JPH0524219B2 - - Google Patents

Info

Publication number
JPH0524219B2
JPH0524219B2 JP63308720A JP30872088A JPH0524219B2 JP H0524219 B2 JPH0524219 B2 JP H0524219B2 JP 63308720 A JP63308720 A JP 63308720A JP 30872088 A JP30872088 A JP 30872088A JP H0524219 B2 JPH0524219 B2 JP H0524219B2
Authority
JP
Japan
Prior art keywords
permanent magnet
ihc
energy product
present
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63308720A
Other languages
Japanese (ja)
Other versions
JPH02156051A (en
Inventor
Takaaki Yasumura
Teruo Kyomya
Yasutoshi Mizuno
Kazuo Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP63308720A priority Critical patent/JPH02156051A/en
Priority to DE1989616522 priority patent/DE68916522T2/en
Priority to EP19890312748 priority patent/EP0372948B1/en
Publication of JPH02156051A publication Critical patent/JPH02156051A/en
Priority to US07/759,130 priority patent/US5183517A/en
Publication of JPH0524219B2 publication Critical patent/JPH0524219B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

《産業上の利用分野》 本発明は、希土類元素と遷移金属を主成分とす
るR2M17系(R:Yを含む希土類元素、M:種と
して遷移金属)永久磁石材料に関し、特に保磁力
は従来と同等として残留磁束密度のみを高めるこ
とによりエネルギー積を高めた上記R2M17系永久
磁石材料に関する。 《従来の技術》 従来、希土類元素RがSm、遷移金属MがCoの
R2CO17系永久磁石においては、保持力(iHC)
を高めるべくCuを10%(wt%、以下同じ)以上
と高目にし、高Cu量の場合に生じる残留磁束密
度(Br)の低下をFeの添加により抑制していた。
但し、Feは多量に添加するとBrの低下を招くた
め、8%程度以下とされていた。 しかし、このような組成の永久磁石では、高々
22.1MG・Oe程度のエネルギー積(BH)しか得
ることができなかつた。 そこで、このエネルギー積(BH)を高めるべ
く、これまで各種の提案がなされた。 なかでも(1)Rが22〜28%で、Cu量を5〜12%
に抑え、X(Nb、Zr、V、Ta、Cr、Hf)を0.2
〜5%と、Mnを0.2〜8%加え、残部が35%以下
をFeで置換えたCoからなるもの(特公昭56−
11378号)、(2)Rが22〜28%で、Cu量を2〜10%
に抑え、T(Fe、Mn、Cr)を6〜35%、M(Zr、
Hf)を0.5〜6%加え、残部がCoからなるもの
(特公昭62−61665号)、(3)一般式がR(Co1-u-v-w
CuuFevMwzで表わされるもの(特公昭61−
17881号)、 (但し、0<u≦2、0.01<v≦0.6、0.005≦
w≦0.05、6.5≦z≦8.8M:Ta、Zr、Nb、Ti、
Hf) 等が、保磁力、残留磁束密度とも高く、この結
果、エネルギー積の高いものとして挙げることが
できる。 《発明が解決しようとする課題》 しかし、上記(1)〜(3)のいずれも、Cu量を低目
にする代りに、Ta、Nb、Hf等の高コストで、
入手し難い元素を必須としており、材料コストひ
いては製品コストの上昇を招いている。 また、これらは、いずれもiHcとBrの両者を高
めることによりエネルギー積を向上させることを
指向しており、前述の通り元素によつてはiHcは
高まるがBrが低下したり、逆にBrは高まるが
iHcは低下する等の問題があり、iHc、Brの両者
を高めることのできる組成を決定することは極め
て困難であつた。 本発明は、以上の諸点に鑑みてなされたもの
で、その目的とするところは、Cu量を低目にす
る代りに添加する元素を低コストで入手し易いも
のとし、かつiHcは従来のものと同程度としてBr
のみを高めてエネルギー積を向上させ得るR2M17
系の永久磁石材料を提供することにある。 《課題を解決するための手段》 上記目的を達成するため、本発明は、22〜
28wt%のR(R:Yを含む希土類元素の1種以
上)、5〜16wt%のFe、0.2〜6.5wt%のCu、0.1
〜6wt%のMn、0.5〜6wt%のA(A:Zn、Zrの1
種以上)、0.1〜2wt%のB(B:Al、Bi、Tlの1
種以上)、残部Coからなることを特徴とするもの
である。 《作用》 本発明では、R2M17系で必須とされているR、
Cu、Fe、CoのうちのCuを0.2〜6.5wt%と低目に
抑え、代りにMn、AグループとしてZn、Zrの1
種以上、BグループとしてAl、Bi、Tlの1種以
上を加える。 AグリープのZn、BグループのAlは周知の通
り、コストが安価で、かつ入手容易で、しかも取
扱が極めて容易なものである。 このZnとAlを、前述の先願のHf、Nb、Ta等
の高コスト、入手困難、かつ取扱いも慎重を要す
るものに代替する本発明では、後述の実施例から
明らかなように、保磁力(iHc)はこれらHf、
Nb、Ta等を用いる先願と同程であるが、残留磁
束密度(Br)が高まり、結果としてエネルギー
積が高まる。 なお、Znの一部又は全部をZrに代え、Alの一
部又は全部をBi及び/又はTlに代えても、後述
の実施例から明らかなように、上記と同等の作用
を得ることができる。 Aグループを0.5〜6wt%とするのは、0.5wt%
未満では保磁力が小さく、6.5wt%を超えると残
留磁化の低下が著しく、かつ、保磁力が低下する
ためである。 Bグループを0.1〜2wt%とするのは、2wt%を
越えるとBrの向上作用がなくなり、またiHcも従
来より低目になつてしまい、逆に0.1wt%未満で
あれば添加効果が得られなくなるからである。 また、Rを22〜28wt%とするのは、28wt%を
超えるとBrが低下し、本発明の目的であるBrの
向上が達成できず、22wt%未満であるとiHcが従
来程度にならないからである。 Mnを0.1〜6wt%とするのは、0.1wt%未満では
添加効果がなくなり、6wt%を越えるとiHc、Br
とも低下してしまうからである。 Cuを0.2〜6.5wt%とするのは、6.5wt%を超え
ると前述の通りBrが低下し、本発明の目的であ
るBrの向上が達成できず、逆に0.2wt%未満であ
るとiHcが従来程度とならないからである。 Feを5〜16wt%とするのは、16wt%を超える
とiHcが従来程度とならず、5wt%未満であると
Brも低下してしまうからである。 本発明では、以上の成分を溶製して塊とし、こ
れを微粉砕後、8〜14kOeの磁場中で0.5〜
2ton/cm2の成形圧を加え、所望形状に圧縮成形
し、次の熱処理を行う。 すなわち、1180〜1250℃×3〜10hrで焼結し、
1100〜1240℃×3〜10hrで溶体化処理した後、
400〜800℃×0.5〜4hrでの第1段時効処理、750
〜950℃×0.5〜5hrでの第2段時効効果を行い、
0.1〜4℃/mmの速度で800℃以下まで冷却する。 上記の工程を経ることにより、本発明では、
iHcは従来程度であるが、エネルギー積の高い永
久磁石が調整される。 《実施例》 実施例 1 Sm:24.1wt% Fe:12.9wt% Cu:3.9wt% Mn:2wt% Zn:2.3wt% Al:表1の量 Co:残部 の組成の合金を高周波溶解炉で溶製し、ジヨーク
ラツシヤで粗粉砕後、ジエツトミルで微粉砕し
た。 この微粉砕体を15kOeの磁場中で成形圧3ton/
cm2を加え、圧縮成形した。 次いで、1180〜1250℃×5hrの焼結を行い、
1100〜1240℃×5hrの溶体化処理を行つた後、700
℃×2hrで第1段時効処理、900℃×3hrで第2段
時効処理を行い、0.5℃/minの速度で400℃まで
冷却した。 このようにして得られた永久磁石を特性を表1
に示す。
<<Industrial Application Field>> The present invention relates to an R 2 M 17 system (R: a rare earth element containing Y, M: a transition metal as a species) permanent magnet material whose main components are rare earth elements and transition metals, and in particular, This relates to the above-mentioned R 2 M 17 -based permanent magnet material, which has an increased energy product by increasing only the residual magnetic flux density, but is equivalent to the conventional one. <Conventional technology> Conventionally, the rare earth element R is Sm and the transition metal M is Co.
For R 2 CO 17 series permanent magnets, the coercive force (iHC)
In order to increase the Cu content, the content was increased to 10% (wt%) or more, and the decrease in residual magnetic flux density (Br) that would occur with a high Cu content was suppressed by adding Fe.
However, since adding a large amount of Fe causes a decrease in Br, it was limited to about 8% or less. However, with a permanent magnet of this composition, at most
I was only able to obtain an energy product (BH) of about 22.1 MG・Oe. Therefore, various proposals have been made to increase this energy product (BH). Among them, (1) R is 22 to 28% and Cu content is 5 to 12%.
and X (Nb, Zr, V, Ta, Cr, Hf) to 0.2
~5%, Mn added 0.2~8%, and the remainder consisting of Co with less than 35% replaced with Fe (Special Publications 1986-
(No. 11378), (2) R is 22 to 28% and Cu content is 2 to 10%.
T (Fe, Mn, Cr) from 6 to 35%, M (Zr,
0.5 to 6% Hf) and the remainder is Co (Special Publication No. 62-61665); (3) the general formula is R(Co 1-uvw
Cu u Fe v M w ) What is represented by z (Tokuko Sho 61
No. 17881), (0<u≦2, 0.01<v≦0.6, 0.005≦
w≦0.05, 6.5≦z≦8.8M: Ta, Zr, Nb, Ti,
Hf) etc. have high coercive force and residual magnetic flux density, and as a result, they can be cited as having a high energy product. <<Problem to be solved by the invention>> However, in all of the above (1) to (3), in exchange for reducing the amount of Cu, high-cost materials such as Ta, Nb, and Hf are used.
It requires elements that are difficult to obtain, leading to an increase in material costs and ultimately product costs. In addition, all of these are aimed at improving the energy product by increasing both iHc and Br, and as mentioned above, depending on the element, iHc increases but Br decreases, or conversely, Br decreases. Although it increases
There are problems such as a decrease in iHc, and it has been extremely difficult to determine a composition that can increase both iHc and Br. The present invention has been made in view of the above points, and its purpose is to reduce the amount of Cu and to make the added element easy to obtain at low cost, and to reduce the amount of iHc compared to the conventional one. As same as Br
The energy product can be improved by increasing only R 2 M 17
The purpose of the present invention is to provide permanent magnet materials of the same type. <<Means for Solving the Problem>> In order to achieve the above object, the present invention provides the following features:
28wt% R (R: one or more rare earth elements including Y), 5-16wt% Fe, 0.2-6.5wt% Cu, 0.1
~6wt% Mn, 0.5~6wt% A (A: 1 of Zn, Zr
species), 0.1 to 2wt% B (B: 1 of Al, Bi, Tl)
species), with the remainder being Co. <<Operation>> In the present invention, R, which is essential in the R 2 M 17 system,
Among Cu, Fe, and Co, Cu is kept to a low level of 0.2 to 6.5 wt%, and instead of Mn and A group, Zn and Zr are
At least one species of Al, Bi, and Tl is added as B group. As is well known, Zn of Group A and Al of Group B are inexpensive, easy to obtain, and extremely easy to handle. In the present invention, in which Zn and Al are replaced with Hf, Nb, Ta, etc., which are expensive, difficult to obtain, and require careful handling, the coercive force is (iHc) is these Hf,
Although it is comparable to the previous application using Nb, Ta, etc., the residual magnetic flux density (Br) increases, and as a result, the energy product increases. Note that even if part or all of Zn is replaced with Zr, and part or all of Al is replaced with Bi and/or Tl, the same effect as above can be obtained, as is clear from the examples described later. . A group of 0.5 to 6wt% is 0.5wt%.
This is because if the content is less than 6.5 wt%, the coercive force is small, and if it exceeds 6.5 wt%, the residual magnetization decreases significantly and the coercive force decreases. The reason for setting Group B to 0.1 to 2wt% is that if it exceeds 2wt%, the Br improvement effect will disappear and iHc will also be lower than before, whereas if it is less than 0.1wt%, the addition effect will not be obtained. Because it will disappear. In addition, the reason why R is set to 22 to 28 wt% is because if it exceeds 28 wt%, Br will decrease and the improvement in Br, which is the objective of the present invention, cannot be achieved, and if it is less than 22 wt%, iHc will not reach the conventional level. It is. The reason for setting Mn to 0.1 to 6wt% is that if it is less than 0.1wt%, the addition effect will be lost, and if it exceeds 6wt%, iHc, Br
This is because both will decrease. The reason for setting Cu to 0.2 to 6.5wt% is that if it exceeds 6.5wt%, Br decreases as mentioned above, and the improvement in Br, which is the objective of the present invention, cannot be achieved.On the other hand, if Cu is less than 0.2wt%, iHc This is because the current level is not as high as before. The reason for setting Fe to 5 to 16wt% is that if it exceeds 16wt%, iHc will not reach the conventional level, and if it is less than 5wt%,
This is because Br also decreases. In the present invention, the above components are melted and made into a lump, which is finely pulverized and then placed in a magnetic field of 8 to 14 kOe.
A molding pressure of 2 tons/cm 2 is applied, compression molding is performed into the desired shape, and the following heat treatment is performed. That is, sintering at 1180-1250℃ x 3-10 hours,
After solution treatment at 1100-1240℃ x 3-10 hours,
First stage aging treatment at 400-800℃ x 0.5-4hr, 750
Perform the second stage aging effect at ~950℃×0.5~5hr,
Cool to below 800°C at a rate of 0.1-4°C/mm. By going through the above steps, in the present invention,
iHc is about the same as before, but a permanent magnet with a high energy product is adjusted. 《Example》 Example 1 Sm: 24.1wt% Fe: 12.9wt% Cu: 3.9wt% Mn: 2wt% Zn: 2.3wt% Al: amount shown in Table 1 Co: An alloy with the remaining composition was melted in a high frequency melting furnace. After that, it was coarsely ground using a geo crusher, and then finely ground using a jet mill. This finely pulverized material is molded in a magnetic field of 15 kOe at a pressure of 3 tons/
cm 2 was added and compression molded. Next, sintering was performed at 1180-1250°C for 5 hours.
After solution treatment at 1100-1240℃ x 5hr, 700℃
The first stage aging treatment was performed at 900°C for 2 hours, the second stage aging treatment was performed at 900°C for 3 hours, and the material was cooled to 400°C at a rate of 0.5°C/min. Table 1 shows the characteristics of the permanent magnet thus obtained.
Shown below.

【表】 実施例 2 実施例1のAlの代りにBiを表2の量とする以
外は実施例1と全く同様にして永久磁石を調整し
た。 この永久磁石の特性は表2に示す通りであつ
た。
[Table] Example 2 Permanent magnets were prepared in exactly the same manner as in Example 1 except that Bi was used in the amount shown in Table 2 instead of Al in Example 1. The properties of this permanent magnet were as shown in Table 2.

【表】 実施例 3 実施例1のAlの代りにTiを表3の量とする以
外は実施例1と全く同様にして永久磁石を調整し
た。 この永久磁石の特性は表3に示す通りであつ
た。
[Table] Example 3 A permanent magnet was prepared in exactly the same manner as in Example 1 except that Ti was used in the amount shown in Table 3 instead of Al in Example 1. The properties of this permanent magnet were as shown in Table 3.

【表】 なお、表1〜表3から明らかなように、Tlの
場合は、Bグループの上限値2wt%を超えた
2.5wt%でもBrが高まり、大きなエネルギー積を
得ることができるが、Tlは材料コストが高く、
2.5wtもの含有量であると、製品コストが高くな
るため、経済性の面から2wt%を上限値とする。 実施例 4 Sm:25、11wt% Fe14.25wt% Cu:6.07wt% Zn:表4の量 Mn:0.5wt% Al:0.5wt% Co:残部 の組成の永久磁石を実施例1と全く同様にして調
整した。 この永久磁石の特性は表4の通りであつた。
[Table] As is clear from Tables 1 to 3, in the case of Tl, the upper limit of 2wt% for Group B was exceeded.
Even at 2.5wt%, Br increases and a large energy product can be obtained, but Tl has a high material cost and
If the content is as much as 2.5wt, the product cost will be high, so from an economic standpoint, the upper limit is set at 2wt%. Example 4 Sm: 25, 11wt% Fe14.25wt% Cu: 6.07wt% Zn: Amount shown in Table 4 Mn: 0.5wt% Al: 0.5wt% Co: A permanent magnet with the remaining composition was made exactly the same as in Example 1. Adjusted. The properties of this permanent magnet were as shown in Table 4.

【表】 なお、表4から明らかなように、Znが0.5wt
%、6.0wt%の場合、BHmaxが若干低くなるが、
実用的には充分であり、しかもZnは低価格で、
かつ入手、取扱いが容易であることから、経済性
や生産性の面で効果が大きい。 実施例 5 Sm:24.1wt% Fe:12.9wt% Cu:3.9wt% Mn:2.0wt% Zn:1.1wt% Zr:0.9wt% Al:0.5wt% Bi:0.1wt% Tl:0.1wt% Co:残部 の組成の永久磁石を実施例1と全く同様にして調
整した。 この永久磁石の特性は、iHc:10.51、Br:
11.10、BHmax:29.4であつた。 実施例 6 実施例5において、Bi又はTlの添加を行わな
い以外の実施例5と全く同様にして永久磁石を調
整した。 Biを添加していない永久磁石の特性は、iHc:
10.49、Br:11.09、BHmax:29.2であり、Tlを
添加していない永久磁石の特性は、iHc:10.52、
Br:11.07、BHmax:29.3であつた。 実施例 7 Sm:24.1wt% Fe:12.9wt% Cu:3.9wt% Mn:表5の量 Zn:2.3wt% Al:1.0wt% Co:残部 の組成の永久磁石を実施例1と全く同様にして調
整した。 この永久磁石の特性は表5の通りであつた。
[Table] As is clear from Table 4, Zn is 0.5wt
%, 6.0wt%, BHmax is slightly lower,
It is sufficient for practical use, and Zn is low-priced.
Moreover, since it is easy to obtain and handle, it is highly effective in terms of economy and productivity. Example 5 Sm: 24.1wt% Fe: 12.9wt% Cu: 3.9wt% Mn: 2.0wt% Zn: 1.1wt% Zr: 0.9wt% Al: 0.5wt% Bi: 0.1wt% Tl: 0.1wt% Co: The remaining permanent magnet composition was prepared in exactly the same manner as in Example 1. The characteristics of this permanent magnet are iHc: 10.51, Br:
11.10, BHmax: 29.4. Example 6 A permanent magnet was prepared in exactly the same manner as in Example 5 except that Bi or Tl was not added. The characteristics of permanent magnets without Bi added are iHc:
10.49, Br: 11.09, BHmax: 29.2, and the characteristics of a permanent magnet without Tl added are iHc: 10.52,
Br: 11.07, BHmax: 29.3. Example 7 Sm: 24.1wt% Fe: 12.9wt% Cu: 3.9wt% Mn: Amount shown in Table 5 Zn: 2.3wt% Al: 1.0wt% Co: A permanent magnet with the remaining composition was made exactly the same as in Example 1. Adjusted. The properties of this permanent magnet were as shown in Table 5.

【表】 《発明の効果》 以上詳述したように本発明に係る永久磁石によ
れば、Al、Zn等の低コストで、、入手が容易で、
しかも取扱いも容易な元素を用いることにより、
iHcは従来程度とし、Brのみを高めて、エネルギ
ー積を向上させることができる。また、製品コス
トを極端に低減できる等の効果を奏する。
[Table] <<Effects of the Invention>> As detailed above, the permanent magnet according to the present invention is made of materials such as Al, Zn, etc., which are low cost and easy to obtain.
Moreover, by using elements that are easy to handle,
The energy product can be improved by keeping iHc at the conventional level and increasing only Br. In addition, there are effects such as extremely reducing product costs.

Claims (1)

【特許請求の範囲】[Claims] 1 22〜28wt%のR(R:Yを含む希土類元素の
1種以上)、5〜16wt%のFe、0.2〜6.5wt%の
Cu、0.1〜6wt%のMn、0.5〜6wt%のA(A:Zn、
Zrの1種以上)、0.1〜2wt%のB(B:Al、Bi、
Tlの1種以上)、残部Coからなることを特徴とす
る永久磁石材料。
1 22-28wt% R (R: one or more rare earth elements including Y), 5-16wt% Fe, 0.2-6.5wt%
Cu, 0.1~6wt% Mn, 0.5~6wt% A (A: Zn,
one or more types of Zr), 0.1 to 2wt% B (B: Al, Bi,
A permanent magnetic material characterized by comprising one or more types of Tl), the remainder being Co.
JP63308720A 1988-12-08 1988-12-08 Permanent magnet material Granted JPH02156051A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63308720A JPH02156051A (en) 1988-12-08 1988-12-08 Permanent magnet material
DE1989616522 DE68916522T2 (en) 1988-12-08 1989-12-07 Permanent magnet compilation.
EP19890312748 EP0372948B1 (en) 1988-12-08 1989-12-07 Permanent magnet composition
US07/759,130 US5183517A (en) 1988-12-08 1991-09-11 Permanent magnet composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63308720A JPH02156051A (en) 1988-12-08 1988-12-08 Permanent magnet material

Publications (2)

Publication Number Publication Date
JPH02156051A JPH02156051A (en) 1990-06-15
JPH0524219B2 true JPH0524219B2 (en) 1993-04-07

Family

ID=17984471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63308720A Granted JPH02156051A (en) 1988-12-08 1988-12-08 Permanent magnet material

Country Status (3)

Country Link
EP (1) EP0372948B1 (en)
JP (1) JPH02156051A (en)
DE (1) DE68916522T2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035700C (en) * 1992-07-07 1997-08-20 上海跃龙有色金属有限公司 Rare-earth magnetic alloy powder and its processing method
JP5558447B2 (en) * 2011-09-29 2014-07-23 株式会社東芝 Permanent magnet and motor and generator using the same
DE102012110629A1 (en) 2012-11-06 2014-05-08 Rainer Geschwandtner Safety device i.e. safety roof hook, for steep roof, has extension section arranged and fastened perpendicular at lateral leg of U-shaped fastening section by welding, and fastening section including fastening points on legs
JP6125687B2 (en) * 2016-03-18 2017-05-10 株式会社東芝 Motors, generators, and automobiles
JP6462754B2 (en) * 2017-04-04 2019-01-30 株式会社東芝 Permanent magnets, motors, generators, and cars

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149118A (en) * 1974-10-25 1976-04-28 Suwa Seikosha Kk
JPS55128502A (en) * 1979-03-23 1980-10-04 Tdk Corp Permanent magnet material and its manufacture
JPS56116862A (en) * 1980-02-15 1981-09-12 Seiko Instr & Electronics Ltd Manufacture of rare earth element magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033287B2 (en) * 1979-09-21 1985-08-02 セイコーエプソン株式会社 Magnetic field forming method for powdered permanent magnets
US4497672A (en) * 1982-04-06 1985-02-05 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a rare earth-cobalt based permanent magnet
JPS58186906A (en) * 1982-04-26 1983-11-01 Toshiba Corp Permanent magnet and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149118A (en) * 1974-10-25 1976-04-28 Suwa Seikosha Kk
JPS55128502A (en) * 1979-03-23 1980-10-04 Tdk Corp Permanent magnet material and its manufacture
JPS56116862A (en) * 1980-02-15 1981-09-12 Seiko Instr & Electronics Ltd Manufacture of rare earth element magnet

Also Published As

Publication number Publication date
DE68916522D1 (en) 1994-08-04
EP0372948A2 (en) 1990-06-13
EP0372948B1 (en) 1994-06-29
JPH02156051A (en) 1990-06-15
DE68916522T2 (en) 1994-10-13
EP0372948A3 (en) 1991-05-29

Similar Documents

Publication Publication Date Title
US4284440A (en) Rare earth metal-cobalt permanent magnet alloy
EP0237416B1 (en) A rare earth-based permanent magnet
JPH06275414A (en) Nd-fe-b based permanent magnet
JPH0524219B2 (en)
EP0386286B1 (en) Rare earth iron-based permanent magnet
JPS59132105A (en) Permanent magnet
JPH0146575B2 (en)
JPH04268050A (en) R-fe-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JPS62281403A (en) Permanent magnet
JPS58193336A (en) Permanent magnet material
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JPH02192102A (en) Permanent magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JP3298221B2 (en) Rare earth-Fe-V-Ga-Al-B sintered magnet
US5183517A (en) Permanent magnet composition
JPH1022110A (en) Rare-earth permanent magnet and method for manufacturing the same, and rare-earth permanent bond magnet
JPH06104108A (en) Nd-fe-co-b type sintered magnet
JPH0794311A (en) Nd-fe-co-b type sintered magnet
JP2794495B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JPH0532455B2 (en)
JPH06100993A (en) Permanent magnet material
JPS62156247A (en) Material for alloy permanent magnet
JPH0583627B2 (en)
JPH05234733A (en) Sintered magnet