JPH0551779A - 三弗化窒素ガスの製造方法 - Google Patents

三弗化窒素ガスの製造方法

Info

Publication number
JPH0551779A
JPH0551779A JP3215188A JP21518891A JPH0551779A JP H0551779 A JPH0551779 A JP H0551779A JP 3215188 A JP3215188 A JP 3215188A JP 21518891 A JP21518891 A JP 21518891A JP H0551779 A JPH0551779 A JP H0551779A
Authority
JP
Japan
Prior art keywords
anode
electrolysis
gas
molten salt
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3215188A
Other languages
English (en)
Inventor
Makoto Aritsuka
塚 眞 在
Atsuhisa Mitsumoto
本 敦 久 三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3215188A priority Critical patent/JPH0551779A/ja
Publication of JPH0551779A publication Critical patent/JPH0551779A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

(57)【要約】 【目的】 炭素電極を使用する三弗化窒素ガス
の製造において、陽極効果の発現を抑制する。 【構成】 フッ化アンモニウム−フッ化水素2
成分系溶融塩を電解液とし、炭素質ブロックよりなる炭
素電極を陽極とする電解法による三弗化窒素ガスの製造
において、近接する陽極−陰極間の電圧が6V未満また
は/および幾何学的陽極面積に対する電流密度が50mA/
cm2未満であって、かつ、該幾何学的陽極面積に対する
電解電気量が500C/cm2以上で電解し、引続き50mA/cm2
上で電解を行うことを特徴とする三フッ化窒素ガスの製
造方法に関する。 【効果】 陽極効果の発現を抑制し、陽極の溶
解、電解液の汚染等を解決する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は三弗化窒素ガス(NF3) の
製造方法に関する。更に詳しくは、フッ化アンモニウム
(NH4F)−フッ化水素(HF)2成分系溶融塩の電解によるNF
3 ガスの製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】最近の
エレクトロニクス産業の飛躍的な発展に伴い、半導体素
子の高密度化、高性能化が進められ、超大規模集積回路
の生産が増加している。これに伴い、該超大規模集積回
路製造過程に使用されるドライエッチング用のガスとし
て、また、CVD装置のクリーナー用のガスとして高純
度のNF3 ガスが要求されるようになった。
【0003】NF3 ガスの製造方法は大きく化学法と電解
法とに分けられる。化学法は、第一段階として電解によ
りフッ素ガス(F2)を製造し、第二段階において得られた
F2と窒素含有原料とを反応させることによりNF3 ガスを
製造するものである。一方、電解法は、窒素分およびフ
ッ素分を含有する非水溶液系溶融塩を電解液とし、これ
を電解することによりNF3 ガスを製造するものである。
【0004】工業的な電解法の特徴としては、CF4 をほ
とんど含まない高純度のNF3ガスを製造できることであ
る。CF4 の沸点はNF3ガス の沸点に極めて接近している
等、物性が極めて似ているため、NF3 ガス中のCF4 を精
製により除去することは極めて困難であり、高純度NF3
ガス 製造のためには炭素源を有しない工程であること
が重要である。
【0005】次に電解法に関して、さらに詳しく述べ
る。電解法において使用可能な陽極材料はニッケルと炭
素である。
【0006】ニッケルを使用した場合は、CF4 発生の原
因となる炭素源を有しない工程となるため、CF4 をほと
んど含有しない高純度のNF3ガス を製造することが出来
る。しかし、ニッケル陽極は次の欠点を有している。即
ち、ニッケル陽極は電解により、溶解電流効率で僅かに
数パーセントの割合で溶解する。しかし、工業的に長期
間の電解を継続すると、ニッケル陽極は消耗し、やがて
電極の更新が必要となる。さらには溶解したニッケルが
ニッケル錯塩スラッジとして溶融塩電解液中に蓄積し、
電解液を汚染するため、電解液の更新も必要となる。電
極や溶融塩電解液の更新頻度は電流量や電極の大きさに
よって異なるが、工業的には操業効率を低下させる最大
の原因であり、大きな問題となっている。
【0007】炭素は不溶性であるため、陽極に使用した
場合、ニッケルの場合の問題は起こらない。しかし、電
極自身を炭素源としてCF4 が発生するため、高純度のNF
3 ガスが製造できず、さらには電極が崩壊するなどの問
題がある。ところが、最近になってCF4 の発生が抑制さ
れ、かつ機械的強度も著しく改善された新型炭素電極が
開発されたため、新型炭素電極による高純度NF3ガス 製
造の可能性が高まっている。しかし、炭素電極に特有の
問題、いわゆる陽極効果については完全に解決されてい
ないため、新型炭素電極であっても陽極として使用する
ためには障害がある。なお、工業的に炭素電極を使用し
て三フッ化窒素ガスを製造した報告は無いため、この問
題への対応は新たな検討を要するものである。
【0008】
【課題を解決するための手段】ここで陽極効果とは、電
解中に突然電位が異常に上昇し、電解が継続できなくな
る現象を言う。これは、電解中に電極表面に生成した極
めて表面エネルギーの低い皮膜により、電極表面が発生
したガスで覆われるために起こる。
【0009】発明者らは、陽極効果の発現について鋭意
検討を重ねた結果、一定の条件で電解を行い、陽極を電
解雰囲気にならしておくと、引続き電解を行ったときに
陽極効果やこれに類似する現象が発生しにくいことを見
いだし本発明を完成するに至ったものである。
【0010】即ち、本発明はフッ化アンモニウム−フッ
化水素2成分系溶融塩を電解液とし、炭素質ブロックよ
りなる炭素電極を陽極とする電解法による三弗化窒素ガ
スの製造において、近接する陽極−陰極間の電圧が6V
未満または/および幾何学的陽極面積に対する電流密度
が50mA/cm2未満であって、かつ、該幾何学的陽極面積に
対する電解電気量が500C/cm2以上で電解し、引続き50mA
/cm2以上で電解を行うことを特徴とする三フッ化窒素ガ
スの製造方法である。
【0011】尚、本発明は、炭素電極を使用する上で従
来より問題であった、陽極効果の発現を抑制することを
目的としたものであり、炭素電極の新型、従来型は問わ
ないことは言うまでもない。
【0012】以下、本発明を詳細に開示する。まず、電
解に使用する溶融塩の調整方法について述べる。溶融塩
の調整方法は概ね2つの方法で実施可能である。第1の
方法は、一水素二フッ化アンモニウム(NH4HF2)とHFより
調整する方法で、まず、容器もしくは電解槽にNH4HF2
所定量投入し、これに所定量のガス状HFを吹き込むもの
である。そして第2の方法は、容器もしくは電解槽中
で、所定量のアンモニアガス(NH3) とガス状HFを直接反
応させて溶融塩を調整する方法である。後者の方法にお
いては、NF3 ガスおよびHFガスのいずれにも 5〜70 vo
l%程度の乾燥不活性ガス、例えば窒素、アルゴン、ヘ
リウム、を同伴させて供給すると、ガス供給管に溶融塩
が逆流することもなく安定に調整できる。いずれも該溶
融塩を容易に調整することが可能である。尚、NH4Fは著
しい潮解性と熱分解性を有するが、溶融塩原料として使
用することは可能である。
【0013】上記により調整された溶融塩に若干量のKF
あるいはCsFを添加することは本発明を実施するうえで
支障はない。KFあるいはCsF は溶融塩の蒸気圧を低減さ
せる効果を有するが、添加量が多くなるとNF3 ガスの生
成効率が落ちる等の弊害が生じるため好ましくない。従
って、添加が必要な場合でも添加量は極力抑えるべきで
ある。具体的にはKFあるいはCsF 含有量が10mol% を超
えないことが必要である。該溶融塩の温度としては160
℃ 以下が望ましい。溶融塩の温度が160℃ を超えると
蒸気圧が著しく高くなり、溶融塩の損失が多くなるばか
りでなく、電解生成ガスの導出口付近に揮発成分が凝縮
固結し、閉塞を引き起こす問題も生じる。
【0014】上記の如く、調整された電解液を使用して
電解を行うが、以下は本発明を実施する上で重要な点で
ある。電解方法としては定電流法、定電位法のいずれで
も実施可能である。定電流法で行う場合は、陽極の幾何
学的表面積に対する電流密度(以下、陽極電流密度)が
50mA/cm2未満で電解を実施する。定電位法では槽電圧が
6V以下の条件で電解を行う。いずれの方法を採用して
も良いが、後述する電気量の把握を容易にするためには
定電流法が適している。一方、定電位法では電解電流が
常に変化するものの電極反応を一定に出来る方法である
ため、確実に本発明の実施が可能である。なお、定電流
電解を行いながら電解電圧上限を規制する方法で行え
ば、確実かつ容易に本発明を実施できるため一層好まし
い。
【0015】本発明によらず、槽電圧が6V以上あるい
は陽極電流密度が50mA/cm2以上での電解を直ちに行う
と、陽極効果が発生する。この原因は定かではないが、
本発明を実施しない状態の電極表面は、陽極効果を発生
し易い状態にあるものと考えられる。
【0016】ここでいう幾何学的表面積とは、通常は電
極板の巾と電極板の浸液部の深さの積をもって表される
面積をいい、電極板の表面が著しく粗な電極の場合はこ
の限りではない。
【0017】上記の条件での電解を行う際の、陽極の幾
何学的単位表面積に対する電解電気量(以下、電解電気
量)も本発明の重要な点である。規定の電気量に達しな
いまま、陽極電流密度を50mA/cm2以上もしくは槽電圧を
6V以上に上げる電解を行うと、陽極効果が発生する。
この原因は上記と同様であるが、陽極効果が起こりにく
い電極表面が形成されるためには一定の間、特定の条件
で電解が必要であることを示唆している。
【0018】次に炭素電極について述べる。炭素質電極
については大きく2つ分類した。即ち、曲げ強度が50MP
a を境とする炭素電極である。従来の曲げ強度が50MPa
未満の炭素電極は機械的強度に不足しており、これが原
因と考えられるCF4 の生成量が多い。一方、曲げ強度が
50MPaを越える新型炭素質電極は機械的強度が高く、CF4
生成量が従来の炭素質電極と比較して低く抑えられる。
【0019】いまひとつは、炭素質ブロックに金属フッ
化物を含浸する炭素質電極である。炭素質ブロックに金
属フッ化物を含浸することにより、電極の機械的強度の
向上が期待される。さらには、陽極効果を抑制する効果
も期待できる。
【0020】
【実施例】以下、実施例により本発明を更に具体的に説
明する。
【0021】実施例1 NH4F-HF 2成分系溶融塩は、容量約2lの電解槽中で調
製した。真空乾燥したNH4HF2 約2200gを電解槽に仕込
み、電解槽中にHFガス約800gを50g/minにて送入し調製
した。溶融塩組成はおよそNH4F・2HFであった。これを電
解液とし、曲げ強度が約30MPa の炭素質電極を陽極と
し、陽極電流密度が10mA/cm2で電解を約20時間行った。
電解電気量は約700C/cm2であった。引続き陽極電流密度
を70mA/cm2として電解を行ったが陽極効果は発生しなか
った。
【0022】実施例2 実施例1と同様の方法にて溶融塩を調整した後、曲げ強
度が約80MPa で新型炭素質電極を用いて、陽極電流密度
40mA/cm2で電解を約6時間行った。電解電気量は約900C
/cm2であった。引続き陽極電流密度を70mA/cm2として電
解を行ったが陽極効果は発生しなかった。
【0023】実施例3 実施例1と同様の方法にて溶融塩を調整した後、曲げ強
度が約80MPa で新型炭素質電極を用いて、槽電圧を5V
の定電位電解を行った。約17時間の電解を行ったところ
で電解電気量が約700C/cm2となったため、引続き陽極電
流密度を70mA/cm2として電解を行ったが陽極効果は発生
しなかった。
【0024】実施例4 実施例1と同様の方法にて溶融塩を調整した後、曲げ強
度が約70MPaで金属フッ化物を含浸した炭素電極を用い
て、陽極電流密度が40mA/cm2で電解を約6時間行った。
電解電気量は約900C/cm2であった。引続き陽極電流密度
を70mA/cm2として電解を行ったが陽極効果は発生しなか
った。
【0025】比較例1 実施例1と同様の方法で溶融塩を調整した後、曲げ強度
が約30MPa の炭素電極を用いて陽極電流密度10mA/cm2
電解を約8時間行った。電解電気量は約300C/cm2であっ
た。引続き陽極電流密度を70mA/cm2として電解を行った
ところ、約30分後に陽極効果が発生した。
【0026】比較例2 実施例1と同様の方法で溶融塩を調整した後、曲げ強度
が約30MPa の炭素電極を用いて陽極電流密度60mA/cm2
電解をおこなった。その時の槽電圧は7V以上であっ
た。また、電解開始より約30分後に陽極効果が発生し
た。
【0027】
【発明の効果】炭素電極はニッケル電極の欠点である溶
解を解消する電極であるが、陽極効果が発生するという
欠点を有している。これを確実に抑えることが重要であ
るが、本発明では一定の間、特定の条件で電解を行うと
いうきわめて簡便な手法を用いることで陽極効果の抑制
に大きな効果があることを見いだした。NF3ガス の電解
製造においてニッケル陽極を使用した場合の従来の問題
点、即ち、陽極の溶解、電解液の汚染等を解決する新た
な可能性を与えた意義は大きいといえる。

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 フッ化アンモニウム−フッ化水素2成
    分系溶融塩を電解液とし、炭素質ブロックよりなる炭素
    電極を陽極とする電解法による三弗化窒素ガスの製造に
    おいて、近接する陽極−陰極間の電圧が6V未満または
    /および幾何学的陽極面積に対する電流密度が50mA/cm2
    未満であって、かつ、該幾何学的陽極面積に対する電解
    電気量が500C/cm2以上で電解し、引続き50mA/cm2以上で
    電解を行うことを特徴とする三フッ化窒素ガスの製造方
    法。
  2. 【請求項2】 炭素質ブロックの曲げ強度が50MPa 以
    上である請求項1の方法。
  3. 【請求項3】 炭素質ブロックが金属フッ化物を含浸
    してなる請求項2の方法。
JP3215188A 1991-08-27 1991-08-27 三弗化窒素ガスの製造方法 Pending JPH0551779A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3215188A JPH0551779A (ja) 1991-08-27 1991-08-27 三弗化窒素ガスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3215188A JPH0551779A (ja) 1991-08-27 1991-08-27 三弗化窒素ガスの製造方法

Publications (1)

Publication Number Publication Date
JPH0551779A true JPH0551779A (ja) 1993-03-02

Family

ID=16668139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3215188A Pending JPH0551779A (ja) 1991-08-27 1991-08-27 三弗化窒素ガスの製造方法

Country Status (1)

Country Link
JP (1) JPH0551779A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514954A1 (en) * 2003-05-28 2005-03-16 Toyo Tanso Co., Ltd. Electric current control method and apparatus for use in gas generators
JP2010059503A (ja) * 2008-09-04 2010-03-18 Mitsubishi Heavy Ind Ltd 水電解装置の起動方法、水電解装置の起動装置及びこれを備える水電解装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514954A1 (en) * 2003-05-28 2005-03-16 Toyo Tanso Co., Ltd. Electric current control method and apparatus for use in gas generators
US7288180B2 (en) 2003-05-28 2007-10-30 Toyo Tanso Co., Ltd. Electric current control method and apparatus for use in gas generators
JP2010059503A (ja) * 2008-09-04 2010-03-18 Mitsubishi Heavy Ind Ltd 水電解装置の起動方法、水電解装置の起動装置及びこれを備える水電解装置

Similar Documents

Publication Publication Date Title
KR100641603B1 (ko) 고순도 불소의 제조방법
CN1840742B (zh) 电解阳极和应用此电解阳极电解合成含氟物质的方法
CN101328592B (zh) 导电的金刚石电极结构和用于含氟材料的电解合成的方法
JP2729254B2 (ja) 低分極性炭素電極
TWI415973B (zh) 三氟化氮之電解合成方法
KR100742484B1 (ko) 기화되는 불산을 최소화한 고순도 삼불화질소 제조용전해조 및 이를 이용한 삼불화 질소의 제조방법
JPH0551779A (ja) 三弗化窒素ガスの製造方法
KR102614534B1 (ko) 전극 및 그의 제조 방법 그리고 재생 전극의 제조 방법
JP3037464B2 (ja) 三弗化窒素ガスの製造方法
KR100447420B1 (ko) 3불화질소가스의 제조에 사용되는 전극
EP0517723B1 (en) Process for purifying hydrogen fluoride
JPS6261115B2 (ja)
JPH0551782A (ja) 三弗化窒素ガスの製造方法
JP2896196B2 (ja) 三弗化窒素ガスの製造方法
JP3162594B2 (ja) 電解液及びそれを用いる三フッ化窒素ガスの製造方法
JPH0551778A (ja) 三弗化窒素ガスの製造方法
JPH0570982A (ja) 三弗化窒素ガスの製造方法
JP3340273B2 (ja) 複合電極及びそれを用いる三フッ化窒素ガスの製造方法
KR101411714B1 (ko) 니켈계 전극 및 이를 이용한 삼불화질소 제조방법
JP2000104188A (ja) 電解槽(2)
JPH11335105A (ja) 三フッ化窒素ガスの製造方法
JPH03170307A (ja) 三フッ化窒素の製造方法
JPH0718032B2 (ja) 三弗化窒素ガスの製造方法
JP2000104187A (ja) 電解槽(1)
JPH11189405A (ja) 三弗化窒素の製造方法