき点は、まだまだ残っており、その実用可能な特
性、均一性を維持させながら低コストな装置で省エネル
ギー化を計って量産化できる形成方法の開発が切望され
ている。
殊に、薄膜トランジスタ、光起電力素子、電子写真用感
光体等の薄膜多層構造の界面状態を向上させる形成方法
および界面状態が良好で素子等の特性を向上させる薄膜
多層構造の開発が切望されている。
〔問題点を解決するための手段〕
本発明による薄膜多層構造の形成方法は、禁制帯幅制御
された半導体薄膜を有する薄膜多層構造の形成方法にお
いて、前記半導体薄膜の少なくとも一層を光CVD法に
よって形成し、その他の薄膜の少なくとも一層を堆積膜
形成用の気体状原料物質と、該原料物質に酸化作用をす
る性質を有する気体状ハロゲン系酸化材と、を反応空間
内に導入して接触させることで励起状態の前駆体を含む
複数の前駆体を化学的に生成し、これらの前駆体の内少
なくとも1つの前駆体を堆積膜構成要素の供給源として
形成することを特徴とする。
〔作用説明等〕
上記本発明による薄膜多層構造の形成方法によれば、界
面特性の良い多層構造が得られ、また各堆積層の形成
が、省エネルギー化と同時に、膜厚均一性、膜品質の均
一性を十分満足させて管理の簡素化と量産化を図り、量
産装置に多大な設備投資も必要とせず、またその量産の
為の管理項目も明確になり、管理許容幅の広く、装置の
調整も簡単となる。
上記気体状原料物質は、気体状ハロゲン系酸化剤との接
触により酸化作用をうけるものであり、目的とする堆積
膜の種類、特性、用途等によって所望に従って適宜選択
される。本発明に於いては、上記の気体状原料物質及び
気体状ハロゲン系酸化剤は、堆積室内に導入されて接触
をする際に気体状とされるものであれば良く、通常の場
合は、気体でも液体でも固体であっても差支えない。
堆積膜形成用の原料物質あるいはハロゲン系酸化剤が液
体又は固体である場合には、Ar,He,N,H
のキャリアーガスを使用し、必要に応じては熱も加えな
がらバブリングを行なって反応空間に堆積膜形成用の原
料物質及びハロゲン系酸化剤を気体状として導入する。
この際、上記気体状原料物質及び気体状ハロゲン系酸化
剤の分圧及び混合比は、キャリアーガスの流量あるいは
堆積膜形成用の原料物質及び気体状ハロゲン系酸化剤の
蒸気圧を調節することにより設定される。
本発明に於いて使用される堆積膜形成用の原理物質とし
ては、例えば、半導体性或いは電気的絶縁性のシリコン
堆積膜やゲルマニウム堆積膜等のテトラヘドラル系の堆
積膜を得るのであれば、直鎖状、及び分岐状の鎖状シラ
ン化合物、環状シラン化合物、鎖状ゲルマニウム化合物
等が有効なものとして挙げることが出来る。
具体的には、直鎖状シラン化合物としては Si2n+2(n=1,2,3,4,5,6,7,
8)、分岐状鎖状シラン化合物としては、 SiHSiH(SiH)SiHSiH、環状シ
ラン化合物としてはSi2n(n=3,4,5,6)
等が挙げられる。
勿論、これらの原料物質は1種のみならず2種以上混合
して使用することもでき、また光CVD法によって堆積
膜を形成する場合の原料ガスとして利用できる。
本発明に於いて使用されるハロゲン系酸化剤は、反応空
間内に導入される際気体状とされ、同時に反応空間内に
導入される堆積膜形成用の気体状原料物質に接触するだ
けで効果的に酸化作用をする性質を有するもので、
,Cl,Br,I等のハロゲンガス、発生期
状態の弗素、塩素、臭素等が有効なものとして挙げるこ
とができる。
これ等のハロゲン系酸化剤は気体状で、前記の堆積膜形
成用の原料物質の気体と共に所望の流量と供給圧を与え
られて反応空間内に導入されて前記原料物質と混合衝突
することで化学的接触をし、前記原料物質に酸化作用を
して励起状態の前駆体を含む複数種の前駆体を効率的に
生成する。生成される励起状態の前駆体及び多の前駆体
は、少なくともそのいずれか1つが形成される堆積膜の
構成要素の供給源として働く。
生成される前駆体は分解して又は反応して別の励起状態
の前駆体又は別の励起状態にある前駆体になって、或い
は必要に応じてエネルギーを放出はするがそのままの形
態で成膜空間に配設された基体表面に触れることで、基
体表面温度が比較的低い場合には三次元ネットワーク構
造の堆積膜が、基体表面温度が高い場合には結晶質の堆
積膜が形成される。
本発明に於いては、堆積膜形成プロセスが円滑に進行
し、高品質で所望の物理特性を有する膜が形成される可
く、成膜印紙としての、原料物質及びハロゲン系酸化剤
の種類と組み合せ、これ等の混合比、混合時の圧力、流
量、成膜空間内圧、ガスの流型、成膜温度(基体温度及
び雰囲気温度)が所望に応じて適宜選択される。これ等
の成膜因子は有機的に関連し、単独で決定されるもので
はなく相互関連の下に夫々に応じて決定される。本発明
に於いて、反応空間に導入される堆積膜形成用の気体状
原料物質と気体状ハロゲン系酸化剤との量の割合は、上
記成膜因子の中関連する成膜因子との関係に於いて、適
宜所望に従って決められるが、導入流量比で、好ましく
は、1/20〜100/1が適当であり、より好ましく
は1/5〜50/1とされるのが望ましい。
反応空間に導入される際の混合時の圧力としては前記気
体状原料物質と前記気体状ハロゲン系酸化剤との接触を
確率的により高める為には、より高い方が良いが、反応
性を考慮して適宜所望に応じて最適値を決定するのが良
い。前記混合時の圧力としては、上記の様にして決めら
れるが、夫々の導入時の圧力として、好ましくは1×1
-7気圧〜5気圧、より好ましくは1×10-6気圧〜2
気圧とされるのが望ましい。
成膜空間内の圧力、即ち、その表面に成膜される基体が
配設されている空間内の圧力は、反応空間に於いて生成
される励起状態の前駆体(E)及び場合によって該前駆
体(E)より派生的に生ずる前駆体(D)が成膜に効果
的に寄与する様に適宜所望に応じて設定される。
成膜空間の内圧力は、成膜空間が反応空間と開放的に連
続している場合には、堆積膜形成用の基体状原料物質と
気体状ハロゲン系酸化剤との反応空間での導入圧及び流
量との関連に於いて、例えば差動排気或いは、大型の排
気装置の使用等の工夫を加えて調整することが出来る。
或いは、反応空間と成膜空間の連結部のコンダクタンス
が小さい場合には、成膜空間に適当な排気装置を設け、
該装置の排気量を制御することで成膜空間の圧力を調整
することが出来る。
又、反応空間と成膜空間が一体的になっていて、反応位
置と成膜位置が空間的に異なるだけの場合には、前述の
様に差動排気するか或いは、排気能力の充分ある大型の
排気装置を設けてやれば良い。
上記のようにして成膜空間内の圧力は、反応空間に導入
される気体状原料物質と気体状ハロゲン酸化剤の導入圧
力との関係に於いて決められるが、好ましくは0.001Tor
r〜100Torr、より好ましくは0.01Torr〜30Torr、
最適には0.05〜10Torrとされるのが望ましい。
ガスの流型に就いては、反応空間への前記堆積膜形成用
の原料物質及びハロゲン系酸化剤の導入の際にこれ等が
均一に効率良く混合され、前記前駆体(E)が効率的に
生成され且つ成膜が支障なく適切になされる様に、ガス
導入口と基体とガス排気口との幾何学的配置を考慮して
設計される必要がある。この幾何学的な配置の好適な例
の1つが、後述するように、第1図に示される。
成膜時の基体温度(Ts)としては、使用されるガス種
及び形成される堆積膜の種類と要求される特性に応じ
て、個々に適宜所望に従って設定されるが、非晶質の膜
を得る場合には好ましくは室温から450℃、より好ま
しくは50〜400℃とされるのが望ましい。殊に半導
体性や光導電性の特性がより良好なシリコン堆積膜を形
成する場合には、基体温度(Ts)は70〜350℃と
されるのが望ましい。また、多結晶の膜を得る場合に
は、好ましくは200〜700℃、より好ましくは30
0〜600℃とされるのが望ましい。
成膜空間の雰囲気温度(Tat)としては、生成される
前記前駆体(E)及び前記前駆体(D)が成膜に不適当
な化学種に変化せず、且つ効率良く前記前駆体(E)が
生成される様に基体温度(Ts)との関連で適宜所望に
応じて決められる。
第5図は、光CVD法によって禁制帯幅制御された堆積
膜を形成する装置の模式的構成図である。
同図において、501は成膜空間としての成膜室であ
り、内部に基体支持台502を有し、その上に所望の基
体503が載置される。
504は基体加熱用のヒーターであり、導線505を介
して給電し、発熱せしめる。
506乃至509はガス供給源であり、ケイ素含有化合
物、水素、ハロゲン化合物、不活性ガス、禁制帯幅調整
剤となる不純物元素を成分とする化合物ガスの種類に応
じて設ける。これ等の原料化合物のうち標準状態に於い
て液状のものを使用する場合には、適宜の気化装置を具
備せしめる。図中ガス供給源506乃至509の符号に
aを付したのは分岐管、bを付したのは流量計、cを付
したのは各流量計の高圧側の圧力を計測する圧力計、d
又はeを付したのは各気体流量を調整するためのバルブ
である。原料化合物のガスは導入管510を介して成膜
室501内に導入される。
512は光エネルギ発生装置であって、そこからの光エ
ネルギは矢印514向きに流れている原料ガスに作用し
て、作用された化合物を励起、分解せしめ、分解した化
合物が化学反応することによって、基体503に禁制帯
幅が制御された堆積膜を形成するものである。515は
排気バルブ、516は排気管であり、成膜空間内を真空
排気するため排気装置(図示せず)に接続されている。
また、本発明の方法に用いる高エネルギー光としては、
例えば、低圧水銀ランプ、キセノンランプ、炭酸ガスレ
ーザー、アルゴンイオンレーザー、エキシマレーザー等
を発生源として発生せしめたものが使用できる。なお、
本発明で用いる光エネルギーは、紫外線エネルギーに限
定されず、原料ガスを励起・分解又は重合せしめ、分解
生成物を堆積させることができるものであれば、波長域
を問うものではない。また、光エネルギーが原料ガス、
または基体に吸収されて熱エネルギーに変換し、その熱
エネルギーによって、原料ガスの励起・分解又は重合が
もたらされて堆積膜が形成される場合を排除するもので
もない。
このような装置を用いて、たとえば禁制帯幅の制御され
た堆積膜を形成する場合、適当な基体503を支持台5
02上に載置し、排気装置(図示せず)を用いて排気管
を介して成膜管501内を排気し、減圧する。
次いで、必要に応じて基体を加熱し、ガス供給用ボンベ
よりSiH,H等の原料ガスおよび禁制帯幅調整剤
であるO.GeH,CH等の原料ガスをガス導入
管510を介して成膜室501内に導入し、成膜室内の
圧力を所定圧力に保ちつつ、光エネルギ発生装置により
成膜室501内に光513を照射し、基体503上に禁
制帯幅が制御された堆積膜を形成する。
本発明において使用される禁制帯幅調整剤のうち禁制帯
幅拡大元素を含む化合物としては炭素含有化合物、酸素
含有化合物、窒素含有化合物等を挙げることができる。
具体的には、炭素含有化合物としては、CH,C
,C,C10等の一般式C2n+1(nは自
然数)で表わされる化合物、C,C,C
…等の一般式C2n(nは自然数)で表わされる
化合物、C,C等の化合物を挙げることが
できる。酸素含有化合物としては、O,CO,N
O,NO,NO,O,CO,HO,CH
H,CHCHOH等の化合物を挙げることができ
る。
窒素含有化合物としては、N,NH,N
,N,NH等を挙げることができ
る。
また、禁制帯幅縮小元素を含む化合物としては、例えば
鎖状ゲルマニウム化合物、スズ化合物等が有効なものと
して挙げられる。
具体的には、鎖状ゲルマニウム化合物としては、Ge
2m+2(m=1,2,3,4,5)等を、またスズ化合
物としては、例えばSnH等の水素化スズを挙げるこ
とができる。
なお、禁制帯幅の制御された堆積膜の形成方法と、禁制
帯幅の制御がされない堆積膜の形成方法とは、異なるも
のであるが、双方の堆積膜形成手段を同一の堆積膜形成
装置内に配設してもよい。ただし、いずれか一方の形成
手段を用いる時は他方の形成手段は中止させておく必要
がある。また、上記双方の堆積膜形成手段をゲートバル
ブ等を介して連結させ、連続的に双方の堆積膜を形成す
ることもできる。
また、価電子制御された堆積膜を形成する場合の価電子
制御剤としては、シリコン系半導体膜及びゲルマニウム
系半導体膜の場合には、p型の価電子制御剤、所謂p型
不純物として働く周期率表第III族Aの元素、例えば
B,Al,Ga,In,Tl等を含む化合物、及びn型
の価電子制御剤、所謂n型不純物として働く周期率表第
V族Aの元素、例えばN,P,As,Sb,Bi等を含
む化合物を挙げることが出来る。
具体的には、NH,HN,N,N
,NH,PH,P,AsH,S
bH,BiH,B,B10,B,B
11,B10,B12,Al(CH3),Al(C
2H5),Ga(CH3),In(CH3)等を有効なものとし
て挙げることができる。
なお、これら価電子制御剤は、多量に添加することで禁
制帯幅調整剤として用いることもできる。
本発明に於いて使用される基体としては、形成される堆
積膜の用途に応じて適宜所望に応じて選択されるもので
あれば導電性でも電気絶縁性であっても良い。導電性基
体としては、例えば、NiCr,ステンレス,Al,C
r,Mo,Au,Ir,Nb,Ta,V,Ti,Pt,
Pd等の金属又はこれ等の合金が挙げられる。
電気絶縁性基体としては、ポリエステル、ポリエチレ
ン、ポリカーボネート、セルローズアセテート、ポリプ
ロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
スチレン、ポリアミド等の合成樹脂のフィルム又はシー
ト、ガラス、セラミック等が通常使用される。これらの
電気絶縁性基体は、好適には少なくともその一方の表面
が導電処理され、該導電処理された表面側に他の層が設
けられるのが望ましい。
例えばガラスであれば、その表面がNiCr,Al,C
r,Mo,Au,Ir,Nb,Ta,V,Ti,Pt,
Pd,In,SnO,ITO(In2O3+SnO2)等
の薄膜を設ける事によって導電処理され、或いはポリエ
ステルフィルム等の合成樹脂フィルムであれば、NiC
r,Al,Ag,Pb,Zn,Ni,Au,Cr,M
o,Ir,Nb,Ta,V,Ti,Pt等の金属で真空
蒸着、電子ビーム蒸着、スパッタリング等で処理し、又
は前記金属でラミネート処理して、その表面が導電処理
される。支持体の形状としては、円筒状、ベルト状、板
状等、任意の形状とし得、所望によって、その形状が決
定される。
基体は、基体と膜との密着性及び反応性を考慮して上記
の中より選ぶのが好ましい。更に両者の熱膨張の差が大
きいと膜中に多量の歪が生じ、良品室の膜が得られない
場合があるので、両者の熱膨張の差が近接している基体
を選択して使用するのが好ましい。
又、基体の表面状態は、膜の構造(配向)や鎖状組織の
発生に直接関係するので、所望の特性が得られる様な膜
構造と膜組織となる様に基体の表面を処理するのが望ま
しい。
〔実施例〕
以下、本発明の実施例を図面に基づいて詳細に説明す
る。
まず、第1図は、本発明による薄膜多層構造の形成方法
を実施するための堆積膜形成装置の模式的構成図であ
る。
同図に示す装置は、装置本体、排気系およびガス供給系
の3つに大別される。
装置本体には、ガス導入用の配管および光エネルギ発生
装置が設けられている。
101〜108は夫々、成膜する際に使用されるガスが
充填されているボンベ、101a〜108aは夫々ガス
供給パイプ、101b〜108bは夫々各ボンベからの
ガスの流量調整用のマスフローコントローラー、101
c〜108cはそれぞれガス圧力計、101d〜108
d及び101e〜108eは夫々バルブ、101f〜1
08fは夫々対応するガスボンベ内の圧力を示す圧力計
である。
120は真空チャンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成れる構造
を有し、且つ該配管のガス排出口に対向して、基体11
8が設置される様に基体ホールダー112が設けられた
成膜空間が形成される構造を有する。ガス導入用の配管
は、三重同心円配置構造となっており、中よりガスボン
ベ101,102よりのガスが導入される第1のガス導
入管109、ガスボンベ103〜105よりのガスが導
入される第2のガス導入管110、及びガスボンベ10
6〜108よりのガスが導入される第3のガス導入管1
11を有する。
各ガス導入管の反応空間へのガス排出には、その位置が
内側の管になる程基体の表面位置より遠い位置に配置さ
れる設計とされている。即ち、外側の管になる程その内
側にある管を包囲する様に夫々のガス導入管が配設され
ている。
各導入管への管ボンベからのガスの供給は、ガス供給パ
イプライン123〜125によって夫々なされる。
各ガス導入管、各ガス供給パイプライン及び真空チャン
バー120は、メイン真空バルブ119を介して不図示
の真空排気装置により真空排気される。
基体118は基体ホルダー112を上下に移動させるこ
とによって各ガス導入管の位置より適宜所望の距離に設
置される。
本発明の場合、この基体とガス導入管のガス排出口の距
離は、形成される堆積膜の種類及びその所望される特
性、ガス流量、真空チャンバーの内圧等を考慮して適切
な状態になる様に決められるが、好ましくは、数mm〜2
0cm、より好ましくは、5mm〜15cm程度とされるのが
望ましい。
113は、基体118を成膜時に適当な温度に加熱した
り、或いは、成膜前に基体118を予備加熱したり、更
には、成膜後、膜をアニールする為に加熱する基体加熱
ヒータである。
基体加熱ヒータ113は、導線114により電源115
により電力が供給される。
116は、基体温度(Ts)の温度を測定する為の熱電
対で温度表示装置117に電気的に接続されている。
126aおよび126bは、真空チャンバー120内に
光エネルギを供給するための光エネルギ発生装置。12
7aおよび127bは、真空チャンバー120内に光エ
ネルギを照射するための窓である。
このような堆積膜形成装置を用い、本発明による薄膜多
層構造を有する太陽電池、電子写真用感光デバイス、お
よび薄膜トランジスタ(以下、TFTとする。)の製造
方法を具体的に説明する。
(実施例1) 第2図は、本発明による薄膜多層構造の第一実施例であ
る太陽電池の概略的構成図である。
同図において、ガラス基板200上には透明電極(図示
されていない。)、p型非晶質シリコンカーバイド層2
01(第1層、厚さ300Å)、i型非晶質シリコン層
202(第2層、厚1μm)、n型非晶質シリコン層2
03(第3層、厚さ200Å)、そしてAl電極204
が積層形成されている。
p型非晶質シリコンカーバイド層201の堆積あたって
は、ボンベ101のSiH4ガスを流量20SCCMでガス導入
管109より、ボンベ103のB/Heガス(B
濃度1000ppm)を流量3SCCMおよびボンベ105
のCHガスを流量100SCCMでガス導入管110よ
り、ボンベ107のHeガスを流量20SCCMでガス導入
管より、それぞれ真空チャンバー120内に導入し、低
圧水銀ランプ126aおよび126bから15mw/cm2
光を照射する。これによって炭素により禁制帯幅が拡大
したp型非晶質シリコンカーバイド層201を形成し
た。このために、窓効果が向上し、光電変換効率が向上
する。
i型非晶質シリコン層202およびn型非晶質シリコン
層203は、堆積膜形成用の気体状原料物質と、該原料
物質に酸化作用をする性質を有する気体状ハロゲン系酸
化剤とを真空チャンバー120内で混合反応させること
により堆積させた。
すなわち、i型非晶質シリコン202では、ボンベ10
1に充填されているSiHガスを流量30SCCMでガス
導入管109より、ボンベ106に充填されているF
ガスを流量20SCCM、ボンベ107に充填されているH
eガスを流量100SCCMでガス導入管111より真空チ
ャンバー120内に導入した。
このとき、真空チャンバー120内の圧力を真空バルブ
119の開閉度を調整して0.7Torrにしたガス導入口1
11と基体との距離は3cmに設定した。SiHガスと
ガスの混合域で青白い発光が強く見られた。
n型の非晶質シリコン層203では、ボンベ101に充
填されているSiHガスを流量20SCCMでガス導入管
109より、ボンベ104に充填されているPH/H
e(PH濃度1000ppm)を流量3SCCMでガス導入
管110よりボンベ106に充填されているFガスを
流量15SCCMで、ボンベ107に充填されているHeガ
スを流量80SCCMでガス導入管111より真空チャンバ
ー120内に導入した。このときの真空チャンバー12
0内の圧力は、真空バルブ119の開閉度の調整によっ
て0.4Torrにした。
また、各層の形成にあたって、基体温度は250℃に設
定した。
このようにして得られた太陽電池は、従来のものより2
0%高い光電変換効率を示した。
(実施例2) 第3図は、本発明の第二実施例である電子写真用像形成
部材の概略的構成図である。
同図において、Al基体300上には、光反射防止層3
01(第1層、Geにより禁制帯幅を制御した非晶質シ
リコンゲルマニウム層であり、厚さは0.5μm)、電荷
注入防止層302(第2層、Bをドーピングした非晶質
シリコン層であり、厚さは0.5μm)、感光層303
(第3層、非晶質シリコン層であり、厚さ18μm)、
表面保護層および光吸収増加層404(第4層、Cによ
り禁制帯幅を制御した非晶質シリコンカーバイド層であ
り、厚さ0.1μm)が積層形成されている。
以上のような像形成部材を実施例1で示したように堆積
膜形成装置を用い、第1表に示す成膜条件で作製した。
本実施例によって得られた電子写真用像形成部材は、従
来品よりも22%以上向上した帯電特性を示し、画像欠
陥の数も10%程度減少し、感度も18%以上向上し
た。
(実施例3) 第4図は、本発明の第三実施例であるTFTの概略的構
成図である。
同図においてガラス基板400上には、非晶質シリコン
槽401(第1層、厚さ7000Å)、リンを高濃度に
ドープした非晶質シリコン層402(第2層、厚さ50
0Å)、絶縁層403(第3層、厚さ1000Å)、お
よびAlのゲート電極404、ソースおよびドレイン電
極405,405′が形成されている。
以上のようなTFTを実施例1で示したように堆積膜形
成装置を用い、第2表に示す成膜条件で作製した。
本実施例により作製されたTFTはON/OFF抵抗比
が従来のものより15%程度改善された。
〔発明の効果〕 以上詳細に説明したように、本発明の薄膜多層構造の形
成方法により作製された薄膜多層構造は界面特性が向上
しているために、上記各実施例が示すように優れた特性
の半導体素子を得ることができる。
また、本発明による薄膜多層構造の形成方法は、省エネ
ルギー化を計ると同時に膜品質の管理が容易で大面積に
亘って均一物理特性の堆積膜が得られる。又、生産性、
量産性に優れ、高品質で電気的、光学的、半導体的等の
物理特性に優れた多層構造を簡単に得ることができる。
【図面の簡単な説明】
第1図は、堆積膜形成装置の模式的構成図、 第2図は、本発明の第一実施例である太陽電池の概略構
成図、 第3図は、本発明の第二実施例である電子写真用の像形
成部材の概略的構成図、 第4図は、本発明の第三実施例であるTFTの概略構成
図、 第5図は、一般的な光CVD法で用いられる堆積膜形成
装置の模式的構成図である。 101〜108……ガスボンベ 101a〜108a……ガスの導入管 101b〜108b……マスフロメーター 101c〜108c……ガス圧力計 101d〜108dおよび 101e〜108e……バルブ 101f〜108f……圧力計 109,110,111……ガス導入管 112……基体ホルダー 113……基体加熱用ヒーター 116……基体温度モニター用熱電対 118……基体 119……真空排気バルブ 120……真空チャンバー 123〜125……ガス供給用パイプ 126a,126b……光エネルギー発生装置 127a,127b……窓 200……透明電極をコーティングしたガラス基板 201……p型半導体層 202……感光層 203……n型半導体層 204……Al製電極 300……Al製基体 301……光反射防止層 302……電荷注入防止層 303……感光層 304……表面保護層 405……Al電極(リース) 404……Al電極(ゲート) 405′……Al電極(ドレイン) 403……絶縁層 402……n型半導体層 401……i型半導体層 400……ガラス基板
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/263 8617−4M 31/04

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】禁制帯幅制御された半導体薄膜を有する薄
    膜多層構造の形成方法において、 前記半導体薄膜の少なくとも一層を光CVD法によって
    形成し、その他の薄膜の少なくとも一層を堆積膜形成用
    の気体状原料物質と、該原料物質に酸化作用をする性質
    を有する気体状ハロゲン系酸化剤と、を反応空間内に導
    入して接触させることで励起状態の前駆体を含む複数の
    前駆体を化学的に生成し、これらの前駆体の内少なくと
    も1つの前駆体を堆積膜構成要素の供給源として形成す
    ることを特徴とする薄膜多層構造の形成方法。
JP60298044A 1985-12-28 1985-12-28 薄膜多層構造の形成方法 Expired - Lifetime JPH0651908B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60298044A JPH0651908B2 (ja) 1985-12-28 1985-12-28 薄膜多層構造の形成方法
US06/946,085 US4766091A (en) 1985-12-28 1986-12-24 Method for producing an electronic device having a multi-layer structure
EP86310163A EP0228295B1 (en) 1985-12-28 1986-12-24 Method for producing an electronic device having a multi-layer structure
DE8686310163T DE3686568T2 (de) 1985-12-28 1986-12-24 Verfahren zur herstellung einer elektronischen vorrichtung mit mehrschichtstruktur.
CA000526326A CA1256593A (en) 1985-12-28 1986-12-24 Optical chemical vapor deposition method to produce an electronic device having a multi-layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298044A JPH0651908B2 (ja) 1985-12-28 1985-12-28 薄膜多層構造の形成方法

Publications (2)

Publication Number Publication Date
JPS62158873A JPS62158873A (ja) 1987-07-14
JPH0651908B2 true JPH0651908B2 (ja) 1994-07-06

Family

ID=17854397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298044A Expired - Lifetime JPH0651908B2 (ja) 1985-12-28 1985-12-28 薄膜多層構造の形成方法

Country Status (5)

Country Link
US (1) US4766091A (ja)
EP (1) EP0228295B1 (ja)
JP (1) JPH0651908B2 (ja)
CA (1) CA1256593A (ja)
DE (1) DE3686568T2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566914B2 (ja) * 1985-12-28 1996-12-25 キヤノン株式会社 薄膜半導体素子及びその形成法
KR910003742B1 (ko) * 1986-09-09 1991-06-10 세미콘덕터 에너지 라보라터리 캄파니 리미티드 Cvd장치
US5229081A (en) * 1988-02-12 1993-07-20 Regal Joint Co., Ltd. Apparatus for semiconductor process including photo-excitation process
EP0410390A3 (en) * 1989-07-27 1993-02-24 Seiko Instruments Inc. Method of producing semiconductor device
EP2253008B1 (en) * 2008-03-12 2017-02-01 Alytus Corporation, S.A. Plasma system

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US31708A (en) * 1861-03-19 Improved device for coating pins
US3473978A (en) * 1967-04-24 1969-10-21 Motorola Inc Epitaxial growth of germanium
US3888705A (en) * 1973-12-19 1975-06-10 Nasa Vapor phase growth of groups iii-v compounds by hydrogen chloride transport of the elements
USRE31708E (en) 1976-11-01 1984-10-16 Method of depositing electrically conductive, infra-red reflective, transparent coatings of stannic oxide
US4146657A (en) * 1976-11-01 1979-03-27 Gordon Roy G Method of depositing electrically conductive, infra-red reflective, transparent coatings of stannic oxide
GB2038086A (en) * 1978-12-19 1980-07-16 Standard Telephones Cables Ltd Amorphous semiconductor devices
US4239811A (en) * 1979-08-16 1980-12-16 International Business Machines Corporation Low pressure chemical vapor deposition of silicon dioxide with oxygen enhancement of the chlorosilane-nitrous oxide reaction
JPS5710920A (en) * 1980-06-23 1982-01-20 Canon Inc Film forming process
SE451353B (sv) * 1980-09-09 1987-09-28 Energy Conversion Devices Inc Fotokensligt, amorft flercellsdon
US4522663A (en) * 1980-09-09 1985-06-11 Sovonics Solar Systems Method for optimizing photoresponsive amorphous alloys and devices
US4357179A (en) * 1980-12-23 1982-11-02 Bell Telephone Laboratories, Incorporated Method for producing devices comprising high density amorphous silicon or germanium layers by low pressure CVD technique
US4459163A (en) * 1981-03-11 1984-07-10 Chronar Corporation Amorphous semiconductor method
US4421592A (en) * 1981-05-22 1983-12-20 United Technologies Corporation Plasma enhanced deposition of semiconductors
US4402762A (en) * 1981-06-02 1983-09-06 John Puthenveetil K Method of making highly stable modified amorphous silicon and germanium films
JPS5833829A (ja) * 1981-08-24 1983-02-28 Toshiba Corp 薄膜形成装置
US4652463A (en) * 1982-03-29 1987-03-24 Hughes Aircraft Process for depositing a conductive oxide layer
JPS58170536A (ja) * 1982-03-31 1983-10-07 Fujitsu Ltd プラズマ処理方法及びその装置
US4462847A (en) * 1982-06-21 1984-07-31 Texas Instruments Incorporated Fabrication of dielectrically isolated microelectronic semiconductor circuits utilizing selective growth by low pressure vapor deposition
US4615905A (en) * 1982-09-24 1986-10-07 Sovonics Solar Systems, Inc. Method of depositing semiconductor films by free radical generation
US4504518A (en) * 1982-09-24 1985-03-12 Energy Conversion Devices, Inc. Method of making amorphous semiconductor alloys and devices using microwave energy
JPS59159167A (ja) * 1983-03-01 1984-09-08 Zenko Hirose アモルフアスシリコン膜の形成方法
JPS59199035A (ja) * 1983-04-26 1984-11-12 Fuji Electric Corp Res & Dev Ltd 薄膜生成装置
JPS6026664A (ja) * 1983-07-22 1985-02-09 Canon Inc アモルフアスシリコン堆積膜形成法
DE3429899A1 (de) * 1983-08-16 1985-03-07 Canon K.K., Tokio/Tokyo Verfahren zur bildung eines abscheidungsfilms
JPS6043819A (ja) * 1983-08-19 1985-03-08 Semiconductor Energy Lab Co Ltd 気相反応方法
US4637938A (en) * 1983-08-19 1987-01-20 Energy Conversion Devices, Inc. Methods of using selective optical excitation in deposition processes and the detection of new compositions
US4645689A (en) * 1984-02-17 1987-02-24 At&T Bell Laboratories Deposition technique
JPS60243663A (ja) * 1984-05-18 1985-12-03 Kyocera Corp 電子写真感光体
US4624736A (en) * 1984-07-24 1986-11-25 The United States Of America As Represented By The United States Department Of Energy Laser/plasma chemical processing of substrates
US4657777A (en) * 1984-12-17 1987-04-14 Canon Kabushiki Kaisha Formation of deposited film
JPH07101751B2 (ja) * 1985-03-28 1995-11-01 キヤノン株式会社 光起電力素子の製造方法
US4719123A (en) * 1985-08-05 1988-01-12 Sanyo Electric Co., Ltd. Method for fabricating periodically multilayered film
JP2566914B2 (ja) * 1985-12-28 1996-12-25 キヤノン株式会社 薄膜半導体素子及びその形成法

Also Published As

Publication number Publication date
DE3686568D1 (de) 1992-10-01
EP0228295A2 (en) 1987-07-08
DE3686568T2 (de) 1993-01-21
CA1256593A (en) 1989-06-27
EP0228295A3 (en) 1988-11-30
JPS62158873A (ja) 1987-07-14
EP0228295B1 (en) 1992-08-26
US4766091A (en) 1988-08-23

Similar Documents

Publication Publication Date Title
JPH0651909B2 (ja) 薄膜多層構造の形成方法
JP2566914B2 (ja) 薄膜半導体素子及びその形成法
JPH0746729B2 (ja) 薄膜トランジスタの製造方法
US4812328A (en) Method for forming deposited film
JPH084070B2 (ja) 薄膜半導体素子及びその形成法
US4801474A (en) Method for forming thin film multi-layer structure member
US4822636A (en) Method for forming deposited film
JPH0651908B2 (ja) 薄膜多層構造の形成方法
JPH0651907B2 (ja) 薄膜多層構造の形成方法
JPH0645882B2 (ja) 堆積膜形成法
JPH0647734B2 (ja) 堆積膜形成法
JP2547728B2 (ja) 堆積膜形成装置
JPH0645895B2 (ja) 堆積膜形成装置
JPS62163314A (ja) 薄膜多層構造およびその形成方法
JPH0645883B2 (ja) 堆積膜形成法
JP2704986B2 (ja) 薄膜半導体素子及びその形成方法
JPH0645884B2 (ja) 堆積膜形成法
JPH0647731B2 (ja) 堆積膜形成法
JPH0647729B2 (ja) 堆積膜形成法
JPH084069B2 (ja) 薄膜半導体素子及びその形成法
JPH0645892B2 (ja) 堆積膜形成法
JPH0647732B2 (ja) 堆積膜形成方法
JPS63136617A (ja) 堆積膜形成法
JPS62163313A (ja) 薄膜多層構造およびその形成方法
JPH0770489B2 (ja) 堆積膜形成法

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term