JPH0648775B2 - リープフロッグ・フィルタ - Google Patents
リープフロッグ・フィルタInfo
- Publication number
- JPH0648775B2 JPH0648775B2 JP1130774A JP13077489A JPH0648775B2 JP H0648775 B2 JPH0648775 B2 JP H0648775B2 JP 1130774 A JP1130774 A JP 1130774A JP 13077489 A JP13077489 A JP 13077489A JP H0648775 B2 JPH0648775 B2 JP H0648775B2
- Authority
- JP
- Japan
- Prior art keywords
- current source
- current
- transistor
- circuit
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/04—Frequency selective two-port networks
- H03H11/12—Frequency selective two-port networks using amplifiers with feedback
- H03H11/126—Frequency selective two-port networks using amplifiers with feedback using a single operational amplifier
Landscapes
- Networks Using Active Elements (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リープフロッグ・フィルタに関し、性能指数
Qと中心周波数0の調整が容易なものに係る。
Qと中心周波数0の調整が容易なものに係る。
第9図は、アクティブ・フィルタの一例であるバイカッ
ド回路であり、ローパス・フィルタを構成している。一
般的なローパス・フィルタの伝達関数T(S)は、次のよ
うな関係式で表される。
ド回路であり、ローパス・フィルタを構成している。一
般的なローパス・フィルタの伝達関数T(S)は、次のよ
うな関係式で表される。
〔但し、ω0は角周波数,sは複素変数, Qはコイルの損失係数,Hは利得係数〕 第9図のバイカッド回路の入力電圧V1と出力電圧V2
との関係を、伝達関数T(S)で表すと、次式のように表
される。
との関係を、伝達関数T(S)で表すと、次式のように表
される。
(1)式と(2)式の各項の係数が等しいものとすると、角周
波数ω0,性能指数Qは、次のような関係式で表され
る。
波数ω0,性能指数Qは、次のような関係式で表され
る。
ω0 2=1/R3R4C1C2………(3) Q=(R1 2C1/R2R4C2)1/2……(4) (3),(4)式から明らかなように中心周波数0と性能指
数Qを可変する為には、抵抗R1乃至R4或いはコンデ
ンサC1,C2の回路定数を可変させる必要がある。バ
イカッド回路にあっては、これらの中心周波数0と性
能指数Qを可変する為に、抵抗R1乃至R4或いはコン
デンサC1,C2を外付けの部品とし、その回路定数を
変えることによってフィルタ特性の調整をする必要があ
る。従って、従来のバイカド回路のようなアクティブ・
フィルタでは、演算増幅器や抵抗及びコンデンサ等の多
数の部品が混成集積化されて形成されているのが通例で
ある。
数Qを可変する為には、抵抗R1乃至R4或いはコンデ
ンサC1,C2の回路定数を可変させる必要がある。バ
イカッド回路にあっては、これらの中心周波数0と性
能指数Qを可変する為に、抵抗R1乃至R4或いはコン
デンサC1,C2を外付けの部品とし、その回路定数を
変えることによってフィルタ特性の調整をする必要があ
る。従って、従来のバイカド回路のようなアクティブ・
フィルタでは、演算増幅器や抵抗及びコンデンサ等の多
数の部品が混成集積化されて形成されているのが通例で
ある。
従来のアクティブ・フィルタでは、部品点数が多くコス
ト高となる欠点があると共にフィルタの中心周波数0
や性能指数Qを調整する場合に、所望のフィルタ特性に
従ってプリント基板に回路定数の異なる部品を取り付け
て調整しなければならない煩雑さがある。
ト高となる欠点があると共にフィルタの中心周波数0
や性能指数Qを調整する場合に、所望のフィルタ特性に
従ってプリント基板に回路定数の異なる部品を取り付け
て調整しなければならない煩雑さがある。
本発明の主な目的は、部品点数を低減したリープフロッ
グ・フィルタを提供するにある。
グ・フィルタを提供するにある。
又、本発明の他の目的は、フィルタの中心周波数0や
性能指数Qの調整が容易なリープフロッグ・フィルタを
提供するにある。
性能指数Qの調整が容易なリープフロッグ・フィルタを
提供するにある。
本発明のリープフロッグ・フィルタは、第1と第2の積
分器と、該第1と該第2の積分器にバイアス電流を供給
する第1と第2の電流源回路と、該第1と該第2の電流
源回路から各積分器に供給される電流の総和を調整する
第3の電流源回路とから構成されている。
分器と、該第1と該第2の積分器にバイアス電流を供給
する第1と第2の電流源回路と、該第1と該第2の電流
源回路から各積分器に供給される電流の総和を調整する
第3の電流源回路とから構成されている。
本発明のリープフロッグ・フィルタは、リープフロッグ
・フィルタを構成する第1と第2の積分器の電流源回路
を制御することにより、入出力段の積分器を構成する夫
々の演算増幅器のバイアス電流の比を変えることにより
相互コンダクタンスを可変して性能指数Qを制御すると
共に演算増幅器のバイアス電流を可変することで、中心
周波数0を制御するものである。
・フィルタを構成する第1と第2の積分器の電流源回路
を制御することにより、入出力段の積分器を構成する夫
々の演算増幅器のバイアス電流の比を変えることにより
相互コンダクタンスを可変して性能指数Qを制御すると
共に演算増幅器のバイアス電流を可変することで、中心
周波数0を制御するものである。
第1図は、本発明に係るリープフロッグ・フィルタの一
実施例を示すものである。
実施例を示すものである。
第1図に於いて、入力端子1は、演算増幅器3の正転端
子に接続され、その出力端子がコンデンサ4に接続され
ると共に演算増幅器5の正転端子に接続されている。演
算増幅器5の出力端子は、演算増幅器3の反転端子に接
続されると共に、コンデンサ6に接続され、演算増幅器
5の出力端子が出力端子2に接続されている。又、演算
増幅器5の反転端子は、コンデンサ6と出力端子2に接
続されている。演算増幅器3は、その出力端子に接続さ
れたコンデンサ4とによって、積分回路を構成し、同様
に演算増幅器5もコンデンサ6とによって積分回路を構
成し2次のリープフロッグ・フィルタを形成している。
子に接続され、その出力端子がコンデンサ4に接続され
ると共に演算増幅器5の正転端子に接続されている。演
算増幅器5の出力端子は、演算増幅器3の反転端子に接
続されると共に、コンデンサ6に接続され、演算増幅器
5の出力端子が出力端子2に接続されている。又、演算
増幅器5の反転端子は、コンデンサ6と出力端子2に接
続されている。演算増幅器3は、その出力端子に接続さ
れたコンデンサ4とによって、積分回路を構成し、同様
に演算増幅器5もコンデンサ6とによって積分回路を構
成し2次のリープフロッグ・フィルタを形成している。
電流源回路7は、演算増幅器3,5に供給されるバイア
ス電流を制御する為の差動増幅回路で構成されている。
差動対を形成するトランジスタQ18,Q19と、それらの
エミッタに接続された抵抗R13,R12の他端が共通接続
され、可変電流源回路8に接続されている。トランジス
タQ18,Q19のベース間には、可変電圧源9が接続され
ている。
ス電流を制御する為の差動増幅回路で構成されている。
差動対を形成するトランジスタQ18,Q19と、それらの
エミッタに接続された抵抗R13,R12の他端が共通接続
され、可変電流源回路8に接続されている。トランジス
タQ18,Q19のベース間には、可変電圧源9が接続され
ている。
第2図は、第1図のリープフロッグ・フィルタのより具
体化された一実施例が示されている。図に於いて、演算
増幅器3は、トランジスタ差動対をなすトランジスタQ
3,Q4のコレクタがトランジスタQ5,Q6のコレク
タに夫々接続され、トランジスタQ5,Q6は、電流ミ
ラー回路を形成している。トランジスタQ3,Q4の共
通接続されたエミッタにトランジスタQ1のコレクタが
接続され、そのエミッタが電源電圧Bに接続されてい
る。トランジスタQ3,Q4のベースにダイオード
D2,D3のカソードの夫々が接続され、それらのアノ
ードが共通接続されてダイオードD1のカソードに接続
され、そのダイオードD1のアノードが電源電圧Bに接
続されている。トランジスタQ3,Q4のベースがトラ
ンジスタQ8,Q9のコレクタに接続され、Q8,Q9
のエミッタ間には、抵抗R10が接続されると共にQ8,
Q9の各エミッタは、電流源を介して接地されている。
トランジスタQ3,Q5の共通接続されたコレクタにコ
ンデンサ4が接続され、演算増幅器3とコンデンサ4と
によって積分回路を形成して次段の演算増幅器5の入力
端子に接続されている。
体化された一実施例が示されている。図に於いて、演算
増幅器3は、トランジスタ差動対をなすトランジスタQ
3,Q4のコレクタがトランジスタQ5,Q6のコレク
タに夫々接続され、トランジスタQ5,Q6は、電流ミ
ラー回路を形成している。トランジスタQ3,Q4の共
通接続されたエミッタにトランジスタQ1のコレクタが
接続され、そのエミッタが電源電圧Bに接続されてい
る。トランジスタQ3,Q4のベースにダイオード
D2,D3のカソードの夫々が接続され、それらのアノ
ードが共通接続されてダイオードD1のカソードに接続
され、そのダイオードD1のアノードが電源電圧Bに接
続されている。トランジスタQ3,Q4のベースがトラ
ンジスタQ8,Q9のコレクタに接続され、Q8,Q9
のエミッタ間には、抵抗R10が接続されると共にQ8,
Q9の各エミッタは、電流源を介して接地されている。
トランジスタQ3,Q5の共通接続されたコレクタにコ
ンデンサ4が接続され、演算増幅器3とコンデンサ4と
によって積分回路を形成して次段の演算増幅器5の入力
端子に接続されている。
演算増幅器5は、差動対をなすトランジスタQ12,Q13
の夫々のコレクタにトランジスタQ14,Q15のコレクタ
が接続され、トランジスタQ14,Q15が、電流ミラー回
路を形成している。トランジスタQ12,Q13の共通接続
されたエミッタがトランジスタQ10のコレクタに接続さ
れ、そのエミッタが電源電圧Bに接続されている。トラ
ンジスタQ12,Q13のベースに夫々ダイオードD5,D
6のカソードが接続され、それらのアノードが共通接続
されてダイオードD4のカソードに接続され、そのアノ
ードが電源電圧Bに接続されている。トランジスタ
Q16,Q17のエミッタ間には、抵抗R11が接続され、Q
16,Q17のエミッタは夫々電流源を介して接地されてい
る。トランジスタQ16のベースが演算増幅器3のコンデ
ンサ4の接続された出力端子に接続されている。トラン
ジスタQ12,Q14の共通接続されたコレクタにコンデン
サ6が接続されて演算増幅器5と共に積分回路を形成
し、且つ、前段の演算増幅器3の第2の入力端子に接続
されている。
の夫々のコレクタにトランジスタQ14,Q15のコレクタ
が接続され、トランジスタQ14,Q15が、電流ミラー回
路を形成している。トランジスタQ12,Q13の共通接続
されたエミッタがトランジスタQ10のコレクタに接続さ
れ、そのエミッタが電源電圧Bに接続されている。トラ
ンジスタQ12,Q13のベースに夫々ダイオードD5,D
6のカソードが接続され、それらのアノードが共通接続
されてダイオードD4のカソードに接続され、そのアノ
ードが電源電圧Bに接続されている。トランジスタ
Q16,Q17のエミッタ間には、抵抗R11が接続され、Q
16,Q17のエミッタは夫々電流源を介して接地されてい
る。トランジスタQ16のベースが演算増幅器3のコンデ
ンサ4の接続された出力端子に接続されている。トラン
ジスタQ12,Q14の共通接続されたコレクタにコンデン
サ6が接続されて演算増幅器5と共に積分回路を形成
し、且つ、前段の演算増幅器3の第2の入力端子に接続
されている。
トランジスタQ1,Q2のベースが共通接続されて電流
ミラー回路10を形成し、トランジスタQ10,Q11のベー
スが共通接続されて電流ミラー回路11を形成し、電流
源回路7からのバイアス電流が各演算増幅器3,5に供
給されている。電流源回路7は、トランジスタQ11のベ
ース・コレクタがトランジスタQ18のコレクタに接続さ
れ、トランジスタQ2のベース・コレクタがトランジス
タQ19のコレクタに接続され、それらトランジスタ
Q18,Q19のエミッタには、抵抗R12,R13が接続さ
れ、それらの他端が共通接続され、可変電流源回路8に
接続されている。トランジスタQ18,Q19のベース間に
は、可変電圧源9が接続されている。電流ミラー回路1
1,10は第1と第2の電流源回路、可変電流源8は第
3の電流源回路を構成する。
ミラー回路10を形成し、トランジスタQ10,Q11のベー
スが共通接続されて電流ミラー回路11を形成し、電流
源回路7からのバイアス電流が各演算増幅器3,5に供
給されている。電流源回路7は、トランジスタQ11のベ
ース・コレクタがトランジスタQ18のコレクタに接続さ
れ、トランジスタQ2のベース・コレクタがトランジス
タQ19のコレクタに接続され、それらトランジスタ
Q18,Q19のエミッタには、抵抗R12,R13が接続さ
れ、それらの他端が共通接続され、可変電流源回路8に
接続されている。トランジスタQ18,Q19のベース間に
は、可変電圧源9が接続されている。電流ミラー回路1
1,10は第1と第2の電流源回路、可変電流源8は第
3の電流源回路を構成する。
電流源回路7は、第2図の実施例に限定することなく、
第3図に示すような回路でもよい。即ち、第3図の実施
例では、ダイオード接続されたトランジスタQ11,Q2
のベース・コレクタの夫々にトランジスタQ23とQ24の
コレクタが接続され、トランジスタQ23とQ24のエミッ
タ間に抵抗R14が接続されての両端にトランジスタ
Q21,Q22のコレクタが接続されている。トランジスタ
Q21,Q22は、ベースを共通とするトランジスタQ20と
によって電流ミラー回路を形成している。トランジスタ
Q20のベース・コレクタには、可変電流源回路8が接続
され、トランジスタQ21,Q22のコレクタ電流を供給し
ている。又、トランジスタQ23とQ24のベースには、電
圧源12,13が接続され、電圧源13は、可変型であ
る。第3図は、トランジスタQ20,Q21,Q22,可変電
流源回路8が第3の電流源回路を構成する。
第3図に示すような回路でもよい。即ち、第3図の実施
例では、ダイオード接続されたトランジスタQ11,Q2
のベース・コレクタの夫々にトランジスタQ23とQ24の
コレクタが接続され、トランジスタQ23とQ24のエミッ
タ間に抵抗R14が接続されての両端にトランジスタ
Q21,Q22のコレクタが接続されている。トランジスタ
Q21,Q22は、ベースを共通とするトランジスタQ20と
によって電流ミラー回路を形成している。トランジスタ
Q20のベース・コレクタには、可変電流源回路8が接続
され、トランジスタQ21,Q22のコレクタ電流を供給し
ている。又、トランジスタQ23とQ24のベースには、電
圧源12,13が接続され、電圧源13は、可変型であ
る。第3図は、トランジスタQ20,Q21,Q22,可変電
流源回路8が第3の電流源回路を構成する。
リープフロッグ・フィルタを構成する積分回路を第4図
に示し、それに基づき積分回路の動作を説明する。第4
図は演算増幅器3とコンデンサ4からなる積分回路であ
る。図のように入力電圧をVi、出力電圧をV0とし、
バイアス電流をI1,IXとする。信号成分の電流をi
0とし、抵抗R10に流れる電流をiaとすると、トラン
ジスタQ8,Q9のベース間に加わる交流電圧がViで
あるとすると、次式の関係が成り立つ。
に示し、それに基づき積分回路の動作を説明する。第4
図は演算増幅器3とコンデンサ4からなる積分回路であ
る。図のように入力電圧をVi、出力電圧をV0とし、
バイアス電流をI1,IXとする。信号成分の電流をi
0とし、抵抗R10に流れる電流をiaとすると、トラン
ジスタQ8,Q9のベース間に加わる交流電圧がViで
あるとすると、次式の関係が成り立つ。
ia=Vi/R10……(5) トランジスタQ3,Q4のベース電圧差をVaとすると
次式のように表される。
次式のように表される。
Va=VT1n(I1+ia)/IS1 −VT1n(I1−ia)/IS1 =VT1n(I1+ia)/(I1−ia)……(6) Va=VT1n(IX+i0)/IS2 −VT1n(IX−i0)/IS2 =VT1n(IX+i0)/(IX−i0)……(7) 〔但し、IS1,IS2は、トランジスタQ3,Q4のベー
ス・エミッタ間の飽和電流であって、互いに等しいもの
とし、VTは、熱電圧である。〕 (6)式と(7)式から次式が成り立つ。
ス・エミッタ間の飽和電流であって、互いに等しいもの
とし、VTは、熱電圧である。〕 (6)式と(7)式から次式が成り立つ。
1n(I1+ia)/(I1−ia) =1n(IX+i0)/(IX−i0) (I1+ia)/(I1−ia) =(IX+i0)/(IX−i0) 上記の式を整理し、(5)式を代入することによって、信
号電流i0は、次式のように表される。
号電流i0は、次式のように表される。
i0=IXia/I1=IXΔVi/I1R10……(8) 一方、積分器の出力電圧V0は、 V0=i0/sC〔但し、s=jω〕 と表され、上記の式に(8)式を代入することにより、 V0=IXVi/I1R10sC……(9) となる。従って、(9)式から次式が成り立つ。
又、相互コンダクタンスgmは、(9)式より、 と表すと、第4図の積分回路の伝達関数T(S)は、(10),
(11)式から次式のように表される。
(11)式から次式のように表される。
T(S)=V0/Vi=gm/sC=1/srC 〔但し、r=1/gmとする。〕 演算増幅器3の相互コンダクタンスgmは、出力抵抗r
とr=1/gmの関係にあり、積分器の伝達関数T(S)
は、バイアス電流I1,IX,抵抗R10の関数に依存す
ることが明らかである。即ち、積分回路は、バイアス電
流IXを制御することにより積分器の伝達関数T(S)が
変動することを示している。
とr=1/gmの関係にあり、積分器の伝達関数T(S)
は、バイアス電流I1,IX,抵抗R10の関数に依存す
ることが明らかである。即ち、積分回路は、バイアス電
流IXを制御することにより積分器の伝達関数T(S)が
変動することを示している。
次に、この積分回路を用い第1図に示した2次のリープ
フロッグ・フィルタについて第5図の2次ローパスフィ
ルタの等価回路に基づき説明する。
フロッグ・フィルタについて第5図の2次ローパスフィ
ルタの等価回路に基づき説明する。
第5図の等価回路から次式が成り立つ。
I1=Y1(V1−V2)……(12) V2=Z2・I1……(13) これを電圧量に変換すると、次式のように表される。
VI1=TY1(V1−V2)……(14) V2=TZ2・VI1……(15) 又、TY1=1/sL〔但し、s=jω〕 TZ2=1/(1+sC) と表され、この関係式から第6図のシグナル図が表示で
きる。
きる。
ここで、第5図の等価回路で示したコイルLのアドミタ
ンスY1は、次のように表される。
ンスY1は、次のように表される。
又、gm=1/rであるので、(16)式は(17)式のように
なる。
なる。
A(s)=1/sLr……(17) r=1とすると、(18)式で表される。
A(s)=1/sL……(18) 一方、第5図の等価回路のインピーダンスZ2を伝達関
数B(s)で表すと、(19)式のようになる。
数B(s)で表すと、(19)式のようになる。
r=1とすると、上記の式は(20)式になる。
B(s)=1/(1+sC)……(20) 従って、リープフロッグ・フィルタの全体の伝達関数T
(s)は、(21)式で表される。
(s)は、(21)式で表される。
T(s)=V2/V1 =TY1TZ2/(1+TY1TZ2) =A(s)B(s)/(1+A(s)B(s))……(21) 今、伝達関数A(s),B(s)を次式のように表す。
A(s)=1/sL=Qω0/s……(22) 又、1/sC=ω0/sQとして、Z2の伝達関数B
(s)を以下のように表す。
(s)を以下のように表す。
B(s)=1/(1+sC) =(ω0/sQ)/(1+ω0/sQ) =(ω0/Q)/(s+ω0/Q)……(23) 従って、(19)式に(22),(23)式を代入して全体の伝達関
数T(s)を表すと、次式のように表される。
数T(s)を表すと、次式のように表される。
T(s)=A(s)・B(s)/(1+A(s)・B(s)) =ω0 2/(s2+ω0/Qs+ω0 2)……(24) と表される。
次に、第1図のリープフロッグ・フィルタの可変電流源
回路7について説明する。
回路7について説明する。
積分器を構成する演算増幅器3,5の出力抵抗r(r=
1/gm)を夫々r1,r2とし、コンデンサ4,6の
容量をC1,C2とすると、各積分器の伝達関数は、次
式の関係が得られる。
1/gm)を夫々r1,r2とし、コンデンサ4,6の
容量をC1,C2とすると、各積分器の伝達関数は、次
式の関係が得られる。
Qω0/s=1/sr1C1 ω0/sQ=1/sr2C2 更に、上記の式を整理すると、次式のように表される。
Qω0=1/r1C1……(25) ω0/Q=1/r2C2……(26) 又、 1/r1=gm1=IX1/I1・R10 1/r2=gm2=IX2/I2・R10 上記の式を整理すると、次式が求められる。
r1=I1・R10/IX1……(27) r2=I1・R10/IX2……(28) 従って、性能指数Qは、(25),(26)式から以下のように
求めて、その式に(27),(28)式を代入すると、 Qω0/(ω0/Q)=Q2 =r2C2/r1C1 =(C2I2R10/IX2)/(C1I1R10/IX1)と
なり、即ち、性能指数Qは、次式のように表される。
求めて、その式に(27),(28)式を代入すると、 Qω0/(ω0/Q)=Q2 =r2C2/r1C1 =(C2I2R10/IX2)/(C1I1R10/IX1)と
なり、即ち、性能指数Qは、次式のように表される。
Q=(C2IX1/C1IX2)1/2……(29) 又、中心周波数ω0は、(25),(26)式から以下のように
求めて、その式に(27),(28)式を代入すると、 Qω0・ω0/Q=ω0 2=1/r1C1r2C2 =IX1IX2/C1C2I1 2R10 2 となり、中心周波数ω0は、次式のように表される。
求めて、その式に(27),(28)式を代入すると、 Qω0・ω0/Q=ω0 2=1/r1C1r2C2 =IX1IX2/C1C2I1 2R10 2 となり、中心周波数ω0は、次式のように表される。
ω0=1/I1R10・(IX1IX2/C1C2)1/2……
(30) 今、IX1+IX2=Ia、C2/C1=CKを一定とし、
1/I1R10(C1C2)1/2を一定とすると、性能指
数Qは、次式のように表される。
(30) 今、IX1+IX2=Ia、C2/C1=CKを一定とし、
1/I1R10(C1C2)1/2を一定とすると、性能指
数Qは、次式のように表される。
Q=〔CK・(Ia−IX2)/IX2〕1/2 =CK 1/2・(Ia/IX2−1)1/2……(31) ω0=Cj・〔IX2(Ia−IX2)〕1/2……(32) 第7図及び第8図は、本発明のリープフロッグ・フィル
タに供給されるバイアス電流の関係を、IX1=IX2=
0.5Iaとして、演算増幅器3,5のバイアス電流I
X1,IX2を可変させた場合と、可変電流源回路8に流れ
るバイアス電流IX1,IX2の総和であるバイアス電流I
X3を可変させた場合のフィルタ特性を示している。第7
図が中心周波数0の特性を示す図であって、第8図が
性能指数Qの特性を示している。第7図の(イ)(ロ)
(ハ)は、可変電圧源9を一定とし、可変電流源回路8
のバイアス電流IX3を可変した場合の特性を示してお
り、バイアス電流IX3を多く流すと、中心周波数
0は、1,2,3と上昇することを示している。
又、第8図は、性能指数Qを表しており、バイアス電流
IX3を一定として、可変電圧源回路9を可変させてバイ
アス電流IX1,IX2の電流比を可変させたものであり、
可変電圧源回路9の電位を大きくすることによって、第
8図の(イ)(ロ)(ハ)に示されるように性能指数Q
が調整されることを示している。
タに供給されるバイアス電流の関係を、IX1=IX2=
0.5Iaとして、演算増幅器3,5のバイアス電流I
X1,IX2を可変させた場合と、可変電流源回路8に流れ
るバイアス電流IX1,IX2の総和であるバイアス電流I
X3を可変させた場合のフィルタ特性を示している。第7
図が中心周波数0の特性を示す図であって、第8図が
性能指数Qの特性を示している。第7図の(イ)(ロ)
(ハ)は、可変電圧源9を一定とし、可変電流源回路8
のバイアス電流IX3を可変した場合の特性を示してお
り、バイアス電流IX3を多く流すと、中心周波数
0は、1,2,3と上昇することを示している。
又、第8図は、性能指数Qを表しており、バイアス電流
IX3を一定として、可変電圧源回路9を可変させてバイ
アス電流IX1,IX2の電流比を可変させたものであり、
可変電圧源回路9の電位を大きくすることによって、第
8図の(イ)(ロ)(ハ)に示されるように性能指数Q
が調整されることを示している。
上記のようにローパス・フィルタの中心周波数0と性
能指数Qが積分器に供給されているバイアス電流(IX1
+IX2=IX3)を制御することによって容易に調整でき
る。
能指数Qが積分器に供給されているバイアス電流(IX1
+IX2=IX3)を制御することによって容易に調整でき
る。
尚、実施例では、2次のローパス・フィルタで説明され
ているが、N次のローパス・フィルタであっても同様な
概念により、入力段と出力段の積分回路のバイアス電流
を制御することにより、構成し得ることは、明らかであ
る。
ているが、N次のローパス・フィルタであっても同様な
概念により、入力段と出力段の積分回路のバイアス電流
を制御することにより、構成し得ることは、明らかであ
る。
本発明のリープフロッグ・フィルタは、半導体集積回路
化に好適なアクティブ・フィルタであって、従来のもの
と比較して、外付けの部品を低減し得ると共に、フィル
タ特性の中心周波数0と性能指数Qを、リープフロッ
グ・フィルタを構成する積分器のバイアス電流を調整す
るのみで、容易に調整できる効果的なものである。
化に好適なアクティブ・フィルタであって、従来のもの
と比較して、外付けの部品を低減し得ると共に、フィル
タ特性の中心周波数0と性能指数Qを、リープフロッ
グ・フィルタを構成する積分器のバイアス電流を調整す
るのみで、容易に調整できる効果的なものである。
更に、本発明のリープフロッグ・フィルタは、半導体集
積回路で形成されるので、外付けの部品数が低減できる
為に安価なアクティブ・フィルタを供給することができ
ると共に、小型のアクティブ・フィルタを提供できる。
積回路で形成されるので、外付けの部品数が低減できる
為に安価なアクティブ・フィルタを供給することができ
ると共に、小型のアクティブ・フィルタを提供できる。
第1図は、本発明に係るリープフロッグ・フィルタの一
実施例を示す回路図、第2図は、第1図をより具体化し
た一実施例を示す回路図、第3図は、電流源回路の他の
実施例を示す回路図、第4図は、積分器の動作を説明す
る為の回路図、第5図は、2次のローパスフィルタの等
価回路を示す図、第6図は、第5図のシグナル図、第7
図は、フィルタの中心周波数0の特性を示す図、第8
図は、性能指数Qの特性を示す図、第9図は、バイカッ
ド回路の一例を示す回路図である。 1:入力端子,2:出力端子,3,5:演算増幅器,
4,6:コンデンサ,7:電流源回路,8:可変電流源
回路,9:可変電圧源回路,10,11:電流ミラー回
路,12:電圧源回路,13:可変電圧源回路
実施例を示す回路図、第2図は、第1図をより具体化し
た一実施例を示す回路図、第3図は、電流源回路の他の
実施例を示す回路図、第4図は、積分器の動作を説明す
る為の回路図、第5図は、2次のローパスフィルタの等
価回路を示す図、第6図は、第5図のシグナル図、第7
図は、フィルタの中心周波数0の特性を示す図、第8
図は、性能指数Qの特性を示す図、第9図は、バイカッ
ド回路の一例を示す回路図である。 1:入力端子,2:出力端子,3,5:演算増幅器,
4,6:コンデンサ,7:電流源回路,8:可変電流源
回路,9:可変電圧源回路,10,11:電流ミラー回
路,12:電圧源回路,13:可変電圧源回路
Claims (3)
- 【請求項1】夫々演算増幅器と積分器用コンデンサから
なる第1と第2の積分器によりリープフロッグ・フィル
タが形成されており、第1と第2の積分器にバイアス電
流を供給する電流源回路は、トランジスタ差動対と、ト
ランジスタ差動対の夫々のトランジスタのコレクタに接
続され該第1と第2の積分器にバイアス電流を供給する
第1と第2の電流源回路と、トランジスタ差動対の共通
接続されたエミッタ側に接続され第1と第2の電流源回
路から第1と第2の積分器に供給されるバイアス電流の
総和を調節する第3の電流源回路と、該差動対のトラン
ジスタのベースに接続され該バイアス電流の電流比を調
節する電圧源からなることを特徴とするリープフロッグ
・フィルタ。 - 【請求項2】夫々演算増幅器と積分器用コンデンサから
なる第1と第2の積分器によりリープフロッグ・フィル
タが形成されており、第1と第2の積分器にバイアス電
流を供給する電流源回路は、エミッタ間に抵抗が接続さ
れベースに電圧源を接続された第1と第2のトランジス
タ差動対と、該第1と第2のトランジスタのコレクタに
接続され該第1と第2の積分器にバイアス電流を供給す
る第1と第2の電流源回路と、第1と第2のトランジス
タのエミッタに夫々接続された第3と第4のトランジス
タおよび第3と第4のトランジスタとベースを共通接続
されると共にダイオード接続された第5のトランジスタ
および第5のトランジスタのベースとコレクタに可変電
流源回路が接続されてなる第3の電流源回路からなり、
前記電圧源を調節することにより第1と第2の電流源回
路から第1と第2の積分器に供給されるバイアス電流の
電流比を調節し、前記可変電流源回路を調節することに
より該バイアス電流の総和を調節されることを特徴とす
るリープフロッグ・フィルタ。 - 【請求項3】第1と第2の電流源回路は、夫々電流ミラ
ー回路である特許請求の範囲第1項又は第2項記載のリ
ープフロッグ・フィルタ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1130774A JPH0648775B2 (ja) | 1989-05-24 | 1989-05-24 | リープフロッグ・フィルタ |
US07/527,575 US5028884A (en) | 1989-05-24 | 1990-05-23 | Leapfrog filter having adjustable center frequency and quality factor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1130774A JPH0648775B2 (ja) | 1989-05-24 | 1989-05-24 | リープフロッグ・フィルタ |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02309710A JPH02309710A (ja) | 1990-12-25 |
JPH0648775B2 true JPH0648775B2 (ja) | 1994-06-22 |
Family
ID=15042348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1130774A Expired - Fee Related JPH0648775B2 (ja) | 1989-05-24 | 1989-05-24 | リープフロッグ・フィルタ |
Country Status (2)
Country | Link |
---|---|
US (1) | US5028884A (ja) |
JP (1) | JPH0648775B2 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2520055B2 (ja) * | 1991-04-10 | 1996-07-31 | 東光株式会社 | 有極型リ−プフロッグ・フィルタ |
ES2123538T3 (es) * | 1992-07-24 | 1999-01-16 | Alsthom Cge Alcatel | Sistema de sintonizacion de frecuencia para un par ota-c. |
EP0579875B1 (en) * | 1992-07-24 | 1997-09-10 | Alcatel | Quality factor tuning system |
US5461336A (en) * | 1994-03-29 | 1995-10-24 | Mitsubishi Denki Kabushiki Kaisha | Filter circuit |
US5491447A (en) * | 1994-05-13 | 1996-02-13 | International Business Machines Corporation | Operational transconductance amplifier with independent transconductance and common mode feedback control |
JP2834018B2 (ja) * | 1995-02-21 | 1998-12-09 | 山形日本電気株式会社 | アクティブフィルタ |
US7301392B2 (en) * | 2005-08-10 | 2007-11-27 | Northrop Grumman Corporation | Tunable resonator for use in active-RC continuous-time filters |
US7345550B2 (en) * | 2005-12-05 | 2008-03-18 | Sirific Wireless Corporation | Type II phase locked loop using dual path and dual varactors to reduce loop filter components |
KR100776666B1 (ko) * | 2006-11-02 | 2007-11-19 | 한국전자통신연구원 | 저역 통과 필터의 주파수 특성과 큐 팩터 조정 장치 및 그방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3924199A (en) * | 1974-02-04 | 1975-12-02 | Arp Instr | N-pole filter circuit having cascaded filter sections |
-
1989
- 1989-05-24 JP JP1130774A patent/JPH0648775B2/ja not_active Expired - Fee Related
-
1990
- 1990-05-23 US US07/527,575 patent/US5028884A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US5028884A (en) | 1991-07-02 |
JPH02309710A (ja) | 1990-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3841428B2 (ja) | 電荷移送装置 | |
EP0561099B1 (en) | Circuit device for suppressing the dependence from temperature and production process variables of the transconductance of a differential transconductor stage | |
JPH0834393B2 (ja) | トランスコンダクタンス増幅器 | |
JPS6155806B2 (ja) | ||
JPH01212105A (ja) | 集積ジャイレータ発振器 | |
JPH0648775B2 (ja) | リープフロッグ・フィルタ | |
JPH01152805A (ja) | 増幅装置 | |
JPH05299949A (ja) | 帰還形差動増幅回路 | |
JP2714269B2 (ja) | 等価インダクタンス回路 | |
JP3411988B2 (ja) | 可変電圧電流変換回路 | |
JP2653474B2 (ja) | アクティブフィルター回路 | |
US5138279A (en) | Leapfrog filter | |
EP0049997A2 (en) | Filter circuit suitable for being fabricated into integrated circuit | |
JPH0821831B2 (ja) | 積分回路 | |
JP2901248B2 (ja) | 可変リアクタンス回路 | |
JPH0648776B2 (ja) | アクティブ・フィルタ | |
JPH0225286B2 (ja) | ||
JP2736081B2 (ja) | アクティブフィルター回路 | |
JPH0648774B2 (ja) | 積分回路 | |
JP2991727B2 (ja) | アクティブフィルタ回路 | |
JPS62160809A (ja) | 積分回路 | |
JPS58683B2 (ja) | 利得制御回路 | |
JPH0418251Y2 (ja) | ||
JP3148469B2 (ja) | フィルタ回路 | |
JPH0154884B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |