JPH0532455B2 - - Google Patents

Info

Publication number
JPH0532455B2
JPH0532455B2 JP1257056A JP25705689A JPH0532455B2 JP H0532455 B2 JPH0532455 B2 JP H0532455B2 JP 1257056 A JP1257056 A JP 1257056A JP 25705689 A JP25705689 A JP 25705689A JP H0532455 B2 JPH0532455 B2 JP H0532455B2
Authority
JP
Japan
Prior art keywords
ihc
added
amount
composition
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1257056A
Other languages
Japanese (ja)
Other versions
JPH03120330A (en
Inventor
Takaaki Yasumura
Tomoyuki Hayashi
Yasutoshi Mizuno
Kazuo Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP1257056A priority Critical patent/JPH03120330A/en
Publication of JPH03120330A publication Critical patent/JPH03120330A/en
Publication of JPH0532455B2 publication Critical patent/JPH0532455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

《産業上の利用分野》 本発明は、希土類元素と、遷移元素を主成分と
するR2M17(R:Yを含む希土類元素、M:主と
して遷移金属)系永久磁石材料に関し、これに
Mn,Sbを添加し、溶体化処理を行うことにより
エネルギー積を高めた永久磁石材料に関する。 《従来の技術》 従来、希土類元素RがSm、遷移金属MがCoで
あるR2Co17系永久磁石材料の代表的なものとし
て、以下の式で示される成分およびその組成のも
のがある。 Sm(Co0.7Fe0.204Cu0.075A0.0217.55 (但しAグループとしてはZn,Zrの1種以上) この組成の磁石材料は保磁力(iHc)を高める
べくCuを10%(wt%、以下同じ)以上と高めに
し、また、高Cu量の場合に生ずる残留磁束密度
(Br)の低下をFeの添加により抑制していた。但
し、Feを多量に添加するとiHcの低下を招くた
め、添加量を低く押さえていた。 しかし、この組成の永久磁石材料では、高々
22.1MG・Oe程度のエネルギー積(BH)maxし
か得ることができなかつた。 そこで、この(BH)maxを高めるべく、これ
まで以下に述べる各種の提案がなされた。 Rが22〜28%で、Cu量を5〜12%に抑制し、
X(Nb,Zr,V,Ta,Cr,Hf)を0.2〜5%
と、Mnを0.2〜8%加え、残部が35%以下をFe
で置き換えたCoからなるもの(特公昭56−
11378号)、 Rが22〜28%でCu量を2〜10%に抑え、T
(Fe,Mn,Cr)を6〜35%、M(Zr,Hf)を
0.5〜6%加え、残部がCoからなるもの(特公
昭62−61665号)、 一般式が R(Co1-u-v-wCuuFevMw2 で表されるもの(特公昭61−1778号) (但し: 0<u≦2,0.01<v≦0.6、 0.005≦w≦0.05、 6.5≦z≦8.8、 M:Ta,Zr,Nb,Ti,Hf) 等が、iHc,Brとも高く、この結果(BH)max
の高いものとして掲げることができる。 《発明が解決しようとする課題》 しかしながら、〜のいずれもがCu量を低
めにする代わりに、Ta,Nb,Hf等の高いコス
トで入手しにくい元素を必須としており、材料コ
ストひいては製品コストの上昇を招いている。 また、これらはいずれもがiHcとBrの両者を高
めることにより(BH)maxを向上させることを
指向しており、前述の通り元素によつてはiHcは
高まるが、Brが低下したり、逆にBrは高まるが
iHcは低下するなどの問題があり、iHc,Brの両
者を高めることの出来る組成を決定することは困
難であつた。 本発明は以上の諸点に鑑みなされたものであつ
て、R2M17系磁石材料で必須とされているR,
Cu,FeのうちのCu量を低めとし、その代わりに
添加する元素を入手しやすい材料であるZn,Zr
の1種以上、およびMn,Sbの双方を添加するこ
とで最大エネルギー積(BH)maxの低下を防止
した上でBrを増加させ、これによつて(BH)
maxを向上できるようにした磁石材料を提供す
ることを目的とする。 《課題を解決するための手段》 前記目的を達成するため、本発明の永久磁石材
料は、一般式が R(Co1-a-b-c-d-eFeaCubMncAdSbez で示されるものであり、 RはYを含む希土類元素の1種以上、 AはZn,Zrの1種以上、 0.05≦a≦0.40、 0.02≦b≦0.20、 0.001≦c≦0.03、 0.001≦d≦0.04、 0.005≦e≦0.02、 6.5≦z≦8.5からなることを特徴とする。 《作用》 すなわち、本発明ではR2M17系磁石材料で必須
とされているR,Cu,Fe,CoにAグループとし
てZn,Zrの1種以上を加え、さらにMn,Sbの双
方を添加したものである。 Aグループの添加量dを0.001〜0.04とするの
は、0.001未満ではiHcが小さく、逆に0.04を超え
るとBrの低下が著しく、かつiHcも低下するため
である。 Sbの添加量eを0.0005〜0.02とするのは、0.02
を超えるとBrの向上作用がなくなり、またiHcも
従来より低下するためであり、逆に0.0005未満の
場合には、SbとMnの相乗効果がなくなるからで
ある。 Mnの添加量cを0.001〜0.03とするのは、0.001
未満では前記Sbとの相乗効果がなくなり、0.03を
超えるとiHc,Brともに低下してしまうからであ
る。 Cuの添加量bを0.02〜0.2とするのは、従来例
で述べた通り0.2を超えると実用範囲よりBrが低
下し、本発明の目的であるBrの向上が達成出来
ず、逆に0.02未満であるとiHcが低下するためで
ある。 Feの添加量aを0.05〜0.4とするのは、0.4を超
えるとiHcが低下し、0.05を下回るとBrも低下し
てしまうからである。 Rに対する(Co1-a-b-c-d-eFeaCubMncAdSbe
成分の割合zを6.5〜8.5とするのは、6.5未満の場
合にはBrが低下し、本発明の目的であるBrの向
上が達成出来ず、逆に8.5を超えるとiHcが従来程
度にならないからである。 本発明では、以上の組成の成分を溶製して塊と
し、これを微粉砕の後、8〜14KOeの磁場中で
0.5〜2トン/cm2の成形圧を加え、所望形状に圧
縮成形して次の熱処理を行う。 すなわち、1180〜1250℃で3〜10時間焼結し、
1100〜1240℃で3〜10時間で溶体化処理した後、
400〜800℃で0.5〜4時間での第1段時効処理、
750〜950℃で0.5〜5時間での第2段時効処理を
行い、0.1〜4℃/minの速度で800℃以下まで冷
却する。 以上の工程を経ることによつて、本発明では
iHcは従来と同程度ではあるが、(BH)maxの高
い永久磁石が調製される。 《実施例》 実施例 1 R成分としてSmを用い、AグループとしてZn
を用い、以下の式となるように各成分を調整し
た。 Sm(Co0.7-eFe0.204Cu0.075Mn0.007Zn0.021Sbe7.55 なお、Sbの添加量eは表1に示す。 以上の組成の合金を1180〜1250℃で5時間焼結
を行い、1100〜1240℃で5時間溶体化処理を行つ
た後、700℃,2時間の第1段時効処理、900℃3
時間の第2段時効処理を行い、0.5℃/minの速
度で400℃間で冷却した。 このようにして得られた永久磁石の特性を以下
の表1に示す。
<<Industrial Application Field>> The present invention relates to an R 2 M 17 (R: rare earth element containing Y, M: mainly a transition metal) based permanent magnet material containing rare earth elements and transition elements as main components.
This invention relates to a permanent magnet material that has an increased energy product by adding Mn and Sb and performing solution treatment. <<Prior Art>> Conventionally, typical R 2 Co 17 permanent magnet materials in which the rare earth element R is Sm and the transition metal M is Co are those having the components and compositions shown by the following formula. Sm (Co 0.7 Fe 0.204 Cu 0.075 A 0.021 ) 7.55 (However, the A group includes one or more of Zn and Zr.) Magnet materials with this composition contain 10% Cu (wt%, same below) to increase coercive force (iHc). ) or higher, and the reduction in residual magnetic flux density (Br) that occurs when the amount of Cu is high was suppressed by adding Fe. However, since adding a large amount of Fe causes a decrease in iHc, the amount added was kept low. However, with a permanent magnet material of this composition, at most
It was possible to obtain only an energy product (BH) max of about 22.1 MG・Oe. Therefore, in order to increase this (BH)max, various proposals have been made as described below. R is 22-28%, Cu content is suppressed to 5-12%,
0.2 to 5% of X (Nb, Zr, V, Ta, Cr, Hf)
and add 0.2 to 8% Mn, and the remaining 35% or less is Fe.
(Tokuko Showa 56-
11378), R is 22-28%, Cu content is suppressed to 2-10%, T
(Fe, Mn, Cr) from 6 to 35%, M (Zr, Hf)
0.5 to 6%, with the remainder being Co (Special Publication No. 62-61665), and those whose general formula is R(Co 1-uvw Cu u Fe v M w ) 2 (Special Publication No. 1778-1978). ) (However: 0<u≦2, 0.01<v≦0.6, 0.005≦w≦0.05, 6.5≦z≦8.8, M: Ta, Zr, Nb, Ti, Hf), etc., are both high in iHc and Br, and this Result (BH) max
It can be listed as one of the highest. 《Problem to be solved by the invention》 However, in exchange for lowering the amount of Cu, all of ~ require elements such as Ta, Nb, and Hf, which are expensive and difficult to obtain, which reduces material costs and product costs. inviting a rise. In addition, all of these are aimed at improving (BH)max by increasing both iHc and Br, and as mentioned above, depending on the element, iHc increases, but Br decreases, or vice versa. Although Br increases in
There are problems such as a decrease in iHc, and it has been difficult to determine a composition that can increase both iHc and Br. The present invention was made in view of the above points, and R, which is essential for R 2 M 17 series magnet materials,
Among Cu and Fe, the amount of Cu is lower, and Zn and Zr, which are materials that can be easily obtained, are added instead.
By adding one or more of these and both Mn and Sb, the maximum energy product (BH) max is prevented from decreasing and Br is increased.
The purpose is to provide a magnet material that can improve the max. <Means for Solving the Problems> In order to achieve the above object, the permanent magnet material of the present invention has the general formula R(Co 1-abcde Fe a Cub b Mn c A d Sb e ) z . Yes, R is one or more rare earth elements including Y, A is one or more of Zn, Zr, 0.05≦a≦0.40, 0.02≦b≦0.20, 0.001≦c≦0.03, 0.001≦d≦0.04, 0.005≦ It is characterized by e≦0.02 and 6.5≦z≦8.5. <<Operation>> In other words, in the present invention, one or more of Zn and Zr are added as the A group to R, Cu, Fe, and Co, which are essential in R 2 M 17 -based magnet materials, and further, both Mn and Sb are added. This is what I did. The reason why the amount d of the A group added is set to 0.001 to 0.04 is that if it is less than 0.001, iHc will be small, and if it exceeds 0.04, Br will decrease significantly and iHc will also decrease. The addition amount e of Sb is set to 0.0005 to 0.02, which is 0.02
This is because if it exceeds 0.0005, the Br-improving effect disappears and iHc also decreases compared to before, and conversely, if it is less than 0.0005, the synergistic effect of Sb and Mn disappears. The amount c of Mn added is 0.001 to 0.03.
This is because if it is less than 0.03, there will be no synergistic effect with Sb, and if it exceeds 0.03, both iHc and Br will decrease. The reason for setting the amount b of Cu to be 0.02 to 0.2 is that as described in the conventional example, if it exceeds 0.2, Br will drop below the practical range, and the objective of the present invention, which is to improve Br, cannot be achieved; This is because iHc decreases. The reason why the amount a of Fe added is set to 0.05 to 0.4 is because if it exceeds 0.4, iHc will decrease, and if it is less than 0.05, Br will also decrease. (Co 1-abcde Fe a Cu b Mn c A d Sb e ) for R
The reason for setting the component ratio z to 6.5 to 8.5 is that if it is less than 6.5, Br will decrease and the improvement in Br, which is the objective of the present invention, cannot be achieved, and on the other hand, if it exceeds 8.5, iHc will not reach the conventional level. It is from. In the present invention, the components having the above composition are melted into a lump, which is finely pulverized and then placed in a magnetic field of 8 to 14 KOe.
A molding pressure of 0.5 to 2 tons/cm 2 is applied, compression molding is performed into a desired shape, and the next heat treatment is performed. That is, sintering at 1180-1250℃ for 3-10 hours,
After solution treatment at 1100-1240℃ for 3-10 hours,
First stage aging treatment at 400-800℃ for 0.5-4 hours,
A second stage aging treatment is performed at 750 to 950°C for 0.5 to 5 hours, followed by cooling to 800°C or less at a rate of 0.1 to 4°C/min. By going through the above steps, the present invention
A permanent magnet with high (BH)max is prepared, although iHc is on the same level as the conventional one. <<Example>> Example 1 Using Sm as the R component and Zn as the A group
Each component was adjusted using the following formula. Sm (Co 0.7-e Fe 0.204 Cu 0.075 Mn 0.007 Zn 0.021 Sb e ) 7.55The amount e of Sb added is shown in Table 1. The alloy with the above composition was sintered at 1180-1250°C for 5 hours, solution treated at 1100-1240°C for 5 hours, first aged at 700°C for 2 hours, and then aged at 900°C for 3 hours.
A second stage aging treatment was performed for an hour, followed by cooling to 400°C at a rate of 0.5°C/min. The properties of the permanent magnet thus obtained are shown in Table 1 below.

【表】 表中、添加量eのうち0および0.05は本発明の
下限および上限を越えた数値である。 実施例 2 実施例1のSbの組成を固定し、Mnの添加量c
を表2に示すごとく変えて以下の式で示す組成比
となるよう各成分を調製した。 Sm(Co0.7-cFe0.204Cu0.075MncZn0.021Sb0.0047.55 なお、処理手順に付いては実施例1と全く同様
である。
[Table] In the table, 0 and 0.05 of the addition amount e are values exceeding the lower and upper limits of the present invention. Example 2 The composition of Sb in Example 1 was fixed, and the amount of Mn added was
Each component was prepared so as to have the composition ratio shown in the following formula by changing as shown in Table 2. Sm (Co 0.7-c Fe 0.204 Cu 0.075 Mn c Zn 0.021 Sb 0.004 ) 7.55 The treatment procedure is exactly the same as in Example 1.

【表】 表中、添加量cのうち0および0.05は本発明の
下限および上限を超えた数値である。 比較例 1 Mn,Sbを添加しない以下の従来組成の磁石を
調製した。なお、Aグループの元素としてはZn
に変えてZrを使用した。また、処理手順に付い
ては実施例1,2と同様である。 Sm(Co0.07Fe0.204Cu0.075Zr0.0217.55 この結果、以下の特性を得られた。 Br=10.82KG iHc=11.04KOe (BH)nax=27.0MG0e 比較例 2 Sbは添加せず、Mnのみを表3に示す量加え、
以下の式に示す組成割合となるように各成分を調
製した。 Sm(Co0.07〜cFe0.204Cu0.075MncZn0.0217.55 この結果、以下の表3に示す特性を得られた。
[Table] In the table, 0 and 0.05 of the addition amount c are values exceeding the lower and upper limits of the present invention. Comparative Example 1 A magnet with the following conventional composition without the addition of Mn or Sb was prepared. In addition, as an element of A group, Zn
I used Zr instead of . Furthermore, the processing procedure is the same as in Examples 1 and 2. Sm (Co 0.07 Fe 0.204 Cu 0.075 Zr 0.021 ) 7.55As a result, the following properties were obtained. Br = 10.82KG iHc = 11.04KOe (BH) nax = 27.0MG0e Comparative example 2 Sb was not added, only Mn was added in the amount shown in Table 3,
Each component was prepared to have the composition ratio shown in the following formula. Sm (Co 0.07 - c Fe 0.204 Cu 0.075 Mn c Zn 0.021 ) 7.55 As a result, the properties shown in Table 3 below were obtained.

【表】 比較例 3 Mnは添加せず、Sbのみを表4に示す量で加
え、以下の式に示す組成割合となるように各成分
を調製した。 Sm(Co0.07〜eFe0.204Cu0.075SbeZn0.0217.55 この結果、以下の表4に示す特性を得られた。
[Table] Comparative Example 3 Mn was not added, only Sb was added in the amount shown in Table 4, and each component was prepared to have the composition ratio shown in the following formula. Sm (Co 0.07~e Fe 0.204 Cu 0.075 Sb e Zn 0.021 ) 7.55 As a result, the properties shown in Table 4 below were obtained.

【表】 以上の各表からも明らかなように、従来組成に
加えてSb,Mnの双方を添加することによつて、
従来よりもBrと(BH)naxが増大することが判明
した。 また、以上の実施例1,2および比較例1〜3
の4πI−Hループ曲線として別図に示す特性が得
られた。図に示すように、比較例1の従来組成、
およびこれにSb、あるいは比較例2のMnの単独
を添加したものでは初磁化曲線が飽和しにくいも
のとなるが、実施例1,2に示すSb,Mnの双方
を添加したものではループの初磁化曲線が飽和し
やすいことが判明した。 《発明の効果》 以上実施例により詳細に説明したようにこの発
明に係る永久磁石材料によれば、MnおよびSb等
の取扱および入手が容易な元素を用いることによ
り、iHcは従来程度とし、Brおよび(BH)nax
高ることができる。また、製品コストを低減でき
る。
[Table] As is clear from the above tables, by adding both Sb and Mn in addition to the conventional composition,
It was found that Br and (BH) nax increased more than before. In addition, the above Examples 1 and 2 and Comparative Examples 1 to 3
The characteristics shown in the separate figure were obtained as a 4πI-H loop curve. As shown in the figure, the conventional composition of Comparative Example 1,
When Sb or Mn of Comparative Example 2 is added alone, the initial magnetization curve becomes difficult to saturate, but when both Sb and Mn are added as shown in Examples 1 and 2, the initial magnetization curve of the loop becomes difficult to saturate. It was found that the magnetization curve was easily saturated. <<Effects of the Invention>> As explained in detail in the examples above, according to the permanent magnet material according to the present invention, by using elements such as Mn and Sb that are easy to handle and obtain, iHc can be kept at the conventional level, and Br and (BH) can increase nax . Additionally, product costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例および比較例における4πI−H
ループを示すグラフである。
Figure 1 shows 4πI-H in Examples and Comparative Examples.
It is a graph showing a loop.

Claims (1)

【特許請求の範囲】 1 一般式が R(Co1-a-b-c-d-eFeaCubMncAdSbez で示される永久磁石材料てあつて、 RはYを含む希土類元素の1種以上、 AはZn,Zrの1種以上、 0.05≦a≦0.40、 0.02≦b≦0.20、 0.001≦c≦0.03、 0.001≦d≦0.04、 0.005≦e≦0.02、 6.5≦z≦8.5 からなることを特徴とする永久磁石材料。[Claims] 1. A permanent magnetic material whose general formula is R(Co 1-abcde Fe a Cu b Mn c A d Sbe ) z , where R is one or more rare earth elements including Y; A is characterized by consisting of one or more of Zn and Zr, 0.05≦a≦0.40, 0.02≦b≦0.20, 0.001≦c≦0.03, 0.001≦d≦0.04, 0.005≦e≦0.02, 6.5≦z≦8.5 Permanent magnetic material.
JP1257056A 1989-10-03 1989-10-03 Permanent magnet material Granted JPH03120330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1257056A JPH03120330A (en) 1989-10-03 1989-10-03 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1257056A JPH03120330A (en) 1989-10-03 1989-10-03 Permanent magnet material

Publications (2)

Publication Number Publication Date
JPH03120330A JPH03120330A (en) 1991-05-22
JPH0532455B2 true JPH0532455B2 (en) 1993-05-17

Family

ID=17301127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1257056A Granted JPH03120330A (en) 1989-10-03 1989-10-03 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPH03120330A (en)

Also Published As

Publication number Publication date
JPH03120330A (en) 1991-05-22

Similar Documents

Publication Publication Date Title
EP0175214B2 (en) Permanent magnetic alloy and method of manufacturing the same
JPH01219143A (en) Sintered permanent magnet material and its production
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPH0532455B2 (en)
JPH0146575B2 (en)
JPH0524219B2 (en)
JPS63128606A (en) Permanent magnet
JPH045739B2 (en)
JPS59218705A (en) Permanent magnet material and manufacture thereof
JPS58193336A (en) Permanent magnet material
JP3080275B2 (en) R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same
JPH02192102A (en) Permanent magnet
JPH1097907A (en) Manufacture of r-tm-b based permanent magnet
JPS6180805A (en) Permanent magnet material
JP2571403B2 (en) Manufacturing method of rare earth magnet material
US5183517A (en) Permanent magnet composition
JPS6077961A (en) Permanent magnet material and its manufacture
JPH063763B2 (en) Rare earth permanent magnet manufacturing method
JPS62227055A (en) Rare earth-cobalt magnet material
JPH03244106A (en) Permanent magnet
JPS62257704A (en) Permanent magnet
JPH0252413B2 (en)
JPH0815123B2 (en) permanent magnet
JPH0298101A (en) Permanent magnet
KR100352481B1 (en) Sintered Magnet and Fabricating Method of NdFeB Type