JPS6033287B2 - Magnetic field forming method for powdered permanent magnets - Google Patents

Magnetic field forming method for powdered permanent magnets

Info

Publication number
JPS6033287B2
JPS6033287B2 JP54121624A JP12162479A JPS6033287B2 JP S6033287 B2 JPS6033287 B2 JP S6033287B2 JP 54121624 A JP54121624 A JP 54121624A JP 12162479 A JP12162479 A JP 12162479A JP S6033287 B2 JPS6033287 B2 JP S6033287B2
Authority
JP
Japan
Prior art keywords
magnetic field
powder
magnetic
magnet
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54121624A
Other languages
Japanese (ja)
Other versions
JPS5646508A (en
Inventor
格 小此木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP54121624A priority Critical patent/JPS6033287B2/en
Publication of JPS5646508A publication Critical patent/JPS5646508A/en
Publication of JPS6033287B2 publication Critical patent/JPS6033287B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は粉末磁石材料の磁場中成形に関するもので、特
に、希士類−コバルト粉末永久磁石の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to molding powdered magnet materials in a magnetic field, and more particularly to a method for producing rare-cobalt powder permanent magnets.

希士類−コバルト金属間化合物は、近時、飽和磁化の高
いSm2Co.7系及び磁気異万性が大きいことを利用
して粉末とし、磁場中で加圧成形して永久磁石化される
Rare-cobalt intermetallic compounds have recently been developed such as Sm2Co., which has a high saturation magnetization. 7 series and its large magnetic anisotropy, it is made into a powder and molded under pressure in a magnetic field to become a permanent magnet.

本発明の目的は、極めて高い配向度を得ることにある。An object of the present invention is to obtain an extremely high degree of orientation.

粉末の磁場中成形過度では、それぞれの粒子の容易磁化
方向と成形の際、加えられる磁場の向きが平行に並んだ
状態で圧縮成形され、その結果残留磁気モーメント。r
がその材質の飽和磁気モーメント。s(〇はいずれも1
グラム当りの磁気モーメント)に等しくなることが理想
である。しかし、実際には、それぞれの磁石微粒子は互
いの粒子の間の相互作用によって加えられる磁場の方向
と全く平行には整列することが出来ず、ある角度分散を
もって成型される。その結果、成型磁石体の。rはその
材質の。sより小さくなる。一般に磁石体のそれぞれの
微粒子の磁場方向に関する配向性を示すために粒子の配
向度KをK=溝と定義し、胸化近づくように磁場中成型
法を工夫する必要がある。特にSm2Co.7粉末磁石
は結晶構造が菱面体晶もし〈は六方晶で、かつ保磁力の
発生機構が従来のSmC巧磁石と基本的に異なる。
When powder is compacted excessively in a magnetic field, the easy magnetization direction of each particle and the direction of the magnetic field applied during compaction are compacted in parallel, resulting in a residual magnetic moment. r
is the saturation magnetic moment of the material. s (all 〇 are 1)
Ideally, it should be equal to the magnetic moment (magnetic moment per gram). However, in reality, each magnetic fine particle cannot be aligned completely parallel to the direction of the magnetic field applied by the interaction between the particles, and is formed with a certain angular dispersion. As a result, the molded magnet body. r is the material. It becomes smaller than s. Generally, in order to indicate the orientation of each fine particle of a magnet with respect to the direction of the magnetic field, the degree of orientation K of the particles is defined as K=groove, and it is necessary to devise a molding method in a magnetic field so that the particle becomes close to chest. Especially Sm2Co. The crystal structure of the 7 powder magnet is rhombohedral or hexagonal, and the coercive force generation mechanism is fundamentally different from that of conventional SmC magnets.

すなわち、Sm2Co.7型は磁壁の移動、並びにその
ピンニングによるため、磁性粉末の成形に際しては、大
きな配向磁界並びに、配向された粉末を保持する成形方
法が必要となる。従来の磁場中成型法は異万性バリウム
フェライト磁石等で一般に広く行なわれており、その原
理は第1図に示されるように磁極間隔可変の電磁石の間
に金型6を置き、上下パンチ4,5の間に磁石粉末を入
れた状態で磁場を印加し、そのまま磁極間隔を縮めるこ
とによって粉末成型体を作るものである。
That is, Sm2Co. Type 7 is based on the movement of domain walls and their pinning, so when molding magnetic powder, a large oriented magnetic field and a molding method that holds the oriented powder are required. The conventional molding method in a magnetic field is generally widely used for heterogeneous barium ferrite magnets, etc., and its principle is as shown in Fig. 1, where a mold 6 is placed between electromagnets with variable magnetic pole spacing, and upper and lower punches 4 are placed. , 5, a magnetic field is applied with the magnetic powder placed between them, and the distance between the magnetic poles is shortened to form a powder molded body.

一般には電磁石と圧縮装置が一体となるように圧縮機の
上下ラム1,2に励磁コイル3を取りつけて磁場中成型
が行なわれる。この方法は磁場の方向と粉末の加圧方向
が平行であることを特徴とする。従来SmC法粉末の高
配何度を得るためには、特顔昭47一34852号(特
公昭54−25637号公報参照)には希士類−コバル
ト粉末磁石すなわち、SmC法磁石について、磁場を圧
縮方向と垂直にかけることによって、効果のあることが
記載ざれている。
Generally, excitation coils 3 are attached to the upper and lower rams 1 and 2 of the compressor so that the electromagnet and the compression device are integrated, and molding is performed in a magnetic field. This method is characterized in that the direction of the magnetic field and the direction of pressing the powder are parallel. Conventionally, in order to obtain a high magnetic flux for SmC method powder, the magnetic field was compressed for rare metal-cobalt powder magnets, that is, SmC method magnets, as disclosed in Japanese Patent Publication No. 47-34852 (see Japanese Patent Publication No. 54-25637). It is stated that it is effective when applied perpendicular to the direction.

しかし、本発明者は近時高性能磁石のR2TM,7型、
例えばSm(Coo.672,Cuo.08,Feo.
02,Zro.028)6.0〜9.3粗成からなる合
金について研究して来たところ、第2図の4 1−Hカ
ーブに示すように、明らかに、保磁力機構の違いがある
ことがわかって来た。従来は、微粉末で単磁区粒子の一
回転というメカニズムからして、初磁化曲線は、(b)
に示すように急激な立ち上がりを示す。一方本発明法の
Sm(Coo.672,Cuo.08 Fe o.22
,Zro.028)8.4合金の4ml−HZカーブの
初磁化曲線{a)‘ま、磁壁の移動のためのエネルギー
である外部磁場の大きさが1肌Ce付近でほぼ完了して
いる。このように、SmC法とSm2Co.7では、保
磁力機構が基本的に異なり、特にSm2Co.7型永久
磁石においては、より高い配向磁場と成形方法が求望こ
れる。前記したように、特膿昭47一34852号では
、このことに何等言及していない。本発明は、Sm2T
M,7磁石の場合は、磁場に垂直方向に加圧成形しなが
ら、かつ磁場の磁場の強さを10KOe以上かけること
により、配向度Kを向上させることを見出した。
However, the present inventor has recently developed a high-performance magnet R2TM, type 7,
For example, Sm(Coo.672, Cuo.08, Feo.
02, Zro. 028) We have been researching alloys consisting of 6.0 to 9.3 coarse alloys, and as shown in the 41-H curve in Figure 2, we have found that there is a clear difference in the coercive force mechanism. It's here. Conventionally, based on the mechanism of one rotation of single magnetic domain particles in fine powder, the initial magnetization curve was (b)
As shown in Figure 2, there is a sudden rise. On the other hand, Sm (Coo.672, Cuo.08 Fe o.22
, Zro. 028) Initial magnetization curve of 4ml-HZ curve of 8.4 alloy {a)' Well, the magnitude of the external magnetic field, which is the energy for movement of the domain wall, is almost completed near 1 skin Ce. In this way, the SmC method and the Sm2Co. 7, the coercive force mechanism is fundamentally different, especially in Sm2Co. For type 7 permanent magnets, a higher orientation magnetic field and molding method are desired. As mentioned above, Tokupusho No. 47-134852 does not mention this at all. The present invention provides Sm2T
In the case of an M,7 magnet, it has been found that the degree of orientation K can be improved by press-molding in a direction perpendicular to the magnetic field and applying a magnetic field strength of 10 KOe or more.

さらに本発明は、Sm2TM,7合金ィンゴットを溶体
化および時効処理した後、粒度が5〜80ムの範囲に分
布するように粉末化し、バインダーであるェポキシ樹脂
を混合した後、前記方法で成形するものである。一般に
Sm2TM,7合金は、空気にふれると酸化して磁気特
性が劣化しやすいという欠点を有している。したがって
粉末の粒度があまり小さくなると、表面積が大きくなる
ため、より酸化しやすくなり、酸化防止のための処理が
煩雑となって製造工数、コストが増大するため、最低で
も5山以上が望ましい。また粒度が80仏を越えると、
成形後の磁石表面のアラサが大きくなり、外観上の商品
価値が低下すると共に、後加工の研摩や衝撃によって粒
子の脱落が生じやすくなるなどの問題が生じるので、上
述の範囲にするのが望ましい。本発明は、公知の技術の
単なる適用ではなく、Sm2TM,7粉末磁石の磁気的
性質を考えた、粉末磁石の高性能化のための、特有な磁
場中成形法に関するものである。以下図を参照しながら
本発明の実施例を詳細に説明する。
Further, in the present invention, the Sm2TM, 7 alloy ingot is subjected to solution treatment and aging treatment, and then pulverized so that the particle size is distributed in the range of 5 to 80 mm, mixed with an epoxy resin as a binder, and then molded by the above method. It is something. In general, Sm2TM,7 alloy has the disadvantage that when it comes into contact with air, it oxidizes and its magnetic properties tend to deteriorate. Therefore, if the particle size of the powder becomes too small, the surface area will increase, making it more likely to oxidize, making the treatment for oxidation prevention complicated, increasing the number of manufacturing steps and cost, so it is desirable to have at least 5 grains. Also, if the particle size exceeds 80 Buddhas,
The roughness of the magnet surface increases after molding, which reduces the commercial value in terms of appearance, and also causes problems such as particles becoming more likely to fall off due to post-processing polishing or impact, so it is desirable to keep it within the above range. . The present invention is not simply an application of known technology, but also relates to a unique magnetic field forming method for improving the performance of powder magnets, taking into account the magnetic properties of Sm2TM,7 powder magnets. Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は、実施例に用いた粉末加圧装置であり、本装置
の材料は、電磁石面に当る金型6及びパンチ4は非磁性
金属のステラィト合金で作られている。
FIG. 3 shows the powder pressing device used in the example, and the mold 6 and punch 4, which correspond to the electromagnetic surface, are made of a stellite alloy, which is a non-magnetic metal.

次に、原料合金は、組成式がSm(Co70.672,
Cuo.08,Fe o.22,Zro.028)8.
4になるように秤量し、lk9をアルゴンガス雰囲気中
で高周波溶解した。この鋳造ィンゴットの塊を、先ず、
1160qo×6時間、Arガスを流しながら、管状炉
中で溶体化処理を行ない、急冷した。冷却速度は10〜
50301分程度で行なった。続いて、該試料を〜ガス
雰囲気中で、800qo×IH、70000×餌の2段
階処理を行なった。次にこの原料を粗粉砕して粒度−8
0#(メッシュ)とし、続いて非酸化性雰囲気下のボー
ルミルで粒度5一〜65山の粉末を作った。
Next, the raw material alloy has a composition formula of Sm(Co70.672,
Cuo. 08, Fe o. 22, Zro. 028)8.
4, and lk9 was high-frequency melted in an argon gas atmosphere. First, the mass of this cast ingot is
Solution treatment was performed in a tube furnace for 1160 qo x 6 hours while flowing Ar gas, and the material was rapidly cooled. The cooling rate is 10~
It took about 50,301 minutes. Subsequently, the sample was subjected to a two-step treatment of 800 qo x IH and 70,000 x bait in a gas atmosphere. Next, this raw material is coarsely pulverized to a particle size of -8
0# (mesh), and then a powder with a particle size of 51 to 65 was made in a ball mill under a non-oxidizing atmosphere.

この微粉末と、バインダーとしてェポキシ系の有機物樹
脂の粘度1000〜1500P(センチボィズ)のもの
を約公W%添加、乳鉢中で、混練し試料とした。以下該
混合粉末を用いた、成形法の順を示す。1 移動パンチ
4と5およびこの案内となる金型6の空間に、Sm(C
oo.672,Cuo.08,Feo.22,Zro.
028)8.4とバインダーからなる混合粉末7を入れ
る。
This fine powder and an epoxy-based organic resin having a viscosity of 1000 to 1500 P (centiboise) as a binder were added in an amount of approximately W%, and the mixture was kneaded in a mortar to prepare a sample. The order of the molding method using the mixed powder will be shown below. 1 Sm (C
oo. 672, Cuo. 08, Feo. 22, Zro.
028) Add mixed powder 7 consisting of 8.4 and a binder.

2 金型6の外周面は電磁石の磁極8に密着するように
置く。
2 Place the outer peripheral surface of the mold 6 in close contact with the magnetic pole 8 of the electromagnet.

3 電磁石を励磁し磁場をかける。3 Excite the electromagnet and apply a magnetic field.

4 ハンドジャッキまたは油圧に直結している押し棒1
および2を押して、両側から均等粉末を加圧する5 加
圧終了後、そのままの状態で逆磁場をかけ加圧された粉
末磁石を消磁する。
4 Push rod 1 directly connected to hand jack or hydraulic pressure
Press and 2 to apply pressure to the powder evenly from both sides. 5 After the pressurization is finished, apply a reverse magnetic field to demagnetize the pressurized powder magnet.

6 加圧装置から樹脂結合粉末磁石を取り出す。6 Remove the resin-bonded powder magnet from the pressurizing device.

磁石の取り出し、および磁石粉末の装てんは、移動パン
チ4,5のいずれかを取り外し、片側から押し出すこと
により行なう。試料(成形体)の形状は8×15×7m
/仇の角柱状で、成形型より取り出した後に150qo
×1時間加熱キュアー処理を行ない、固化した。以上の
装置および操作はあくまでも本発明の磁場の方向と垂直
に圧縮することを具体化するためにとられた一方法にす
ぎない。第4図は平均粒径30〃のSm(Coo.67
2,Cuo.08,Fe o.22,Zro.028)
8.4のSm2TM,7合金について圧縮度の粉末磁石
の体積充てん率Pに対して、磁石の残留磁気モーメント
。rがどう変化するかを示したもので曲線【a雌本発明
の実施例に従つて成形した場合、曲線【肌ま第1図に示
される従釆法の磁場方向と平行に加圧成形した場合を示
している。ここで曲線(aー,(b}は配向磁場の強さ
を1弧○eの場合である。又曲線{a’のx印は磁場の
強さが10KOeの場合である。従釆方は、磁場の強さ
を変えてもorは余り変化しない。すなわち磁気モーメ
ントが、加圧操作により変動していることが考えられる
。次に。sは振動試料型磁力計で外部磁場16.歌oe
で測定したところ、os=11比mu/夕であった。従
って配向度Kを体積充てん率80%のときを例にとれば
、従来の磁場中成形法では曲線‘bーよりK=0.81
、本発明の実施例では曲線{aーよりK=0.90カ;
得られている。さらに、従来の磁場中成形法では体積充
填率の増加に従って急速に粉末磁石の残留磁気モーメン
ト。rが下るのに比べて、本発明の磁場中成形法では体
積充填率が増加しても残留磁気モーメント。rにはそれ
ほど影響していないことは注目すべきことである。第5
図は従来合金のSmC巧単磁区粒子粉末に近い粒度(約
4仏)を用いて、バインダーにェポキシ樹脂3.5肌%
を添加した混合粉末を1郎戊の磁場中で第3図に示した
加圧装置で成形した。
The magnet is taken out and the magnet powder is loaded by removing one of the moving punches 4 and 5 and pushing it out from one side. The shape of the sample (molded body) is 8 x 15 x 7 m
/ It has a prismatic shape and weighs 150 qo after being removed from the mold.
Heat curing treatment was performed for x1 hour to solidify. The above-described apparatus and operation are merely one method taken to embody the compression perpendicular to the direction of the magnetic field of the present invention. Figure 4 shows Sm (Coo.67) with an average particle size of 30〃.
2, Cuo. 08, Fe o. 22, Zro. 028)
The residual magnetic moment of the magnet with respect to the volume filling factor P of the powder magnet with the degree of compaction for the Sm2TM, 7 alloy of 8.4. This shows how r changes. When molding is performed according to the embodiment of the present invention, the curve [a] shows how r changes. It shows the case. Here, the curves (a-, (b) are for the case where the strength of the orienting magnetic field is 1 arc○e. Also, the x mark on the curve {a' is for the case where the strength of the magnetic field is 10KOe.The following is , or does not change much even if the strength of the magnetic field is changed.In other words, it is possible that the magnetic moment is fluctuating due to the pressurizing operation.Next, s is a vibrating sample magnetometer and the external magnetic field 16. Song oe
When measured, the os was 11 ratio mu/t. Therefore, if the orientation degree K is taken as an example when the volume filling rate is 80%, in the conventional magnetic field forming method, K = 0.81 from the curve 'b-.
, in the embodiment of the present invention, the curve {from a-, K=0.90;
It has been obtained. Furthermore, in the traditional magnetic field forming method, the residual magnetic moment of the powder magnet rapidly increases as the volume filling rate increases. Compared to the case where r decreases, the residual magnetic moment decreases even when the volume filling rate increases in the magnetic field forming method of the present invention. It is noteworthy that r is not significantly affected. Fifth
The figure shows a particle size close to the conventional alloy SmC single-domain particle powder (approximately 4 degrees), and the binder is 3.5% epoxy resin.
The mixed powder to which was added was molded using the pressure device shown in FIG. 3 in a strong magnetic field.

曲線bは、その時に得られた。r(emu/夕)である
。図中(×)印は成形時に割れて、永久磁石形状には出
来ず、従って工業的には製造不加能である。一方本発明
法では広汎な充填率まで何等問題なく高配向度すなわち
高性能永久磁石が容易に提供出来る利点がある。この違
いは第6図、第7図の粉末希土類磁石の粒度と保持力(
iHc)の関係が全く異なることにより説明できる。従
来のSmC広合金粉末は、単磁区粒子の一斉回転による
保磁力発生機構によるため、その粒度は平均4〃前後が
最高性能を示す。このためバインダーの量が多くなるこ
と及び加圧による粉末粒子間の摩擦力が極大し、配向を
乱すあるいは応力集中を起し割れ易くなり、体積充填率
を高められない。一方本発明法はSm2TM,7合金に
適用したもので、第7図に示したように、保磁力の粒度
依存性が全くないため、粉末の大きさ、形状を自由に制
御出来るので、極めて高い配向度を高充填率の領域まで
拡大出来ることは最大の利点である。以上実施例に詳記
したように、本発明方法は、磁壁の移動、ピンニングモ
テルで説明されるR2TM,7合金磁石の高性能化をは
かるために工業的に極めて意義のあるものである。
Curve b was obtained at that time. r (emu/evening). The marks (x) in the figure are cracked during molding and cannot be made into a permanent magnet shape, so they cannot be manufactured industrially. On the other hand, the method of the present invention has the advantage that a high degree of orientation, that is, a high-performance permanent magnet can be easily provided without any problems up to a wide range of filling rates. This difference is due to the particle size and holding power (
This can be explained by the fact that the relationship between iHc) is completely different. Conventional SmC wide alloy powder relies on a coercive force generation mechanism based on simultaneous rotation of single magnetic domain particles, and therefore exhibits best performance when its particle size is around 4 on average. For this reason, the amount of binder increases and the frictional force between the powder particles due to pressure increases to a maximum, which disturbs the orientation or causes stress concentration, making it easy to crack, making it impossible to increase the volumetric filling rate. On the other hand, the method of the present invention is applied to Sm2TM, 7 alloy, and as shown in Figure 7, the coercive force has no particle size dependence, so the size and shape of the powder can be freely controlled, resulting in extremely high The greatest advantage is that the degree of orientation can be expanded to a region with a high filling rate. As described in detail in the Examples above, the method of the present invention is of great industrial significance for improving the performance of R2TM, 7 alloy magnets, which are explained in terms of domain wall movement and pinning models.

その用途は水晶時計のモーター用ローター、コアーレス
モータ−、カーリッジ、メーターを始め、精密機械小型
磁石の高性能を容易に現出出釆る、産業上極めて有効な
ものとなることは明らかである。
It is clear that the application will be extremely effective industrially, as it will easily bring out the high performance of small magnets for precision machinery, including rotors for crystal clock motors, coreless motors, cartridges, and meters. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁場方向と加圧方向が平行の従来法の磁場中加
圧成形法の概略図、第2図は実線が本発明合金の4中l
−日カーブ、点線が従来合金の4ml−日カーブを示す
図。 第3図は本発明法の実施にあたり用いた磁場中加圧装置
の概略、第4図、第5図は本発明の方法と従来法の印加
磁場15K戊における磁場粉末の体積充填率と磁気特性
の関係を示すグラス。第6図は従来法のSmC巧合金の
粒度と保磁力(iHc)の関係を示すグラフ。 平均粒度は約4仏である。第7図は本発明法のSm(C
oo.572,Cu o.08,Fe o.22,Zr
o.028)8.4合金の粘度と保磁力(iHc)の関
係を示すグラフ、図中において用いた記号は以下のとお
りである。1,2・・・・・・押し棒、3・・・・・・
励磁コイル、4,5・・・・・・上下パンチ、6・・・
・・・金型、7・・・・・・粉末。 第1図第2図 第3図 第6図 第7図 第4図 第5図
Figure 1 is a schematic diagram of the conventional pressure forming method in a magnetic field, where the direction of the magnetic field and the direction of pressure are parallel.
-day curve, a diagram in which the dotted line shows the 4ml-day curve of the conventional alloy. Figure 3 is an outline of the magnetic field pressurizing device used to carry out the method of the present invention, and Figures 4 and 5 are the volume filling factor and magnetic properties of magnetic field powder in the applied magnetic field of 15 K in the method of the present invention and the conventional method. A glass showing the relationship between. FIG. 6 is a graph showing the relationship between grain size and coercive force (iHc) of a conventional SmC alloy. The average particle size is approximately 4 Buddhas. Figure 7 shows Sm(C) of the method of the present invention.
oo. 572,Cu o. 08, Fe o. 22, Zr
o. 028) A graph showing the relationship between viscosity and coercive force (iHc) of 8.4 alloy, and the symbols used in the figure are as follows. 1, 2...Push stick, 3...
Excitation coil, 4, 5... Upper and lower punch, 6...
... Mold, 7... Powder. Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 SmとCo,Cu,FeおよびZrからなる遷移金
属TMとの比が原子比で1:6.0〜9.5であるR_
2TM_1_7合金インゴツトを溶体化および時効処理
した後、粒度が5〜80μの範囲に分布るように粉末化
し、さらにバインダーとしてエポキシ樹脂を混合した後
、10KCe以上の磁場を加圧方向とほぼ直角に印加し
て前記粉末化された合金を形成することを特徴とする粉
末永久磁石の磁場中成形法。
1 R_ where the ratio of Sm and transition metal TM consisting of Co, Cu, Fe and Zr is 1:6.0 to 9.5 in atomic ratio
After solution treatment and aging treatment of the 2TM_1_7 alloy ingot, it is pulverized so that the particle size is distributed in the range of 5 to 80μ, and after mixing epoxy resin as a binder, a magnetic field of 10KCe or more is applied almost perpendicular to the pressing direction. 1. A method for forming a powdered permanent magnet in a magnetic field, the method comprising: forming the powdered alloy in a magnetic field.
JP54121624A 1979-09-21 1979-09-21 Magnetic field forming method for powdered permanent magnets Expired JPS6033287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54121624A JPS6033287B2 (en) 1979-09-21 1979-09-21 Magnetic field forming method for powdered permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54121624A JPS6033287B2 (en) 1979-09-21 1979-09-21 Magnetic field forming method for powdered permanent magnets

Publications (2)

Publication Number Publication Date
JPS5646508A JPS5646508A (en) 1981-04-27
JPS6033287B2 true JPS6033287B2 (en) 1985-08-02

Family

ID=14815860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54121624A Expired JPS6033287B2 (en) 1979-09-21 1979-09-21 Magnetic field forming method for powdered permanent magnets

Country Status (1)

Country Link
JP (1) JPS6033287B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183517A (en) * 1988-12-08 1993-02-02 Fuji Electrochemical Co., Ltd. Permanent magnet composition
JPH02156051A (en) * 1988-12-08 1990-06-15 Fuji Elelctrochem Co Ltd Permanent magnet material
JP2768356B2 (en) * 1996-08-27 1998-06-25 セイコーエプソン株式会社 Method for manufacturing resin-bonded magnet

Also Published As

Publication number Publication date
JPS5646508A (en) 1981-04-27

Similar Documents

Publication Publication Date Title
KR101185930B1 (en) Production method for magnetic-anisotropy rare-earth sintered magnet and production device therefor
JP6330813B2 (en) R-T-B system sintered magnet and motor
JPWO2015020183A1 (en) R-T-B system sintered magnet and motor
JPS6033287B2 (en) Magnetic field forming method for powdered permanent magnets
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JPH0411703A (en) Manufacture of rare earth magnet
JPS59103309A (en) Manufacture of permanent magnet
JP3618647B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
JP3568651B2 (en) Manufacturing method of anisotropic sintered magnet
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JP4687267B2 (en) Method for producing powder compact
JP4774652B2 (en) Manufacturing method of rare earth sintered magnet
JP2000323310A (en) Rare-earth containing permanent magnet
JPH05175023A (en) Magnet particle, magnet powder and bonded magnet
JP2561706B2 (en) Method for manufacturing rare earth-Fe-B magnet
JPS5830107A (en) Manufacture of permanent magnet
JPH0696926A (en) Resin-bonded rare-earth-cobalt magnet
JPH02301A (en) Permanent magnet
JP3614545B2 (en) Method for manufacturing anisotropic sintered magnet
JPH0140482B2 (en)
JP2000297306A (en) Production of magnetic powder
JP2006328517A (en) Method for producing rare earth alloy powder molding
JPH03114206A (en) Manufacture of permanent magnet