JPH02301A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPH02301A
JPH02301A JP63331229A JP33122988A JPH02301A JP H02301 A JPH02301 A JP H02301A JP 63331229 A JP63331229 A JP 63331229A JP 33122988 A JP33122988 A JP 33122988A JP H02301 A JPH02301 A JP H02301A
Authority
JP
Japan
Prior art keywords
alloy
fine powder
magnetic field
magnetic
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63331229A
Other languages
Japanese (ja)
Inventor
Itaru Okonogi
格 小此木
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63331229A priority Critical patent/JPH02301A/en
Publication of JPH02301A publication Critical patent/JPH02301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain stable magnetic characteristics by heat-treating and hardening alloy composed of rare earth metal and transition metal in a lumpy state. CONSTITUTION:Alloy composed of 23.8% Sm, 6.5% Cu, 15.6% Fe, 3.2% Zr and Co of the residual part is melted in a high frequency melting furnace, and cast in a metal mold. This alloy ingot in a lumpy state is subjected to solid solution treatment in argon gas. By using a ball mill, this alloy is subjected to wet grinding in polytrifluorochloroethylene atmosphere and fine powder is obtained. Liquid type epoxy resin is added to the fine powder type particles and both are incorporated. The incorporated fine powder type particles are subjected to pressure molding in a magnetic field press shown by figure. The incorporated fine powder type particles are inserted between an upper punch 3 and a lower punch 4, oil pressure is applied to press pedestals 7, 8 in an impressed magnetic field, and pressure molding is performed. After pressure is applied uniaxially by a separately installed oil press, the object is pulled out from the mold.

Description

【発明の詳細な説明】 本発明は、希土類永久磁石合金とバインダーとからなる
永久磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet comprising a rare earth permanent magnet alloy and a binder.

従来Re T M It型永久磁石の製造方法としては
、例えば一般式Sm(Cobal  Cub、12Fe
d、2  ZrO,02)7.0で表わされる金属間化
合物を粉砕して、粒度2μm〜10μmに粒度調整し、
この粉末を磁場中で所望形状に成形した後焼結する方法
が行われている。焼結法は、磁石の磁気特性は(BH)
max22〜30MGOeと大変高い性能が得られてい
る。しかしRe TM+を型合金は希土類元素(R)の
量は、磁石特性に大きい影1力があるといわれている。
Conventional methods for manufacturing Re T M It type permanent magnets include, for example, general formula Sm (Cobal Cub, 12Fe
d, 2 ZrO, 02) The intermetallic compound represented by 7.0 is ground and the particle size is adjusted to 2 μm to 10 μm,
A method is used in which this powder is molded into a desired shape in a magnetic field and then sintered. In the sintering method, the magnetic properties of the magnet are (BH)
A very high performance of max 22 to 30 MGOe has been obtained. However, it is said that the amount of rare earth elements (R) in Re TM+ type alloys has a large effect on magnetic properties.

すなわち所望の磁気特性を得る条件としてR(TM)Z
の2の範囲は非常に狭い範囲であることが知られている
0例えばR=Sm、Ce、Pr、Yの場合、概算±0.
5!I11%の変位は、2が1も変化することになり少
くとも±0. 3fiJ1%の範囲に入らなければなら
ない、しかし希土類元素は活性であり、その蒸気圧も高
いので磁石化工程で、組成変動が大きく所望の磁気性能
を安定して維持出来ない、すなわち溶解によるR元素の
蒸発、粉末化工程における酸化、焼結、溶体化熱処理(
以下SSTと呼称)、時効処理″(以下AGEと呼称)
によるR元素の蒸発、及び酸化を生じ易い、又焼結磁石
は、硬く脆いため機械加工、あるいは取り扱い上欠け1
割れを生じ易い欠点があった。一方RTMs金合金例え
ばSmCo5合金を微粉砕して樹脂結合した永久磁石材
料も知られているが、最大磁気エネルギー積は、5〜1
0MGOeと低いものである。
In other words, as a condition for obtaining desired magnetic properties, R(TM)Z
The range of 2 is known to be a very narrow range.For example, in the case of R=Sm, Ce, Pr, Y, it is approximately ±0.
5! A displacement of I11% means that 2 changes by 1, so at least ±0. However, because rare earth elements are active and their vapor pressure is high, their composition fluctuates greatly during the magnetization process, making it impossible to stably maintain the desired magnetic performance. evaporation, oxidation, sintering, and solution heat treatment in the powdering process (
(hereinafter referred to as SST), aging treatment'' (hereinafter referred to as AGE)
evaporation and oxidation of the R element due to
It had the disadvantage of being prone to cracking. On the other hand, permanent magnet materials made by finely pulverizing RTMs gold alloys, such as SmCo5 alloys and bonding them with resin, are also known, but the maximum magnetic energy product is 5 to 1.
It is low at 0MGOe.

さらに、Rs T M I7型永久磁石の磁気性能の一
番の決め手である酸化防止に多大な工程技術管理が要求
される。粉末法による焼結磁石は、焼結温度1150℃
〜1200℃で不活性雰囲気中又は還元性ガス中で焼結
を行なうが、この際粉末表面は極く微量の空気又は酸素
でどうしても酸化を生じ易い欠点があった。
Furthermore, a great deal of process technology control is required to prevent oxidation, which is the most decisive factor in the magnetic performance of RsTM I7 type permanent magnets. Sintered magnets made using the powder method have a sintering temperature of 1150°C.
Sintering is carried out at ~1200° C. in an inert atmosphere or in a reducing gas, but the powder surface has the disadvantage that it tends to be oxidized by very small amounts of air or oxygen.

この発明は、上述した従来方法の欠点を改善したもので
希土類元素の酸化、蒸発による変動を押え所定組成を容
易に得られる製造方法を提供することを目的とするもの
である。以下本発明を工程に従って順次詳細に説明する
The present invention improves the drawbacks of the conventional methods described above, and aims to provide a manufacturing method that can easily obtain a predetermined composition while suppressing fluctuations due to oxidation and evaporation of rare earth elements. The present invention will be explained in detail below in accordance with the steps.

本発明における磁性合金は、Y、  Sm、  Pry
Ce、La、  などの希土類金属を20%〜28%(
以下重量%を示す)とCu(銅)3〜15%、Fe(鉄
)5〜35%*  Zr、  Hf*  Ti、  N
beCr、  V、  Mn、  のいずれかを1種又
は2種以上1〜5%、残部Coからなる合金である。
The magnetic alloy in the present invention includes Y, Sm, Pry
20% to 28% of rare earth metals such as Ce, La, etc.
weight%), Cu (copper) 3 to 15%, Fe (iron) 5 to 35%* Zr, Hf* Ti, N
It is an alloy consisting of 1 to 5% of one or more of beCr, V, Mn, and the remainder Co.

まず上記組成の合金をアルゴンガス中で高周波溶解して
インゴットに鋳造する。この場合、H型の構造材質は金
型とし、冷却速度をコントロールしながら、柱状晶を現
出させることにより、4πIs(飽和磁化)及びiHe
 (保磁力)を高められる。更に該合金インゴットをア
ルゴンガスなどの非酸化性雰囲気中で1100℃〜12
20℃に加熱して1時間〜24時間熱処理を行ない、室
温まで冷却する。この時の冷却速度は、10〜100℃
/分に調整することにより、大きな保磁力が得られる0
次に室温まで冷却した磁性合金を500〜850℃に加
熱して、時効処理によって、磁気的に硬化をさせる。前
記2種類の熱処理を、磁性合金インゴットのまま、すな
わち塊状で行なうので、合金組成の変動を極めて少なく
出来る利点がある。すなわち、磁性合金の表面積は体積
に比しインゴット塊状のまま熱処理を行なうので、大変
小さく出来る。その結果、当然磁性合金の表面酸化を着
るしく減小出来る利点を有する。溶体化で均一相を、続
いて時効によって、析出硬化を促進させ、磁気的に硬化
するものと考えられる1次に熱処理したインゴットを、
ジ式−クラッシャートップミルなどを用いて粗粉砕する
。この時の粒度は一30メツシュとかなり粗粒子粉末で
ある。
First, an alloy having the above composition is melted at high frequency in argon gas and cast into an ingot. In this case, the H-type structural material is a mold, and by controlling the cooling rate and exposing columnar crystals, 4πIs (saturation magnetization) and iHe
(coercive force) can be increased. Furthermore, the alloy ingot was heated at 1100°C to 12°C in a non-oxidizing atmosphere such as argon gas.
Heat treatment is performed at 20° C. for 1 to 24 hours, and then cooled to room temperature. The cooling rate at this time is 10 to 100℃
/min, a large coercive force can be obtained.
Next, the magnetic alloy cooled to room temperature is heated to 500 to 850°C and magnetically hardened by aging treatment. Since the above two types of heat treatments are performed on the magnetic alloy ingot as it is, that is, in the form of a block, there is an advantage that fluctuations in the alloy composition can be extremely reduced. That is, the surface area of the magnetic alloy can be made very small compared to its volume since the heat treatment is performed while the ingot remains in the form of a block. As a result, it naturally has the advantage of significantly reducing surface oxidation of the magnetic alloy. The first heat-treated ingot is thought to be magnetically hardened by solution treatment to create a homogeneous phase, followed by aging to promote precipitation hardening.
Coarsely grind using a crusher top mill, etc. The particle size at this time was 130 mesh, which was a fairly coarse powder.

該粗粒子粉末を、ボールミル、シュートミル、などの機
械装置を用いて、微粉砕を行なう、この場合磁石の保磁
力は熱処理により、形成された合金中の微細構造組織に
起因するため、これが破壊されない程度に粉砕する。粉
末の粒度は、3μm〜85μmに粉砕することが望まし
い、なお粒径が3μ以下になると、微細組織が破壊され
るため、飽和磁化、保磁力が減小し易いので3μ以上と
した。又85μを越えると保磁力、及び飽和磁化が減小
する問題がある。さらに粉末の充てん率、及び磁場中配
向性の低下を来たし易い、従って好ましくは、平均粒度
10〜15μmで分布が3μm〜50μmの磁性粉末粒
子が良い、このようにして得られた微粉状粒子に有機物
バインダー、融点が400℃以下のメタルバインダーを
添加して、混合した後、非磁性材料からなる金型内に充
てんし、12〜30KGの磁場をかけて、粒子を磁場配
向させながら1〜7 t o n / c m−の圧力
で加圧成形して所望形状に圧粉成形し、焼成して永久磁
石を製造せんとするものである。ここで有機物バインダ
ーは、熱硬化性、熱可塑性のいずれでも良く、好ましく
はエポキシ系樹脂、EVA樹脂、フェノール系樹脂、ポ
リエステル系樹脂などがあり、その量は、0.5%(I
i量比)〜10%である。
The coarse powder is finely pulverized using a mechanical device such as a ball mill or a shoot mill. Crush it to the extent that it will not be damaged. The particle size of the powder is desirably pulverized to 3 μm to 85 μm. If the particle size is less than 3 μm, the fine structure is destroyed, so the saturation magnetization and coercive force are likely to decrease, so it is set to 3 μm or more. Moreover, if it exceeds 85μ, there is a problem that coercive force and saturation magnetization decrease. In addition, the powder filling rate and orientation in a magnetic field tend to decrease.Therefore, it is preferable to use magnetic powder particles with an average particle size of 10 to 15 μm and a distribution of 3 μm to 50 μm. After adding and mixing an organic binder and a metal binder with a melting point of 400°C or less, it is filled into a mold made of non-magnetic material, and a magnetic field of 12 to 30 kg is applied to magnetically orient the particles. A permanent magnet is produced by compacting into a desired shape by pressure molding at a pressure of ton/cm- and firing. Here, the organic binder may be either thermosetting or thermoplastic, preferably epoxy resin, EVA resin, phenol resin, polyester resin, etc., and the amount thereof is 0.5% (I
i amount ratio) to 10%.

有機物バインダーのさらに好ましい量は、1%〜5%で
この場合、加圧成形における、磁性粉末の充てん率が6
0%以上となり、密度pは5.0以上を得られる。
A more preferable amount of the organic binder is 1% to 5%, and in this case, the filling rate of the magnetic powder in pressure molding is 6.
0% or more, and a density p of 5.0 or more can be obtained.

又メタルバインダーは、am、  Pb、  In、 
 Bi、ca、Tlなどの低融点金属、及びその合金で
M、P(融点)が概ね400℃以下のものを用いる。メ
タルバインダーの効果は、永久磁石の機械的な強度、靭
性、及び磁気特性のもの温度特性を改良することが出来
る。
Also, metal binders include am, Pb, In,
Low melting point metals such as Bi, Ca, and Tl, and alloys thereof, having M and P (melting points) of approximately 400° C. or lower are used. The effect of the metal binder can improve the mechanical strength, toughness, magnetic properties, and temperature characteristics of permanent magnets.

次に本発明永久磁石材料の製造方法における好ましい合
金組成は以下の通りである。
Next, preferred alloy compositions in the method for producing permanent magnet materials of the present invention are as follows.

3m、Y、Pr、Ceを1種又は2種以上・・・22%
〜25% Cu・・・4%〜10% Fe・・・10%〜35% Co・・・残部 Zr、Hf、Ti、Nb、Ta、Vの1種又は2種以上
・・・0%〜5% なお本発明において、希土類金属の添加量を前記組成に
限定した理由は、20%以下では、Ra TMI?W結
晶からずれて、Fe−Co相があられれ、保磁力が低下
するためであり、28%をこえると、RTMs相が多く
なり、4πISが5000G以下に低下し、最大エネル
ギー積が4.5以下になるからである。希土類金属は1
種に限らず2種以上複合しても同様の効果を得られる。
One or more types of 3m, Y, Pr, Ce...22%
~25% Cu...4%~10% Fe...10%~35% Co...Remaining one or more of Zr, Hf, Ti, Nb, Ta, and V...0%~ 5% In the present invention, the reason why the amount of rare earth metal added is limited to the above composition is that if it is 20% or less, Ra TMI? This is because the Fe-Co phase shifts from the W crystal and the coercive force decreases. When it exceeds 28%, the RTMs phase increases, the 4πIS decreases to 5000 G or less, and the maximum energy product becomes 4.5. This is because the following is true. Rare earth metals are 1
Similar effects can be obtained not only by species but also by combining two or more species.

Cu(銅)は3%未満では、保磁力の増大が認められず
、15%をこえると、4πIsが低下するからである。
This is because if Cu (copper) is less than 3%, no increase in coercive force is observed, and if it exceeds 15%, 4πIs decreases.

Zr、Nb、Hf、Ti、Cr、V、Mnの1種又は2
種以上で1%未満では、保磁力の改善効果がなく5%を
こえると、4πIsが低下する。さらに鉄は5%以下で
は4πIsが高められず、35%をこえると、保磁力が
低下するからである。
One or two of Zr, Nb, Hf, Ti, Cr, V, Mn
If it is more than 5% and less than 1%, there is no effect of improving coercive force, and if it exceeds 5%, 4πIs decreases. Furthermore, if iron is less than 5%, 4πIs cannot be increased, and if it exceeds 35%, the coercive force decreases.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

(実施例1) 次の組成からなる合金IKgを高周波溶解炉で溶解し、
金型に鋳込んだ0本合金の試量組成は以下の通りである
(Example 1) An alloy IKg consisting of the following composition was melted in a high frequency melting furnace,
The sample composition of the zero alloy cast into the mold is as follows.

3m:  23.8%、  Cu:  6.5%、  
Fe:  15.6%、  Zr:  3. 2%、C
o: 残部ここで得られた磁性合金インゴットは80%
以上柱状晶であった。この合金の分析値は以下の通りで
あった。
3m: 23.8%, Cu: 6.5%,
Fe: 15.6%, Zr: 3. 2%, C
o: Remainder The magnetic alloy ingot obtained here is 80%
The above was a columnar crystal. The analytical values of this alloy were as follows.

次に該合金のインゴットで塊状のもの各100gを用い
て、アルゴンガス中で溶体化処理を行なった。冷却速度
は、約り00℃/分であった。続いて室温まで冷却した
合金を別設の熱処理炉で、アルゴンガス中で800℃×
8時間加熱し、時効処理を行ない1−00℃/分で冷却
した。熱処理上りの合金表面はほとんど酸化は認められ
なかった。
Next, 100 g of each ingot of the alloy in the form of a lump was subjected to solution treatment in argon gas. The cooling rate was approximately 00°C/min. The alloy was then cooled to room temperature and heated to 800°C in argon gas in a separate heat treatment furnace.
It was heated for 8 hours, subjected to aging treatment, and cooled at 1-00°C/min. Almost no oxidation was observed on the alloy surface after heat treatment.

次にこの合金をボールミルを用いて、ダイフロン中で湿
式粉砕し、平均粒径15μmで且つ、3μm〜50μm
の分布のrllj3)末を1また。この微粉状粒子を液
状で粘度2000CPSのエポキシ樹脂を2爪m%加え
て乳鉢中で混和した。なおボールミル上りの粉末は、常
温で真空中乾燥を行なっである。
Next, this alloy was wet-milled in a Daiflon using a ball mill to obtain particles with an average particle size of 15 μm and 3 μm to 50 μm.
rllj3) of the distribution of 1 again. Two m % of a liquid epoxy resin having a viscosity of 2000 CPS was added to the fine powder particles and mixed in a mortar. The ball milled powder was dried in vacuum at room temperature.

エポキシ樹脂と混和した微粉状粒子を、第1図に示す磁
場プレス中で加圧成形した。
The fine powder particles mixed with the epoxy resin were pressure molded in a magnetic field press as shown in FIG.

1は励磁コイル、2は純鉄製のポールピースでこの間に
15KGの磁場を発生させた。5は非磁性材のステライ
ト、3,4は同材質で上パンチ、下パンチである。3,
4の間に、前記エポキシ樹脂と混和した粉末8gを装入
し、印加磁場15KG中で7,8から油圧を加え、加圧
成形した。この時の加圧力は2ton/cm”であった
0次に磁場中成形したままの状態で成形型を別設の油圧
プレスで、−軸方向に5ton/cm”加え成形し、型
より抜き出した。この時の試料形状は第2図に示した角
柱状試料である。続いて、150℃×1時間オーブン中
で焼成した成形体の形状寸法は、a==8m/m、b=
14m/m、h=8.0n/mで矢印方向が異方性の方
向である0本発明方法によれば第1表1〜5に示したよ
うに、樹脂結合型磁石として、大変高い磁気性能が得ら
れた。
1 is an excitation coil, 2 is a pole piece made of pure iron, and a magnetic field of 15 KG is generated between them. 5 is Stellite, which is a non-magnetic material, and 3 and 4 are upper and lower punches made of the same material. 3,
Between 4 and 4, 8 g of the powder mixed with the epoxy resin was charged, and hydraulic pressure was applied from 7 and 8 in an applied magnetic field of 15 kg to perform pressure molding. The pressurizing force at this time was 2 ton/cm". While molding was performed in the zero-order magnetic field, the mold was molded using a separate hydraulic press with 5 ton/cm" applied in the -axial direction, and then extracted from the mold. . The sample shape at this time was the prismatic sample shown in FIG. Subsequently, the shape and dimensions of the molded body baked in an oven at 150°C for 1 hour were a==8m/m, b=
14 m/m, h = 8.0 n/m, and the arrow direction is the direction of anisotropy. According to the method of the present invention, as shown in Tables 1 to 5, as a resin bonded magnet, a very high magnetic performance was achieved.

No、6は比較例で、インゴットを微粉砕して粒度5〜
15μm平均粒度7μmとし、本発明方法と同じように
磁場成形した。磁場成形の加圧力は1ton/am’で
第2図に示したのと同形状の仮成形体(グリーンボディ
)を得た。第1表N0゜6は比較例の焼結した永久磁石
の特性を示す。
No. 6 is a comparative example, in which the ingot is finely pulverized and the particle size is 5 to 5.
The average particle size was 15 μm and the average particle size was 7 μm, and magnetic field molding was performed in the same manner as the method of the present invention. The pressing force of the magnetic field molding was 1 ton/am', and a temporary molded body (green body) having the same shape as shown in FIG. 2 was obtained. Table 1, No. 6, shows the characteristics of the sintered permanent magnet of the comparative example.

(実施例2) 実施例1−NO,4の条件でれ=10ロット熱処理し、
永久磁石を成形した。続いて150℃×1時間オーブン
中で加熱焼成し室温まで冷却後、測定磁場強度25KO
eで、自記磁束計を用いて磁気性能を調べた。又比較例
1として、SmG。
(Example 2) Heat treated under the conditions of Example 1-NO, 4 = 10 lots,
A permanent magnet was formed. Subsequently, it was heated and baked in an oven at 150°C for 1 hour, and after cooling to room temperature, the measured magnetic field strength was 25KO.
Magnetic performance was investigated using a self-recording magnetometer. Moreover, as Comparative Example 1, SmG.

1合金粉末の平均粒度5μmものを用いて、エポキシ樹
脂2重量%を混和した。同様にn=5ケ磁場中成形し、
焼成(150℃×1時間)後、磁気測定を行なった。又
比較例2として、第1表N0゜6と同一条件で製造し、
焼結し熱処理したちの10ロツトについて調べた。第2
表に以上の結果をまとめて記す。
1 alloy powder having an average particle size of 5 μm was mixed with 2% by weight of epoxy resin. Similarly, n=5 pieces were molded in a magnetic field,
After firing (150°C x 1 hour), magnetic measurements were performed. In addition, as Comparative Example 2, it was manufactured under the same conditions as No. 6 in Table 1,
Ten lots of sintered and heat-treated specimens were investigated. Second
The above results are summarized in the table.

第2表 本発明法の樹脂結合型磁石は、磁気性能は、SmCo5
合金のそれより高く、焼結法よりは若干低い、しかし、
磁気性能のバラツキは大変に小さいことがわかった。こ
の理由は本発明法は、合金インゴットのまま熱処理を行
うので、酸化、amの蒸発等組成に係る問題が極力防止
出来るためであると考えられる。すなわち焼結法はグリ
ーンボディ(仮成形体)のため内部にガスを吸着してお
り、且つ粉末を成形しであるため、表面積が大きく、焼
結の際Arガス中の酸素ガス、窒素ガスなどとの反応を
生じ性能のバラツキに起因することがわかった。
Table 2 The magnetic performance of the resin-bonded magnets of the present invention is SmCo5
Higher than that of alloy, slightly lower than that of sintering method, but
It was found that the variation in magnetic performance was extremely small. The reason for this is thought to be that, in the method of the present invention, problems related to the composition such as oxidation and evaporation of am can be prevented as much as possible since the alloy ingot is heat treated as it is. In other words, since the sintering method uses a green body (temporary molded body), gas is adsorbed inside it, and since the powder is molded, the surface area is large, and during sintering, oxygen gas in Ar gas, nitrogen gas, etc. It was found that this was due to the variation in performance.

(実施例3) 実施例第1表N002に示したのと同一の製造条件の磁
性粉末を用いて、含浸法により永久磁石をつくった。先
ず磁性粉の粒度は平均粒度15μmとし、25g中に重
量比で0.3%のオレイン酸を加え乳鉢中で混合した。
(Example 3) A permanent magnet was manufactured by an impregnation method using magnetic powder under the same manufacturing conditions as shown in Example Table 1, No. 002. First, the particle size of the magnetic powder was set to an average particle size of 15 μm, and 0.3% by weight of oleic acid was added to 25 g and mixed in a mortar.

この混合粉末を第1図に示した磁場成形装置で第1表N
002と同様の条件で加圧成形し、角柱状ブロック(成
形体)を得た。該成形体を粘度1000PSの1液性エ
ポキシ樹脂液200cc中に浸漬して、常温で2時間放
置して、含浸を行なった。続いてバインダーであるエポ
キシ液中より、成形体をとり出し、エチルアルコールで
洗浄後オーブン中で150℃×1時間加熱焼成固化させ
た。該試料を自記磁束計を用いてB−Hカーブを測定し
た。その結果を第3図3に示す、1は比較例1の3mC
o5合金粉末を成形したブロックを同様に含浸した時に
得られたB−Hカーブを示す。
This mixed powder was processed into Table 1 N by the magnetic field forming apparatus shown in Fig. 1.
Pressure molding was performed under the same conditions as 002 to obtain a prismatic block (molded body). The molded article was immersed in 200 cc of a one-component epoxy resin liquid with a viscosity of 1000 PS, and left at room temperature for 2 hours to effect impregnation. Subsequently, the molded body was taken out from the binder epoxy liquid, washed with ethyl alcohol, and then baked and solidified in an oven at 150° C. for 1 hour. The BH curve of the sample was measured using a self-recording magnetometer. The results are shown in Figure 3, where 1 is 3mC of Comparative Example 1.
The B-H curve obtained when a block formed with o5 alloy powder was similarly impregnated is shown.

又2は比較例2のSmCo5焼結型磁石量産製造品の代
表的なり−Hカーブをあられしたものである。
Further, 2 shows a typical -H curve of the mass-produced SmCo5 sintered magnet of Comparative Example 2.

本発明方法は第3表からもゎがるように、従来から知ら
れているSmCo5合金の樹脂結合型磁石よりもはるか
に磁気特性が高く且つ焼結法で作られた3mCo5磁石
と同じ磁気特性が得られた。
As can be seen from Table 3, the method of the present invention has much higher magnetic properties than the conventionally known SmCo5 alloy resin-bonded magnet, and has the same magnetic properties as the 3mCo5 magnet made by the sintering method. was gotten.

(実施例4) 第1表N003と同一の熱処理条件で得られた微粉末2
0gを用意した。この磁性粉末にpbと3nが1:1の
組成比からなるハンダ粉末(平均粒度が2μm)をmj
l比で6%混合し、窒素ガスを流出させた、グローボッ
クス中で1時間混和した。
(Example 4) Fine powder 2 obtained under the same heat treatment conditions as No. 003 in Table 1
0g was prepared. Mj of solder powder (average particle size 2 μm) consisting of a composition ratio of PB and 3N of 1:1 is added to this magnetic powder.
The mixture was mixed for 1 hour in a glow box with nitrogen gas flowing out.

次に第1図に示した磁場成形装置で第1表NO。Next, the magnetic field forming apparatus shown in FIG. 1 was used to form Table 1.

3の試料と同様に磁場中加圧成形を行なった。この時の
最終加圧成形圧力は7ton/cm”であったが、成形
体の割れ、型からの抜き出しは何等問題なく出来た。続
いて、Arガス雰囲気中で温度325℃×1時間加熱し
、室温まで冷却した0本発明方法で得られた、永久磁石
の特性を以下に記す。
Pressure molding in a magnetic field was performed in the same way as sample No. 3. The final molding pressure at this time was 7 ton/cm'', but the molded product could be pulled out from the mold without any problems.Next, it was heated in an Ar gas atmosphere at a temperature of 325°C for 1 hour. The characteristics of the permanent magnet obtained by the method of the present invention cooled to room temperature are described below.

第1表N003の本発明方法の永久磁石に比べ、本実施
例によれば、さらに磁気特性が改良出来ることがわかっ
た。又本実施例永久磁石材料は、耐衝撃性、欠け、割れ
等にも大変強いことが判明した。磁石成形体を高さ1m
の高さからコンクリート床上に落下させても、何ら異状
は認められなかった。さらに本発明法は、原料費の高い
希土類金属、及びコバルトを使用するので、原料歩留り
がコストに大きく影響する1本発明法は、直接製品形状
に型を用いて成形出来るので90%以上の歩留りであっ
た。一方従来法の焼結磁石は歩留りが10%〜30%に
もなりコストが高くなる欠点がある。
It was found that the magnetic properties of this example could be further improved compared to the permanent magnet produced by the method of the present invention shown in Table 1, No. 003. Furthermore, the permanent magnet material of this example was found to be highly resistant to impact, chipping, cracking, etc. Magnet molded body 1m high
No abnormalities were observed even when the product was dropped onto a concrete floor from a height of Furthermore, since the method of the present invention uses rare earth metals and cobalt, which have high raw material costs, the raw material yield greatly affects the cost.The method of the present invention can directly mold the product shape using a mold, so the yield is over 90%. Met. On the other hand, the conventional sintered magnet has a yield of 10% to 30% and has the drawback of high cost.

本発明は、R2TM+v型永久磁石合金の特性を樹脂結
合あるいは、メタルバインダー法によって、磁気特性を
高めたこと及び量産製造のバラツキを少く出来るなど、
当工業界にとって多大の利益を持たらすものである1本
発明永久磁石材料の用途は、コアーレスモーター ステ
ッピングモーター電磁ブザー スピーカー 時計用ステ
ッピングモーター カートリッヂなど精密機器への応用
が拓けているこれら分野の該デバイスに用いれば、低コ
スト、高性能すなわち、コストパフォーマンスの高い商
品づくりに画期的な効果を果すものと信する。このよう
に本発明方法は、工業上大変有益なものである。
The present invention improves the magnetic properties of the R2TM+v type permanent magnet alloy by resin bonding or metal binder method, and reduces the variation in mass production.
1. The permanent magnet material of the present invention, which will bring great benefits to the industry, can be used in precision equipment such as coreless motors, stepping motors, electromagnetic buzzers, speakers, stepping motors for watches, and cartridges. We believe that if used in this device, it will have a revolutionary effect on the production of low-cost, high-performance products, that is, high cost performance. As described above, the method of the present invention is industrially very useful.

第1図は、本実施例で用いた磁場成形装置の断面概略図
FIG. 1 is a schematic cross-sectional view of the magnetic field forming apparatus used in this example.

1・・・励磁コイル 2・・・ポールピース 3・・・成形型上パンチ(非磁性ステライト)4・・・
成形型下パンチ(〃) 5…   〃(〃) 6・・・磁性粉末 7・・・プレス用台座(上部) 8・・・   〃  (下部) 第2図は本実施例で磁場中成形したブロックの概略図。
1...Exciting coil 2...Pole piece 3...Mold upper punch (non-magnetic stellite) 4...
Lower punch of mold (〃) 5... 〃(〃) 6... Magnetic powder 7... Press pedestal (upper part) 8... 〃 (lower part) Figure 2 shows the block formed in the magnetic field in this example. Schematic diagram.

第3図は、本発明方法の実施例3で得られた、永久磁石
材料のB−Hカーブを示す図。
FIG. 3 is a diagram showing a B-H curve of a permanent magnet material obtained in Example 3 of the method of the present invention.

以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴木 喜三部 化1名that's all Applicant: Seiko Epson Corporation Agent: Patent attorney Kisanbe Suzuki (1 person)

【図面の簡単な説明】[Brief explanation of the drawing]

手続補正書 (自発) 2、発明の名称 永   久   磁   石 3゜ 補正する者 事件との関係   特許出願人 ■163東京都新宿区西新宿2丁目4番1号セイコーエ
プソン株式会社 代表取締役 中 村 恒 也 4、代理人 連絡先 e348−8531 内線300〜302 5゜ 補正の対象 明細書(全文補正) 第2図 第3図 手 続 補 正 書
Procedural amendment (voluntary) 2. Name of the invention Permanent magnet 3゜Relationship with the case Patent applicant: 163 2-4-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Hisashi Nakamura, Representative Director of Seiko Epson Corporation 4. Agent contact information e348-8531 Extensions 300-302 5゜Specification subject to amendment (full text amendment) Figure 2 Figure 3 Procedural amendment form

Claims (1)

【特許請求の範囲】[Claims] 希土類金属(但しYを含む)の1種類以上と遷移金属の
1種類以上とで構成された希土類永久磁石合金とバイン
ダーとの混合成形物からなる永久磁石において、前記合
金が溶解、鋳造して得られるインゴットを塊状のまま熱
処理して磁気的に硬化させた合金からなることを特徴と
する永久磁石。
In a permanent magnet made of a mixed molded product of a rare earth permanent magnet alloy composed of one or more rare earth metals (including Y) and one or more transition metals and a binder, the alloy is obtained by melting and casting. A permanent magnet characterized by being made of an alloy made by magnetically hardening an ingot that has been heat-treated in its lump form.
JP63331229A 1988-12-29 1988-12-29 Permanent magnet Pending JPH02301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63331229A JPH02301A (en) 1988-12-29 1988-12-29 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63331229A JPH02301A (en) 1988-12-29 1988-12-29 Permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8357780A Division JPS5710210A (en) 1980-06-20 1980-06-20 Manufacture of permanent magnet material

Publications (1)

Publication Number Publication Date
JPH02301A true JPH02301A (en) 1990-01-05

Family

ID=18241338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63331229A Pending JPH02301A (en) 1988-12-29 1988-12-29 Permanent magnet

Country Status (1)

Country Link
JP (1) JPH02301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100333828C (en) * 2003-10-25 2007-08-29 玉环县海洋生物化学有限公司 Biologic chromatography gelatin and producing texhnique
RU2566090C1 (en) * 2014-10-06 2015-10-20 Открытое акционерное общество "Спецмагнит" METHOD OF MATERIAL MANUFACTURING FOR PERMANENT MAGNETS OUT OF CAST ALLOYS BASED ON SYSTEM Sm-Co-Fe-Cu-Zr

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710210A (en) * 1980-06-20 1982-01-19 Seiko Epson Corp Manufacture of permanent magnet material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710210A (en) * 1980-06-20 1982-01-19 Seiko Epson Corp Manufacture of permanent magnet material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100333828C (en) * 2003-10-25 2007-08-29 玉环县海洋生物化学有限公司 Biologic chromatography gelatin and producing texhnique
RU2566090C1 (en) * 2014-10-06 2015-10-20 Открытое акционерное общество "Спецмагнит" METHOD OF MATERIAL MANUFACTURING FOR PERMANENT MAGNETS OUT OF CAST ALLOYS BASED ON SYSTEM Sm-Co-Fe-Cu-Zr

Similar Documents

Publication Publication Date Title
JPS62291904A (en) Mafufacture of permanent magnet
EP0344542B1 (en) An Nd-Fe-B sintered magnet and method for producing the same
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPS6181606A (en) Preparation of rare earth magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS6181603A (en) Preparation of rare earth magnet
JPS63238215A (en) Production of anisotropic magnetic material
JPH02301A (en) Permanent magnet
EP0288637B1 (en) Permanent magnet and method of making the same
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JPH0140482B2 (en)
JPH03114206A (en) Manufacture of permanent magnet
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH03114205A (en) Sintered type permanent magnet
JPH05144621A (en) Rare earth element-bonded magnet
JPH048923B2 (en)
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JPS6367323B2 (en)
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPS60165702A (en) Manufacture of permanent magnet
GB2069528A (en) Ferromagnetic Alloys
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet
JPH03291305A (en) Manufacture of shape anisotropic and soft magnetic alloy powder
JPS5827321B2 (en) Permanent magnet manufacturing method
JPH01146308A (en) Manufacture of rare-earth magnet