JPH06342805A - 珪素からなる半導体装置の製造方法 - Google Patents
珪素からなる半導体装置の製造方法Info
- Publication number
- JPH06342805A JPH06342805A JP3292664A JP29266491A JPH06342805A JP H06342805 A JPH06342805 A JP H06342805A JP 3292664 A JP3292664 A JP 3292664A JP 29266491 A JP29266491 A JP 29266491A JP H06342805 A JPH06342805 A JP H06342805A
- Authority
- JP
- Japan
- Prior art keywords
- surface zone
- amorphous
- temperature
- silicon
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 12
- 239000010703 silicon Substances 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 7
- 230000035515 penetration Effects 0.000 claims abstract description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000012535 impurity Substances 0.000 claims abstract 6
- 238000002347 injection Methods 0.000 claims abstract 2
- 239000007924 injection Substances 0.000 claims abstract 2
- 150000002500 ions Chemical class 0.000 claims description 16
- 238000001953 recrystallisation Methods 0.000 claims description 12
- 238000002513 implantation Methods 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000013078 crystal Substances 0.000 claims description 7
- -1 silicon ions Chemical class 0.000 claims description 5
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims description 2
- 238000007669 thermal treatment Methods 0.000 claims 2
- 230000007935 neutral effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 17
- 230000007547 defect Effects 0.000 abstract description 11
- 239000002019 doping agent Substances 0.000 abstract description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 8
- 229920005591 polysilicon Polymers 0.000 abstract description 8
- 238000009792 diffusion process Methods 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 239000002344 surface layer Substances 0.000 abstract description 4
- 239000011247 coating layer Substances 0.000 abstract description 2
- 239000007790 solid phase Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005280 amorphization Methods 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000348 solid-phase epitaxy Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/2658—Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Recrystallisation Techniques (AREA)
- Bipolar Transistors (AREA)
Abstract
(57)【要約】
【目的】 アモルファス表面層の欠陥の無い再結晶化が
保証されるような珪素中の平面接合(≦0.1マイクロ
メ−トル)の製造方法。 【構成】 半導体の表面に、イオンを注入し、注入され
た不純物を用いてド−ピングし、熱処理によってアモル
ファス層を再結晶化する珪素からなる半導体装置の製造
方法。
保証されるような珪素中の平面接合(≦0.1マイクロ
メ−トル)の製造方法。 【構成】 半導体の表面に、イオンを注入し、注入され
た不純物を用いてド−ピングし、熱処理によってアモル
ファス層を再結晶化する珪素からなる半導体装置の製造
方法。
Description
【0001】
【産業上の利用分野】本発明は、表面帯域のアモルファ
ス化、熱処理による前記表面領域の次のド−ピングおよ
びこの表面帯域の最終的な再結晶化のために、珪素イオ
ンまたはゲルマニウムイオンの注入による珪素の中の平
面接合の製造方法に関する。更に、本発明は、かかる平
面接合を有する半導体構成部材に関する。
ス化、熱処理による前記表面領域の次のド−ピングおよ
びこの表面帯域の最終的な再結晶化のために、珪素イオ
ンまたはゲルマニウムイオンの注入による珪素の中の平
面接合の製造方法に関する。更に、本発明は、かかる平
面接合を有する半導体構成部材に関する。
【0002】
【従来の技術】珪素の中に平面のpn接合を製造するた
めに、単結晶の珪素の表面帯域が、珪素イオンまたはゲ
ルマニウムイオンの注入によって、アモルファスの状態
へ送りこまれる方法も使用される。有利に、この方法で
予め処理された帯域へ注入された、B、BF2 +、Pまた
はAsのようなド−ピング剤は、侵入深さ、変則的な
(加速された)拡散および通路形成を極めて強力に制限
している。急激なド−ピングの輪郭が発生する。固体相
のエピタキシャル成長によるアモルファス表面帯域の再
結晶化の場合、温度選択の際に、ド−ピングの輪郭を維
持しつづけるようにド−ピング剤が拡散し過ぎないよう
に気をつけねばらない。
めに、単結晶の珪素の表面帯域が、珪素イオンまたはゲ
ルマニウムイオンの注入によって、アモルファスの状態
へ送りこまれる方法も使用される。有利に、この方法で
予め処理された帯域へ注入された、B、BF2 +、Pまた
はAsのようなド−ピング剤は、侵入深さ、変則的な
(加速された)拡散および通路形成を極めて強力に制限
している。急激なド−ピングの輪郭が発生する。固体相
のエピタキシャル成長によるアモルファス表面帯域の再
結晶化の場合、温度選択の際に、ド−ピングの輪郭を維
持しつづけるようにド−ピング剤が拡散し過ぎないよう
に気をつけねばらない。
【0003】”J.Appl.Phys.54巻、N
o.12、1983年12月6879〜6889頁”に
は、再結晶化が、925℃の温度で20分間に亘って行
われる方法が記載されている。
o.12、1983年12月6879〜6889頁”に
は、再結晶化が、925℃の温度で20分間に亘って行
われる方法が記載されている。
【0004】欧州特許第0201585号明細書には、
アモルファス表面の再結晶化のための2段階工程が記載
され、この工程では半導体試料は、まず約30分間60
0℃で維持され、この場合、アモルファス層は、固体相
エピタキシャル(SPE)によって、再結晶化され、引
き続き1秒以内に、注入されたド−ピング剤が活性化さ
れる1000℃以上に加熱される。
アモルファス表面の再結晶化のための2段階工程が記載
され、この工程では半導体試料は、まず約30分間60
0℃で維持され、この場合、アモルファス層は、固体相
エピタキシャル(SPE)によって、再結晶化され、引
き続き1秒以内に、注入されたド−ピング剤が活性化さ
れる1000℃以上に加熱される。
【0005】この2つの公知の方法は、再結晶化した状
態で、アモルファスから結晶の材料の接合領域が見出さ
れる場所に、結晶構造における欠陥が存在するという欠
点を有する。これらの欠点とは、第1に積層欠陥および
転位欠陥であり、これらの欠陥は、接合の電気的性質を
損なうものである。
態で、アモルファスから結晶の材料の接合領域が見出さ
れる場所に、結晶構造における欠陥が存在するという欠
点を有する。これらの欠点とは、第1に積層欠陥および
転位欠陥であり、これらの欠陥は、接合の電気的性質を
損なうものである。
【0006】”IEEE 1990 Bipolar
Circuits and Technology M
eeting 7.3、162〜165頁”の記載か
ら、アモルファス表面帯域と結晶ベ−ス材料との間の接
合領域の再結晶化の前に、450℃での温度過程で、3
0分間に亘って研磨するという方法は公知である。10
75℃および10秒で、後に続く短時間の全快過程(R
TA)の場合に、表面帯域は再結晶化し、同時にド−ピ
ング剤は活性化される。これらの公知の方法を使用した
後に、確かに、もはや何ら、原因を接合領域に有するよ
うな欠陥を見出すことは出来なかったが、しかし、その
代りに高いRTA温度の故に、増幅された硼素拡散を甘
受しなければならない。
Circuits and Technology M
eeting 7.3、162〜165頁”の記載か
ら、アモルファス表面帯域と結晶ベ−ス材料との間の接
合領域の再結晶化の前に、450℃での温度過程で、3
0分間に亘って研磨するという方法は公知である。10
75℃および10秒で、後に続く短時間の全快過程(R
TA)の場合に、表面帯域は再結晶化し、同時にド−ピ
ング剤は活性化される。これらの公知の方法を使用した
後に、確かに、もはや何ら、原因を接合領域に有するよ
うな欠陥を見出すことは出来なかったが、しかし、その
代りに高いRTA温度の故に、増幅された硼素拡散を甘
受しなければならない。
【0007】
【発明が解決しようとする課題】本発明には、アモルフ
ァス表面層の欠陥の無い再結晶化が保証されるような珪
素中の平面接合(≦0.1マイクロメ−トル)の製造方
法を記載するという課題が課された。
ァス表面層の欠陥の無い再結晶化が保証されるような珪
素中の平面接合(≦0.1マイクロメ−トル)の製造方
法を記載するという課題が課された。
【0008】
【課題を解決するための手段】この課題は、請求項1の
特徴部に記載された方法により解決される。本発明の別
の有利な実施態様は、従属請求項より生じる。
特徴部に記載された方法により解決される。本発明の別
の有利な実施態様は、従属請求項より生じる。
【0009】本発明は、以下に実施例に基づいて詳説さ
れる。
れる。
【0010】珪素の平面接合の製造のために、まずアモ
ルファス表面層が、単結晶の基礎物質上でイオンの注入
されることによって製造される。この場合、GeH4/
H2の混合物が、イオンの供給源として使用され、この
場合、70Geアイソト−プまたは74Geアイソト−プが
アモルファス化剤として使用される。2・1014cm-2
〜9・1014cm-2のイオン配量の場合、注入剤のエネ
ルギ−は、50keV〜150keVの範囲内である。
3〜5・1014cm-2のイオン配量の場合に約70ke
Vのエネルギ−が、特に有利なものであることが判明し
た。
ルファス表面層が、単結晶の基礎物質上でイオンの注入
されることによって製造される。この場合、GeH4/
H2の混合物が、イオンの供給源として使用され、この
場合、70Geアイソト−プまたは74Geアイソト−プが
アモルファス化剤として使用される。2・1014cm-2
〜9・1014cm-2のイオン配量の場合、注入剤のエネ
ルギ−は、50keV〜150keVの範囲内である。
3〜5・1014cm-2のイオン配量の場合に約70ke
Vのエネルギ−が、特に有利なものであることが判明し
た。
【0011】このようにして、例えば、3・1014cm
-2のイオン配量の場合に70keVのGeイオンの注入
は、約85nmのアモルファス層を生じた。基体に向か
って、約15nmの厚さを有する接合領域は接続し、該
接合領域の中で、基体のアモルファス層と結晶材料との
間の境界面は極めて目が粗くおよび該接合領域の中で結
晶島状構造もしくはアモルファス島状構造が、それぞれ
正反対の構造の領域内に存在している。前記の島状構造
を有する目の粗い接合帯域は、格子欠陥、殊に積層欠陥
および転位欠陥の形成のための種晶を、更に後の再結晶
化の際に製出する。
-2のイオン配量の場合に70keVのGeイオンの注入
は、約85nmのアモルファス層を生じた。基体に向か
って、約15nmの厚さを有する接合領域は接続し、該
接合領域の中で、基体のアモルファス層と結晶材料との
間の境界面は極めて目が粗くおよび該接合領域の中で結
晶島状構造もしくはアモルファス島状構造が、それぞれ
正反対の構造の領域内に存在している。前記の島状構造
を有する目の粗い接合帯域は、格子欠陥、殊に積層欠陥
および転位欠陥の形成のための種晶を、更に後の再結晶
化の際に製出する。
【0012】次の処理工程において、アモルファス表面
層は、Bイオン、BF2 +イオン、PイオンまたはAsイ
オンの注入によって配量される。アモルファス層の中
で、注入されたイオンの異常な拡散および通路形成作用
は理想的な方法で抑えられる。イオンエネルギ−の選択
によって、所望のド−ピングの輪郭が調整できる。2・
1014cm-2の配量の場合に25keVの注入エネルギ
−を、約70keVの場合でBF2 +イオンおよびGe前
アモルファス化の際に示した。
層は、Bイオン、BF2 +イオン、PイオンまたはAsイ
オンの注入によって配量される。アモルファス層の中
で、注入されたイオンの異常な拡散および通路形成作用
は理想的な方法で抑えられる。イオンエネルギ−の選択
によって、所望のド−ピングの輪郭が調整できる。2・
1014cm-2の配量の場合に25keVの注入エネルギ
−を、約70keVの場合でBF2 +イオンおよびGe前
アモルファス化の際に示した。
【0013】アモルファス層の再結晶化には、目の粗い
接合帯域の研磨を惹起する、別の処理工程が先行する。
このために半導体試料は、窒素雰囲気の炉の中で約40
0〜460℃の温度で約30〜50分間前処理される。
前記の温度では、まだアモルファス層の変換は起こらな
いが、しかし、分画した接合帯域は既に研磨され、この
場合殊に、アモルファス島状構造および結晶島状構造が
再形成する。
接合帯域の研磨を惹起する、別の処理工程が先行する。
このために半導体試料は、窒素雰囲気の炉の中で約40
0〜460℃の温度で約30〜50分間前処理される。
前記の温度では、まだアモルファス層の変換は起こらな
いが、しかし、分画した接合帯域は既に研磨され、この
場合殊に、アモルファス島状構造および結晶島状構造が
再形成する。
【0014】500〜600℃の温度で、30〜50分
間に亘って引き続き熱処理した場合に、アモルファス層
は固体相エピタキシャル成長によってサブストレ−トの
基礎結晶体の上に再結晶する。本来の再結晶化の前に目
の粗い接合帯域は研磨されたので、エピタキシャル成長
の後には、以前のアモルファス層中での積層欠陥および
転位欠陥は認められなかった。殊に、固体相エピタキシ
ャルのために窒素雰囲気中で40分の間では550℃の
温度が、特に有利であることが判明した。
間に亘って引き続き熱処理した場合に、アモルファス層
は固体相エピタキシャル成長によってサブストレ−トの
基礎結晶体の上に再結晶する。本来の再結晶化の前に目
の粗い接合帯域は研磨されたので、エピタキシャル成長
の後には、以前のアモルファス層中での積層欠陥および
転位欠陥は認められなかった。殊に、固体相エピタキシ
ャルのために窒素雰囲気中で40分の間では550℃の
温度が、特に有利であることが判明した。
【0015】引き続き短時間の加熱は、ド−ピング原子
を1000〜1100℃の温度の場合に、ド−ピングの
輪郭が5〜10秒の短い時間の間に本質的に幅が広がら
ずに活性化する。本来の再結晶化が、600℃の温度で
行われ、ただ単にド−ピングが活性化されるので、この
処理工程中には結晶体の構成において何ら付加的な欠陥
は発生しない。
を1000〜1100℃の温度の場合に、ド−ピングの
輪郭が5〜10秒の短い時間の間に本質的に幅が広がら
ずに活性化する。本来の再結晶化が、600℃の温度で
行われ、ただ単にド−ピングが活性化されるので、この
処理工程中には結晶体の構成において何ら付加的な欠陥
は発生しない。
【0016】上述の平面接合の典型的な使用の場合の例
は、双極性高周波トランジスタである。しかし、例えば
ダイオ−ドのような別の構成部材においても、かかる平
面接合は有利に使用してもよい。
は、双極性高周波トランジスタである。しかし、例えば
ダイオ−ドのような別の構成部材においても、かかる平
面接合は有利に使用してもよい。
【0017】
【実施例】図1は、1つのトランジスタを通った横断面
図を示し、そのベース帯域6を本発明による方法によっ
て製造した。以下に、図に基づいて、かかるトランジス
タの構成を詳説した。半導体サブストレ−ト1の上に、
公知の方法により、まず、埋設されたコレクタ電極2お
よびコレクタ3を製造した。p+ド−ピングされたポリ
珪素層4を、ベ−ス電極としておよび源として、外性ベ
−ス5の拡散侵入のために使用した。別の被覆層の後
に、内性ベ−ス部6をゲルマニウムの注入によってアモ
ルファス化した。この場合、ゲルマニウムイオンのエネ
ルギ−は、70keVである。2・1014cm-2の配量
を注入した。引き続き以前アモルファス化された帯域
を、25keVのエネルギ−および3・1014cm-2の
配量を有するBF2 +イオンの注入によってド−ピングし
た。アモルファスの材料に注入したので、理想的な分布
のド−ピング輪郭が発生した。注入されたイオンの通路
形成および異常な拡散を著しく減少させた。そして、ア
モルファス化された層を炉処理にて結晶させた。第1の
処理工程において、450℃で、アモルファス層と結晶
性のベ−ス結晶体との間の接合領域を研磨した。アモル
ファス層の再結晶化は、この処理工程の際には、まだ行
われなかった。それというのも、温度が固体相エピタキ
シャル成長にとっては、充分には高くなかったからであ
る。約40分後に温度を、炉の中で550℃に上昇させ
た。この第2の処理工程においてアモルファス層は、4
0分の内に殆ど欠陥のない再結晶をした。それというの
も、接合領域中の欠陥種晶を先行の処理工程中にて除去
したからである。そして、短時間の加熱を用いてド−ピ
ング剤を活性化する前に、公知の方法によってポリ珪素
8を塗布し、その後に続いてAs注入によってド−ピン
グした。このポリ珪素層8は、2つの機能を有する。一
方で、このポリ珪素層はエミッタ電極として使用され、
他方では、このポリ珪素層はエミッタ9のための拡散侵
入の源として作用するのである。そして、本発明による
熱処理の第3部が続くのである。1000〜1200℃
への短時間の加熱によって、ベ−ス帯域6のド−ピング
剤を活性化し、同時にエミッタ帯域9を拡散侵入させ
る。その上、5〜30秒の範囲内で短時間の加熱の時間
を変化させることによって、トランジスタの幅の広いベ
−スを製造することが出来る。引き続き、表面不働態化
および金属化10を公知の方法で実現化した。
図を示し、そのベース帯域6を本発明による方法によっ
て製造した。以下に、図に基づいて、かかるトランジス
タの構成を詳説した。半導体サブストレ−ト1の上に、
公知の方法により、まず、埋設されたコレクタ電極2お
よびコレクタ3を製造した。p+ド−ピングされたポリ
珪素層4を、ベ−ス電極としておよび源として、外性ベ
−ス5の拡散侵入のために使用した。別の被覆層の後
に、内性ベ−ス部6をゲルマニウムの注入によってアモ
ルファス化した。この場合、ゲルマニウムイオンのエネ
ルギ−は、70keVである。2・1014cm-2の配量
を注入した。引き続き以前アモルファス化された帯域
を、25keVのエネルギ−および3・1014cm-2の
配量を有するBF2 +イオンの注入によってド−ピングし
た。アモルファスの材料に注入したので、理想的な分布
のド−ピング輪郭が発生した。注入されたイオンの通路
形成および異常な拡散を著しく減少させた。そして、ア
モルファス化された層を炉処理にて結晶させた。第1の
処理工程において、450℃で、アモルファス層と結晶
性のベ−ス結晶体との間の接合領域を研磨した。アモル
ファス層の再結晶化は、この処理工程の際には、まだ行
われなかった。それというのも、温度が固体相エピタキ
シャル成長にとっては、充分には高くなかったからであ
る。約40分後に温度を、炉の中で550℃に上昇させ
た。この第2の処理工程においてアモルファス層は、4
0分の内に殆ど欠陥のない再結晶をした。それというの
も、接合領域中の欠陥種晶を先行の処理工程中にて除去
したからである。そして、短時間の加熱を用いてド−ピ
ング剤を活性化する前に、公知の方法によってポリ珪素
8を塗布し、その後に続いてAs注入によってド−ピン
グした。このポリ珪素層8は、2つの機能を有する。一
方で、このポリ珪素層はエミッタ電極として使用され、
他方では、このポリ珪素層はエミッタ9のための拡散侵
入の源として作用するのである。そして、本発明による
熱処理の第3部が続くのである。1000〜1200℃
への短時間の加熱によって、ベ−ス帯域6のド−ピング
剤を活性化し、同時にエミッタ帯域9を拡散侵入させ
る。その上、5〜30秒の範囲内で短時間の加熱の時間
を変化させることによって、トランジスタの幅の広いベ
−スを製造することが出来る。引き続き、表面不働態化
および金属化10を公知の方法で実現化した。
【0018】前記の方法で製造されたトランジスタを用
いて、約30GHzの境界周波数を達成した。
いて、約30GHzの境界周波数を達成した。
【図1】本発明により製造することができる、珪素から
なる半導体装置の1実施例を示す略字縦断面図。
なる半導体装置の1実施例を示す略字縦断面図。
1 半導体サブストレート、 2 コレクタ電極、 3
コレクタ、 4 ポリ珪素、 5 外性ベース、 6
内性ベース、 8 ポリ珪素、 9 エミッタ
コレクタ、 4 ポリ珪素、 5 外性ベース、 6
内性ベース、 8 ポリ珪素、 9 エミッタ
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/265 8617−4M H01L 21/265 W 8617−4M Q (72)発明者 ハインツ−アッヒム ヘフナー ドイツ連邦共和国 ブラッケンハイム シ ュペルバーヴェーク 17 (72)発明者 ヨアヒム イムシュヴァイラー ドイツ連邦共和国 ハイルブロン−ベッキ ンゲン シャーフベルク 25 (72)発明者 ミヒャエル ザイプト ドイツ連邦共和国 ゲッティンゲン ペー ター デバイエ シュティーク 16
Claims (9)
- 【請求項1】 半導体装置の製造のために、1つの単結
晶の半導体の表面に、電気的にニュ−トラルな、表面帯
域をアモルファス化するイオンが注入され、その後、表
面帯域が注入された不純物を用いてド−ピングされ、最
終的にアモルファス層が熱処理によって再結晶化される
ように、僅かな侵入深さの表面帯域を有する珪素からな
る半導体装置の製造方法において、熱処理が、まだアモ
ルファス層の再結晶化を起こさないが、しかし既にアモ
ルファス表面帯域と単結晶半導体との間の接合領域の研
磨が行われるように温度を選択した第1の炉処理工程
と、この第1の炉処理工程に続いて、アモルファス表面
帯域が再結晶化するには充分に高くかつ注入された不純
物原子の移動度が小さいままであるには充分に低い温度
の第2の炉処理工程と、この第2の炉処理工程に後続す
る最終的な短時間の加熱とからなり、この場合この温度
は、注入された不純物原子を活性化のに充分に高く、か
つ所要時間は不純物の再分布を小さく維持するために充
分に短いことを特徴とする、珪素からなる半導体装置の
製造法。 - 【請求項2】 表面帯域が、ゲルマニウムイオンまたは
珪素イオンの注入によってアモルファス化される、請求
項1記載の方法。 - 【請求項3】 表面帯域が、ゲルマニウムイオンの注入
によって、約70keVのエネルギ−および約3・10
14cm-2の用量の場合にアモルファス化される、請求項
1または2記載の方法。 - 【請求項4】 表面帯域が、B、BF2 +、PまたはAs
の注入によってド−ピングされる、請求項1から3まで
のいずれか1項記載の方法。 - 【請求項5】 表面帯域が、BF2 +注入によって、15
keV〜25keVのエネルギ−および3・1013cm
-2〜3・1014cm-2の用量の場合にド−ピングされ
る、請求項1から4までのいずれか1項記載の方法。 - 【請求項6】 第1の炉処理工程が、400〜460℃
の温度で、30〜50分間継続する請求項1から5まで
のいずれか1項記載の方法。 - 【請求項7】 第2の炉処理工程が、500〜600℃
の温度で、30〜50分間継続する請求項1から6まで
のいずれか1項記載の方法。 - 【請求項8】 短時間の加熱が、1000〜1200℃
の温度で、5〜30秒間継続する請求項1から7までの
いずれか1項記載の方法。 - 【請求項9】 双極性高周波トランジスタのベ−ス領域
を製造する方法において、請求項1から8までのいずれ
か1項記載の方法を使用することを特徴とする、双極性
高周波トランジスタのベ−ス領域を製造する方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4035842A DE4035842A1 (de) | 1990-11-10 | 1990-11-10 | Verfahren zur rekristallisierung voramorphisierter halbleiteroberflaechenzonen |
DE4035842.9 | 1990-11-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06342805A true JPH06342805A (ja) | 1994-12-13 |
JP2585489B2 JP2585489B2 (ja) | 1997-02-26 |
Family
ID=6418034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3292664A Expired - Fee Related JP2585489B2 (ja) | 1990-11-10 | 1991-11-08 | 珪素からなる半導体装置の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US5254484A (ja) |
EP (1) | EP0485830B1 (ja) |
JP (1) | JP2585489B2 (ja) |
DE (2) | DE4035842A1 (ja) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2572512B2 (ja) * | 1992-09-24 | 1997-01-16 | 信越半導体株式会社 | 拡散型シリコン素子基板の製造方法 |
US5318915A (en) * | 1993-01-25 | 1994-06-07 | North Carolina State University At Raleigh | Method for forming a p-n junction in silicon carbide |
US5453389A (en) * | 1993-08-27 | 1995-09-26 | National Semiconductor, Inc. | Defect-free bipolar process |
US5624873A (en) * | 1993-11-12 | 1997-04-29 | The Penn State Research Foundation | Enhanced crystallization of amorphous films |
US5858864A (en) * | 1994-09-13 | 1999-01-12 | Lsi Logic Corporation | Process for making group IV semiconductor substrate treated with one or more group IV elements to form barrier region capable of inhibiting migration of dopant materials in substrate |
US5654210A (en) * | 1994-09-13 | 1997-08-05 | Lsi Logic Corporation | Process for making group IV semiconductor substrate treated with one or more group IV elements to form one or more barrier regions capable of inhibiting migration of dopant materials in substrate |
US5863831A (en) * | 1995-08-14 | 1999-01-26 | Advanced Materials Engineering Research, Inc. | Process for fabricating semiconductor device with shallow p-type regions using dopant compounds containing elements of high solid solubility |
JP3518122B2 (ja) * | 1996-01-12 | 2004-04-12 | ソニー株式会社 | 半導体装置の製造方法 |
US6383899B1 (en) * | 1996-04-05 | 2002-05-07 | Sharp Laboratories Of America, Inc. | Method of forming polycrystalline semiconductor film from amorphous deposit by modulating crystallization with a combination of pre-annealing and ion implantation |
US5885896A (en) * | 1996-07-08 | 1999-03-23 | Micron Technology, Inc. | Using implants to lower anneal temperatures |
FR2751130B1 (fr) * | 1996-07-10 | 1998-09-25 | Sgs Thomson Microelectronics | Procede de fabrication de la base extrinseque d'un transistor npn dans une technologie bipolaire haute frequence |
US5879996A (en) * | 1996-09-18 | 1999-03-09 | Micron Technology, Inc. | Silicon-germanium devices for CMOS formed by ion implantation and solid phase epitaxial regrowth |
US6037640A (en) * | 1997-11-12 | 2000-03-14 | International Business Machines Corporation | Ultra-shallow semiconductor junction formation |
US6074937A (en) * | 1997-12-18 | 2000-06-13 | Advanced Micro Devices, Inc. | End-of-range damage suppression for ultra-shallow junction formation |
US6030863A (en) * | 1998-09-11 | 2000-02-29 | Taiwan Semiconductor Manufacturing Company | Germanium and arsenic double implanted pre-amorphization process for salicide technology |
AU1093800A (en) | 1998-09-21 | 2000-04-10 | Penn State Research Foundation, The | Metal-contact induced crystallization in semiconductor devices |
US6184112B1 (en) * | 1998-12-02 | 2001-02-06 | Advanced Micro Devices, Inc. | Method of forming a MOSFET transistor with a shallow abrupt retrograde dopant profile |
US6362063B1 (en) | 1999-01-06 | 2002-03-26 | Advanced Micro Devices, Inc. | Formation of low thermal budget shallow abrupt junctions for semiconductor devices |
US6399458B1 (en) * | 1999-09-21 | 2002-06-04 | International Business Machines Corporation | Optimized reachthrough implant for simultaneously forming an MOS capacitor |
US6426278B1 (en) | 1999-10-07 | 2002-07-30 | International Business Machines Corporation | Projection gas immersion laser dopant process (PGILD) fabrication of diffusion halos |
US6452338B1 (en) | 1999-12-13 | 2002-09-17 | Semequip, Inc. | Electron beam ion source with integral low-temperature vaporizer |
US6555439B1 (en) * | 2001-12-18 | 2003-04-29 | Advanced Micro Devices, Inc. | Partial recrystallization of source/drain region before laser thermal annealing |
US6682992B2 (en) * | 2002-05-15 | 2004-01-27 | International Business Machines Corporation | Method of controlling grain size in a polysilicon layer and in semiconductor devices having polysilicon structures |
US6699771B1 (en) * | 2002-08-06 | 2004-03-02 | Texas Instruments Incorporated | Process for optimizing junctions formed by solid phase epitaxy |
DE10260613B8 (de) * | 2002-12-23 | 2010-03-04 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zum Herstellen eines Feldeffekttransistors |
WO2005062352A1 (en) * | 2003-12-18 | 2005-07-07 | Koninklijke Philips Electronics N.V. | A semiconductor substrate with solid phase epitaxial regrowth with reduced junction leakage and method of producing same |
EP1697979A2 (en) * | 2003-12-22 | 2006-09-06 | Koninklijke Philips Electronics N.V. | A semiconductor substrate with solid phase epitaxial regrowth with reduced depth of doping profile and method of producing same |
CN100389489C (zh) * | 2003-12-30 | 2008-05-21 | 中芯国际集成电路制造(上海)有限公司 | 利用注入晶片的注入机的低能量剂量监测 |
CN1694263A (zh) * | 2004-05-07 | 2005-11-09 | 松下电器产业株式会社 | 半导体装置及其制造方法 |
DE102005063462B4 (de) | 2004-09-22 | 2017-10-12 | Infineon Technologies Ag | Verfahren zur Herstellung einer dotierten Zone in einem Halbleiterkörper |
TW200625421A (en) * | 2004-09-29 | 2006-07-16 | Koninkl Philips Electronics Nv | Reduction of sheet resistance of phosphorus implanted polysilicon |
DE102004048332B4 (de) | 2004-10-05 | 2008-08-14 | Atmel Germany Gmbh | Verfahren zur Herstellung einer Halbleiteranordnung, Halbleiteranordnung und Hochfrequenzschaltung |
DE102006015086B4 (de) * | 2006-03-31 | 2010-07-01 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zur Herstellung äußerst flacher Übergänge mit hoher Qualität durch eine Kombination einer Festphasenepitaxie und einer Laserausheizung |
KR100852233B1 (ko) * | 2007-02-21 | 2008-08-13 | 삼성전자주식회사 | 수직형 다이오드의 형성 방법 및 이를 이용하는 상변화메모리 장치의 제조 방법 |
JP2011134836A (ja) * | 2009-12-24 | 2011-07-07 | Toshiba Corp | 裏面照射型撮像素子の製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62501320A (ja) * | 1984-11-26 | 1987-05-21 | ヒユ−ズ・エアクラフト・カンパニ− | 浅い超階段ド−プ領域を有する半導体および注入不純物を使用するその処理方法 |
JPH0256927A (ja) * | 1988-08-22 | 1990-02-26 | Toshiba Corp | シリコン基板の熱処理方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE220812C (ja) * | ||||
DE220814C (ja) * | 1900-01-01 | |||
GB1269359A (en) * | 1968-08-22 | 1972-04-06 | Atomic Energy Authority Uk | Improvements in or relating to semiconductors and methods of doping semiconductors |
GB1486265A (en) * | 1973-10-17 | 1977-09-21 | Hitachi Ltd | Method for producing an amorphous state of a solid material |
JPS543479A (en) * | 1977-06-09 | 1979-01-11 | Toshiba Corp | Semiconductor device and its manufacture |
US4350537A (en) * | 1979-10-17 | 1982-09-21 | Itt Industries Inc. | Semiconductor annealing by pulsed heating |
JPS5984422A (ja) * | 1982-11-04 | 1984-05-16 | Pioneer Electronic Corp | 半導体装置の製造方法 |
CA1216962A (en) * | 1985-06-28 | 1987-01-20 | Hussein M. Naguib | Mos device processing |
JPH0795535B2 (ja) * | 1986-12-19 | 1995-10-11 | 日本電信電話株式会社 | 半導体装置の製造方法 |
JPH01196818A (ja) * | 1988-02-02 | 1989-08-08 | Fujitsu Ltd | 半導体装置の製造方法 |
JP2773957B2 (ja) * | 1989-09-08 | 1998-07-09 | 富士通株式会社 | 半導体装置の製造方法 |
-
1990
- 1990-11-10 DE DE4035842A patent/DE4035842A1/de active Granted
-
1991
- 1991-09-24 US US07/764,615 patent/US5254484A/en not_active Expired - Lifetime
- 1991-11-02 DE DE59107615T patent/DE59107615D1/de not_active Expired - Lifetime
- 1991-11-02 EP EP91118708A patent/EP0485830B1/de not_active Expired - Lifetime
- 1991-11-08 JP JP3292664A patent/JP2585489B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62501320A (ja) * | 1984-11-26 | 1987-05-21 | ヒユ−ズ・エアクラフト・カンパニ− | 浅い超階段ド−プ領域を有する半導体および注入不純物を使用するその処理方法 |
JPH0256927A (ja) * | 1988-08-22 | 1990-02-26 | Toshiba Corp | シリコン基板の熱処理方法 |
Also Published As
Publication number | Publication date |
---|---|
DE59107615D1 (de) | 1996-05-02 |
DE4035842A1 (de) | 1992-05-14 |
US5254484A (en) | 1993-10-19 |
EP0485830B1 (de) | 1996-03-27 |
JP2585489B2 (ja) | 1997-02-26 |
DE4035842C2 (ja) | 1993-03-11 |
EP0485830A1 (de) | 1992-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06342805A (ja) | 珪素からなる半導体装置の製造方法 | |
US4617066A (en) | Process of making semiconductors having shallow, hyperabrupt doped regions by implantation and two step annealing | |
US5318915A (en) | Method for forming a p-n junction in silicon carbide | |
KR100926390B1 (ko) | 초 미세 접합부 형성 방법 | |
JPH0235468B2 (ja) | ||
US6008098A (en) | Ultra shallow junction formation using amorphous silicon layer | |
EP0852394B1 (en) | Method for making very shallow junctions in silicon devices | |
US6063682A (en) | Ultra-shallow p-type junction having reduced sheet resistance and method for producing shallow junctions | |
CN100474513C (zh) | 一种制造半导体器件的方法及用该方法制造的半导体器件 | |
JP4141505B2 (ja) | SiC層中にボロンをドープされた領域を生成する方法 | |
US6372585B1 (en) | Semiconductor device method | |
US6835626B2 (en) | Method to overcome instability of ultra-shallow semiconductor junctions | |
JPH0521448A (ja) | 半導体装置の製造方法 | |
US20040115889A1 (en) | Ultra shallow junction formation | |
US20050112830A1 (en) | Ultra shallow junction formation | |
JPS6142854B2 (ja) | ||
JPH0212924A (ja) | バイポーラ・トランジスタの製造方法 | |
JPH0521461A (ja) | 半導体装置の製造方法 | |
JPH06151348A (ja) | 半導体装置の製造方法 | |
JPH05190449A (ja) | 半導体薄膜の製造方法 | |
JPH01214172A (ja) | 半導体装置の製造方法 | |
KR100579217B1 (ko) | 낮은 에너지 이온 주입 방법을 이용한 피/피플러스 에피택셜 웨이퍼 제조방법 | |
JPS63124520A (ja) | 半導体装置の製造方法 | |
JP2653513B2 (ja) | 半導体装置の製造方法 | |
Vasudev et al. | High-Quality Boron and BF2+-Implanted P+ Junctions in Si Using Solid Phase Epitaxy and Transient Annealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |