JPH05211144A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH05211144A
JPH05211144A JP34567891A JP34567891A JPH05211144A JP H05211144 A JPH05211144 A JP H05211144A JP 34567891 A JP34567891 A JP 34567891A JP 34567891 A JP34567891 A JP 34567891A JP H05211144 A JPH05211144 A JP H05211144A
Authority
JP
Japan
Prior art keywords
film
wiring
insulating film
layer
layer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34567891A
Other languages
Japanese (ja)
Inventor
Noriaki Oda
典明 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP34567891A priority Critical patent/JPH05211144A/en
Publication of JPH05211144A publication Critical patent/JPH05211144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent increase of contact hole resistance of an upper layer wiring connected with a lower layer wiring via an aperture part of an interlayer insulating film, and short circuit between adjacent wirings. CONSTITUTION:By forming a silicon oxide film 9 on the side wall of an aperture part formed in a polyimide based resin insulating film 7 on a lower layer wiring, it is avoided that a TiW film 10 arranged under the upper layer wiring connected with the lower wiring comes directly into contact, in the aperture part 8, with the polyimide based resin insulating film 7 being an organic interlayer insulating film. Thereby it is prevented that the TiW film 10 is oxidized by moisture from the polyimide based resin insulating film 7, volume expansion is generated, and imperfect contact and short circuit between adjacent wirings are caused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に関し、特に多層配線を有する半導体装置及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having multi-layer wiring and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来の半導体装置は図6に示すように、
拡散層を有する半導体基板1の上に設けた絶縁膜2を選
択的にエッチングしてコンタクト孔3を設け、コンタク
ト孔3を含む表面にバリアメタルとしてのTiW,W等
の高融点金属膜4及びアルミニウム膜5を順次堆積して
パターニングし、下層配線を形成する。次に、下層配線
を含む表面にポリイミド系樹脂絶縁膜7を塗布して表面
を平坦化し、ポリイミド系樹脂絶縁膜7を選択的にエッ
チングして下層の配線上に開孔部を形成する。次に、開
孔部を含む表面にTiW膜10及びアルミニウム膜11
を順次堆積してパターニングし、下層配線と接続する上
層配線を形成する。
2. Description of the Related Art A conventional semiconductor device is shown in FIG.
The insulating film 2 provided on the semiconductor substrate 1 having a diffusion layer is selectively etched to form a contact hole 3, and a refractory metal film 4 such as TiW or W as a barrier metal is formed on the surface including the contact hole 3. An aluminum film 5 is sequentially deposited and patterned to form a lower layer wiring. Next, the polyimide resin insulating film 7 is applied to the surface including the lower layer wiring to flatten the surface, and the polyimide resin insulating film 7 is selectively etched to form an opening on the lower layer wiring. Next, the TiW film 10 and the aluminum film 11 are formed on the surface including the opening.
Are sequentially deposited and patterned to form an upper layer wiring connected to the lower layer wiring.

【0003】[0003]

【発明が解決しようとする課題】この従来の半導体装置
は、下層配線上の有機層間絶縁膜に設けた上層配線と接
続するための開孔部の側壁で上層配線の下部の高融点金
属膜と、有機層間絶縁膜とが直接接しているため、後工
程での熱処理で、有機層間絶縁膜中の水分と高融点金属
膜とが反応して、高融点金属の酸化物が形成され、抵抗
が高くなったり、開孔部の側壁及び底部の高融点金属膜
が膨張し、開孔部内の配線の高抵抗化やコンタクト不良
を生ずるという問題点がある。この抵抗の上昇は、開孔
部の口径が小さくなればなるほど著しくなる。
In this conventional semiconductor device, a refractory metal film under the upper wiring is formed on the side wall of the opening for connecting to the upper wiring provided in the organic interlayer insulating film on the lower wiring. Since the organic interlayer insulating film is directly in contact with the organic interlayer insulating film, the moisture in the organic interlayer insulating film reacts with the refractory metal film in a heat treatment in a later step to form an oxide of the refractory metal, resulting in a resistance. There is a problem that the height becomes high and the refractory metal film on the side wall and bottom of the opening expands, resulting in higher resistance of the wiring in the opening and poor contact. This increase in resistance becomes more remarkable as the diameter of the opening portion becomes smaller.

【0004】また、下層配線の側面や上層配線の下面も
有機層間絶縁膜と直接接しているために、後工程での熱
処理で、高融点金属等が有機層間絶縁膜中の水分の反応
として酸化されたり、体積膨張を生じたりして隣接配線
の間の短絡や配線抵抗の増大を生ずるという問題点があ
る。
Further, since the side surface of the lower layer wiring and the lower surface of the upper layer wiring are also in direct contact with the organic interlayer insulating film, refractory metal or the like is oxidized as a reaction of moisture in the organic interlayer insulating film in a heat treatment in a later process. However, there is a problem in that a short circuit occurs between adjacent wirings or an increase in wiring resistance is caused due to the occurrence of the expansion or volume expansion.

【0005】[0005]

【課題を解決するための手段】本発明の半導体装置は、
半導体基板上に設けた下層配線と、前記下層配線を含む
表面に設けた有機層間絶縁膜と、前記下層配線上の有機
層間絶縁膜に設けた上層配線接続用の開孔部と、前記開
孔部の側壁に設けた無機絶縁膜と、前記開孔部の下層配
線と接続して設けた上層配線とを有する。
The semiconductor device of the present invention comprises:
Lower layer wiring provided on a semiconductor substrate, an organic interlayer insulating film provided on a surface including the lower layer wiring, an opening portion for connecting an upper layer wiring provided in the organic interlayer insulating film on the lower layer wiring, and the opening. An inorganic insulating film provided on the side wall of the opening and an upper layer wiring provided in connection with the lower layer wiring of the opening.

【0006】本発明の半導体装置の第1の製造方法は、
半導体基板上に設けた絶縁膜上に下層配線を選択的に形
成する工程と、前記下層配線を含む表面に回転塗布法に
よりポリイミド系樹脂膜を塗布して上面を平坦化した有
機層間絶縁膜を形成する工程と、前記有機層間絶縁膜を
選択的に異方性エッチングして下層配線に達する開孔部
を形成する工程と、前記開孔部を含む表面に無機絶縁膜
を堆積してエッチバックし前記開孔部の側壁にのみ無機
絶縁膜を残して前記下層配線の上面を露出させる工程
と、前記開孔部を含む表面に高融点金属膜又は高融点金
属硅化物膜と高導電率の金属膜とを順次積層してパター
ニングし前記開孔部の下層配線と電気的に接続する上層
配線を形成する工程とを含んで構成される。
A first method of manufacturing a semiconductor device according to the present invention is
A step of selectively forming a lower layer wiring on an insulating film provided on a semiconductor substrate, and an organic interlayer insulating film whose upper surface is flattened by applying a polyimide resin film to the surface including the lower layer wiring by a spin coating method. A step of forming, a step of selectively anisotropically etching the organic interlayer insulating film to form an opening portion reaching the lower wiring, and a step of depositing an inorganic insulating film on the surface including the opening portion and etching back. A step of exposing the upper surface of the lower layer wiring leaving an inorganic insulating film only on the sidewall of the opening, and a high melting point metal film or a high melting point metal silicide film and a high conductivity film on the surface including the opening. And a metal film are sequentially laminated and patterned to form an upper layer wiring electrically connected to the lower layer wiring of the opening.

【0007】本発明の半導体装置の第2の製造方法は、
半導体基板上に設けた絶縁膜の上に高融点金属膜又は高
融点金属硅化物膜と高導電率の金属膜とを順次堆積して
積層構造の第1の導体層を形成する工程と、前記第1の
導体層を給電層として電気めっき法により第1の導体層
上に下層配線形成用パターンを有する第2の導体層を選
択的に形成する工程と、前記第2の導体層の上に電気め
っき法により上層配線接続用の第3の導体層を選択的に
形成する工程と、イオンミリング法により前記第2の導
電層をマスクとして前記第1の導体層をエッチング除去
し第1及び第2の導体層の積層構造からなる下層配線を
形成する工程と、全面に無機絶縁膜を堆積してエッチバ
ックし前記下層配線及び第3の導体層の側壁にのみ前記
無機絶縁膜を残す工程と、前記下層配線及び第3の導体
層を含む表面に回転塗布法によりポリイミド系樹脂膜を
塗布して上面を平坦化した有機層間絶縁膜を形成した後
前記有機層間絶縁膜をエッチバックして前記第3の導体
層の上面を露出させる工程と、前記第3の導体層を含む
表面に高融点金属膜又は高融点金属硅化物膜と高導電率
の金属膜を順次堆積してパターニングし前記第3の導体
層を介して下層配線と接続する上層配線を形成する工程
とを含んで構成される。
A second method of manufacturing a semiconductor device according to the present invention is
A step of sequentially depositing a refractory metal film or refractory metal silicide film and a metal film of high conductivity on an insulating film provided on a semiconductor substrate to form a first conductor layer having a laminated structure; A step of selectively forming a second conductor layer having a lower wiring forming pattern on the first conductor layer by an electroplating method using the first conductor layer as a feeding layer; and on the second conductor layer A step of selectively forming a third conductor layer for connecting upper wiring by an electroplating method; and a step of etching and removing the first conductor layer using the second conductive layer as a mask by an ion milling method. And a step of depositing an inorganic insulating film on the entire surface and etching back to leave the inorganic insulating film only on the side walls of the lower wiring and the third conductor layer. , On the surface including the lower wiring and the third conductor layer, Applying a polyimide resin film by a coating method to form an organic interlayer insulating film having a flattened upper surface, and then etching back the organic interlayer insulating film to expose the upper surface of the third conductor layer; A high-melting-point metal film or a high-melting-point metal silicide film and a high-conductivity metal film are sequentially deposited on the surface including the third conductor layer and patterned to form an upper layer wiring connected to the lower layer wiring through the third conductor layer. And a step of forming.

【0008】[0008]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0009】図1(a)〜(c)は本発明の第1の実施
例の製造方法を説明するための工程順に示した半導体チ
ップの断面図である。
FIGS. 1A to 1C are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a manufacturing method according to a first embodiment of the present invention.

【0010】まず、図1(a)に示すように、拡散層を
設けた半導体基板1の上に設けた絶縁膜2を選択的にエ
ッチングしてコンタクト孔3を形成し、コンタクト孔3
を含む表面にエレクトロ・マイグレーション防止やバリ
アメタルとしてTi,W,Mo等の高融点金属膜4及び
アルミニウム膜5を順次堆積して設ける。次に、アルミ
ニウム膜5の上にフォトレジスト膜6を塗布してパター
ニングし、配線形成用のマスクを形成する。
First, as shown in FIG. 1A, a contact hole 3 is formed by selectively etching an insulating film 2 provided on a semiconductor substrate 1 provided with a diffusion layer.
A refractory metal film 4 of Ti, W, Mo or the like and an aluminum film 5 are sequentially deposited and provided on the surface including as a metal for preventing electro-migration and a barrier metal. Next, a photoresist film 6 is applied on the aluminum film 5 and patterned to form a mask for wiring formation.

【0011】次に、図1(b)に示すように、フォトレ
ジスト膜6をマスクとしてアルミニウム膜5及び高融点
金属膜4を順次異方性エッチングし、下層配線を形成す
る。次に、フォトレジスト膜6を除去した後、下層配線
を含む表面にポリイミド系樹脂絶縁膜7を塗布して表面
を平坦化し、ポリイミド系樹脂絶縁膜7を選択的にエッ
チングして下層配線に達する開孔部8を形成する。次
に、開孔部8を含む表面に酸化シリコン膜9を堆積す
る。
Next, as shown in FIG. 1B, the aluminum film 5 and the refractory metal film 4 are sequentially anisotropically etched using the photoresist film 6 as a mask to form a lower wiring. Next, after removing the photoresist film 6, a polyimide resin insulating film 7 is applied to the surface including the lower wiring to planarize the surface, and the polyimide resin insulating film 7 is selectively etched to reach the lower wiring. The opening 8 is formed. Next, a silicon oxide film 9 is deposited on the surface including the openings 8.

【0012】次に、図1(c)に示すように、酸化シリ
コン膜9をエッチバックし、開孔部8の側面にのみ酸化
シリコン膜9を残して平坦部の酸化シリコン膜9を除去
し、下層配線の表面を露出させる。ここで、開孔部8を
設ける前にポリイミド系樹脂膜7の上に酸化シリコン膜
を堆積しておくことにより酸化シリコン膜9のエッチバ
ック後にポリイミド系樹脂絶縁膜7の上に酸化シリコン
膜を残して置くことができる。次に、開孔部8を含む表
面にTiW膜10及びアルミニウム膜11を順次堆積し
て設け、次に、アルミニウム膜11及びTiW膜10を
選択的に順次エッチングして開孔部8の下層配線と接続
する上層配線を形成する。
Next, as shown in FIG. 1C, the silicon oxide film 9 is etched back to remove the silicon oxide film 9 in the flat portion while leaving the silicon oxide film 9 only on the side surface of the opening 8. , Expose the surface of the lower wiring. Here, by depositing a silicon oxide film on the polyimide resin film 7 before forming the opening portion 8, a silicon oxide film is deposited on the polyimide resin insulating film 7 after the silicon oxide film 9 is etched back. Can be left alone. Next, a TiW film 10 and an aluminum film 11 are sequentially deposited and provided on the surface including the opening portion 8, and then the aluminum film 11 and the TiW film 10 are selectively and sequentially etched to form a lower layer wiring of the opening portion 8. An upper layer wiring connected to is formed.

【0013】ここで、高融点金属膜4の代にMoSi,
WSi等の高融点金属硅化物膜を用いても良く、TiW
膜10の代りにTi,W,TiN,Mo,MoSi,W
Si膜等を用いても良い。また、酸化シリコン膜9の代
り窒化シリコン膜や酸窒化シリコン膜を用いても良い。
Here, instead of the refractory metal film 4, MoSi,
A high-melting-point metal silicide film such as WSi may be used.
Instead of the film 10, Ti, W, TiN, Mo, MoSi, W
A Si film or the like may be used. Further, instead of the silicon oxide film 9, a silicon nitride film or a silicon oxynitride film may be used.

【0014】このように、本実施例では開孔部8の側壁
に無機絶縁膜を形成しているため開孔部内の高融点金属
膜(又は高融点金属硅化物膜)にポリイミド系樹脂絶縁
膜が直接接触せず、後工程の熱処理、例えばポリイミド
系樹脂絶縁膜の熱処理や、上層配線のアロイ等の工程
で、ポリイミド系樹脂絶縁膜中の水分等が開孔部8内の
高融点金属膜又は高融点金属硅化物膜と酸化等の反応を
起こすことがなく、開孔部8の内の高融点金属膜又は高
融点金属硅化物膜の体積の膨張や抵抗の増加を起こすこ
とを防止できる。
As described above, in this embodiment, since the inorganic insulating film is formed on the side wall of the opening portion 8, the polyimide resin insulating film is formed on the refractory metal film (or refractory metal silicide film) in the opening portion. Does not come into direct contact with each other, and moisture or the like in the polyimide-based resin insulating film is removed from the high-melting-point metal film in the opening 8 in a heat treatment in a subsequent step, for example, a heat treatment of the polyimide-based resin insulating film or an alloy of the upper wiring. Alternatively, it is possible to prevent the refractory metal film or the refractory metal silicide film in the opening 8 from expanding in volume or increasing in resistance without causing a reaction such as oxidation with the refractory metal silicide film. ..

【0015】図2(a)〜(c)及び図3(a),
(b)は本発明の第2の実施例の製造方法を説明するた
めの工程順に示した半導体チップの断面図である。
2 (a)-(c) and FIG. 3 (a),
6B is a sectional view of the semiconductor chip in the order of steps for explaining the manufacturing method according to the second embodiment of the present invention. FIG.

【0016】図2(a)に示すように、第1の実施例と
同様に半導体基板1の上に設けた絶縁膜2を選択的にエ
ッチングしてコンタクト孔3を形成し、コンタクト孔3
を含む表面にTiW膜12,Pt膜13,Au膜14を
順次堆積して形成し、Au膜14の上に配線形成用パタ
ーンを有するフォトレジスト膜6を選択的に形成する。
As shown in FIG. 2A, similarly to the first embodiment, the insulating film 2 provided on the semiconductor substrate 1 is selectively etched to form a contact hole 3, and the contact hole 3 is formed.
A TiW film 12, a Pt film 13, and an Au film 14 are sequentially deposited and formed on the surface including, and a photoresist film 6 having a wiring forming pattern is selectively formed on the Au film 14.

【0017】次に、図2(b)に示すように、フォトレ
ジスト膜6をマスクとしてAu膜14,Pt膜13,T
i膜12を順次異方性エッチングして下層配線を形成
し、フォトレジスト膜6を除去した後、下層配線を含む
表面に酸化シリコン膜15を堆積する。
Next, as shown in FIG. 2B, the Au film 14, the Pt film 13, and the T film are formed using the photoresist film 6 as a mask.
The i film 12 is sequentially anisotropically etched to form a lower layer wiring, the photoresist film 6 is removed, and then a silicon oxide film 15 is deposited on the surface including the lower layer wiring.

【0018】次に、図2(c)に示すように、異方性エ
ッチングにより酸化シリコン膜15をエッチバックして
下層配線の側壁にのみ酸化シリコン膜15を残す。な
お、酸化シリコン膜15のエッチバック工程を省略して
も良く、下層配線の上面を含めて保護できる。次に、下
層配線を含む表面にポリイミド系樹脂絶縁膜7を厚く形
成して表面を平坦化した後ポリイミド系樹脂絶縁膜7の
上に酸化シリコン膜16を堆積する。
Next, as shown in FIG. 2C, the silicon oxide film 15 is etched back by anisotropic etching to leave the silicon oxide film 15 only on the side wall of the lower wiring. The etching back step of the silicon oxide film 15 may be omitted, and the upper surface of the lower wiring can be protected. Next, the polyimide-based resin insulating film 7 is thickly formed on the surface including the lower layer wiring to flatten the surface, and then the silicon oxide film 16 is deposited on the polyimide-based resin insulating film 7.

【0019】次に,図3(a)に示すように、酸化シリ
コン膜16及びポリイミド系樹脂絶縁膜7を選択的に順
次エッチングして下層配線に達する開孔部8を形成す
る。次に、開孔部8を含む表面に酸化シリコン膜9を堆
積してエッチバックし、開孔部8の側壁にのみ酸化シリ
コン膜9を残して平坦部の酸化シリコン膜9を除去し、
下層の配線の上面を露出させる。
Next, as shown in FIG. 3A, the silicon oxide film 16 and the polyimide resin insulating film 7 are selectively and sequentially etched to form an opening 8 reaching the lower wiring. Next, a silicon oxide film 9 is deposited on the surface including the opening 8 and etched back, and the silicon oxide film 9 on the flat portion is removed while leaving the silicon oxide film 9 only on the side wall of the opening 8.
The upper surface of the lower wiring is exposed.

【0020】次に、図3(b)に示すように、開孔部8
を含む表面にTiW膜17,Pt膜18,Au膜19を
順次堆積し、Au膜19,Pt膜18,TiW膜17,
酸化シリコン膜16を選択的に順次異方性エッチングし
て開孔部8の下層配線と接続する上層の配線を形成す
る。
Next, as shown in FIG. 3B, the opening 8
The TiW film 17, the Pt film 18, and the Au film 19 are sequentially deposited on the surface including the Au film 19, the Pt film 18, the TiW film 17,
The silicon oxide film 16 is selectively anisotropically etched in order to form an upper wiring that is connected to the lower wiring of the opening 8.

【0021】ここで、TiW膜12,17の代りにT
i,W,TiN,Mo,MoSi,WSi等の高融点金
属膜又は高融点金属硅化物膜等を使用しても良く、Pt
膜13,18の代りにAu膜を使用しても良い。また、
Au膜14,19の代りにアルミニウム膜,アルミニウ
ム合金膜,金合金膜等を使用しても良く、酸化シリコン
膜9,15,16の代りに窒化シリコン膜を使用しても
良い。
Here, instead of the TiW films 12 and 17, T
A high melting point metal film such as i, W, TiN, Mo, MoSi, WSi or a high melting point metal silicide film may be used.
An Au film may be used instead of the films 13 and 18. Also,
An aluminum film, an aluminum alloy film, a gold alloy film, or the like may be used instead of the Au films 14 and 19, and a silicon nitride film may be used instead of the silicon oxide films 9, 15, and 16.

【0022】この実施例では、上層配線及び下層配線の
側面が無機絶縁膜で被覆されているため、下層配線及び
上層配線の高融点金属膜がポリイミド系樹脂絶縁膜と接
触せず、ポリイミド系樹脂絶縁膜に含まれる水分との反
応を回避できる利点がある。
In this embodiment, since the side surfaces of the upper layer wiring and the lower layer wiring are covered with the inorganic insulating film, the refractory metal films of the lower layer wiring and the upper layer wiring do not come into contact with the polyimide resin insulating film, and the polyimide resin There is an advantage that reaction with moisture contained in the insulating film can be avoided.

【0023】図4(a)〜(c)及び図5(a)〜
(c)は本発明の第3の実施例の製造方法を説明するた
めの工程順に示した半導体チップの断面図である。
4A to 4C and 5A to 5C.
(C) is sectional drawing of the semiconductor chip shown in order of process for demonstrating the manufacturing method of the 3rd Example of this invention.

【0024】図4(a)に示すように、半導体基板1の
上に設けた絶縁膜2を選択的にエッチングしてコンタク
ト孔3を設け、コンタクト孔3を含む表面に、TiW膜
12及びPt膜13を順次堆積して形成する。次に、P
t膜13の上にフォトレジスト膜20を塗布してパター
ニングし、配線形成用の溝を有するマスクを形成する。
次に、フォトレジスト膜20をマスクとしTiW膜12
及びPt膜13を給電層として電気めっき法によりAu
膜14を形成する。
As shown in FIG. 4A, the insulating film 2 provided on the semiconductor substrate 1 is selectively etched to form contact holes 3, and the TiW film 12 and Pt are formed on the surface including the contact holes 3. The film 13 is sequentially deposited and formed. Then P
A photoresist film 20 is applied on the t film 13 and patterned to form a mask having a groove for wiring formation.
Next, with the photoresist film 20 as a mask, the TiW film 12
And Pt film 13 as a power supply layer by an electroplating method.
The film 14 is formed.

【0025】次に、図4(b)に示すように、フォトレ
ジスト膜20を除去した後Au膜14を含む表面にフォ
トレジスト膜21を塗布してパターニングし、Au膜1
4の上面に達する開孔部を形成する。
Next, as shown in FIG. 4B, after the photoresist film 20 is removed, a photoresist film 21 is applied to the surface including the Au film 14 and patterned to form the Au film 1.
An opening portion reaching the upper surface of No. 4 is formed.

【0026】次に、図4(c)に示すように、フォトレ
ジスト膜21をマスクとして、TiW膜12,Pt膜1
3及びAu膜14を給電層としてAu膜14の上にAu
膜22を形成する。次に、フォトレジスト膜21を除去
した後Au膜14をマスクとしてイオンミリングにより
Pt膜13及びTiW膜12を順次エッチング除去して
下層の配線及び上層配線接続用の導体層を形成する。
Next, as shown in FIG. 4C, the TiW film 12 and the Pt film 1 are formed using the photoresist film 21 as a mask.
3 and the Au film 14 as a power feeding layer on the Au film 14.
The film 22 is formed. Next, after removing the photoresist film 21, the Pt film 13 and the TiW film 12 are sequentially etched and removed by ion milling using the Au film 14 as a mask to form a lower wiring and a conductor layer for connecting the upper wiring.

【0027】次に、図5(a)に示すように、下層の配
線及びAu膜22を含む表面に酸化シリコン膜15を堆
積してエッチバックし、下層の配線の側面及びAu膜2
2の側面にのみ酸化シリコン膜15を残して平坦部の酸
化シリコン膜15を除去する。次に、下層の配線及びA
u膜22を含む表面に回転塗布法でポリイミド系樹脂絶
縁膜7を塗布し、上面を平坦化する。
Next, as shown in FIG. 5A, a silicon oxide film 15 is deposited on the surface including the lower wiring and the Au film 22 and etched back to form the side surface of the lower wiring and the Au film 2.
The silicon oxide film 15 in the flat portion is removed while leaving the silicon oxide film 15 only on the side surfaces of the second surface. Next, the lower wiring and A
The polyimide resin insulating film 7 is applied to the surface including the u film 22 by a spin coating method to flatten the upper surface.

【0028】次に、図5(b)に示すように、ポリイミ
ド系樹脂絶縁膜7をエッチバックしてAu膜22の上面
がちょうど露出するようにする。次に、Au膜22を含
むポリイミド系樹脂絶縁膜7の表面に酸化シリコン膜1
6を堆積してパターニングしAu膜22の上面を露出さ
せる。
Next, as shown in FIG. 5B, the polyimide resin insulating film 7 is etched back so that the upper surface of the Au film 22 is just exposed. Next, the silicon oxide film 1 is formed on the surface of the polyimide resin insulating film 7 including the Au film 22.
6 is deposited and patterned to expose the upper surface of the Au film 22.

【0029】次に、図5(c)に示すように、Au膜2
2を含む表面にTiW膜17,Pt膜18,Au膜19
を順次堆積した後、Au膜19,Pt膜18,TiW膜
17及び酸化シリコン膜16を選択的に順次異方性エッ
チングして下層配線と接続する上層の配線を形成する。
Next, as shown in FIG. 5C, the Au film 2
TiW film 17, Pt film 18, Au film 19 on the surface including 2
Is sequentially deposited, and then the Au film 19, the Pt film 18, the TiW film 17, and the silicon oxide film 16 are selectively anisotropically etched in order to form an upper wiring that is connected to the lower wiring.

【0030】[0030]

【発明の効果】以上説明したように本発明は、有機層間
絶縁膜に設けた配線接続用の開孔部の側壁に無機絶縁膜
を設けることにより、上層配線の高融点金属膜又は高融
点金属硅化物膜と有機層間絶縁膜とが接触することを防
止して有機絶縁膜中の水分と高融点金属又は高融点金属
硅化物との反応によるコンタクト不良や配線抵抗の増大
を防止できるという効果を有する。
As described above, according to the present invention, the inorganic insulating film is provided on the side wall of the opening for wiring connection provided in the organic interlayer insulating film, so that the refractory metal film or the refractory metal of the upper wiring can be formed. The effect of preventing contact between the silicide film and the organic interlayer insulating film and preventing contact failure and increase in wiring resistance due to the reaction of water in the organic insulating film with the high melting point metal or the high melting point metal silicide is provided. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の製造方法を説明するた
めの工程順に示した半導体チップの断面図。
FIG. 1 is a cross-sectional view of a semiconductor chip showing the order of steps for explaining a manufacturing method according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の製造方法を説明するた
めの工程順に示した半導体チップの断面図。
2A to 2D are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a manufacturing method according to a second embodiment of the present invention.

【図3】本発明の第2の実施例の製造方法を説明するた
めの工程順に示した半導体チップの断面図。
3A to 3D are cross-sectional views of a semiconductor chip showing the order of steps for explaining a manufacturing method according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の製造方法を説明するた
めの工程順に示した半導体チップの断面図。
4A to 4C are cross-sectional views of a semiconductor chip showing the order of steps for explaining a manufacturing method according to a third embodiment of the present invention.

【図5】本発明の第3の実施例の製造方法を説明するた
めの工程順に示した半導体チップの断面図。
5A to 5D are cross-sectional views of a semiconductor chip showing the order of steps for explaining a manufacturing method according to a third embodiment of the present invention.

【図6】従来の半導体装置の一例を示す半導体チップの
断面図。
FIG. 6 is a sectional view of a semiconductor chip showing an example of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 絶縁膜 3 コンタクト孔 4 高融点金属膜 5,11 アルミニウム膜 6,20,21 フォトレジスト膜 7 ポリイミド系樹脂絶縁膜 8 開孔部 9,15,16 酸化シリコン膜 10,12,17 TiW膜 13,18 Pt膜 14,19,22 Au膜 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Insulating film 3 Contact hole 4 High melting point metal film 5,11 Aluminum film 6,20,21 Photoresist film 7 Polyimide resin insulating film 8 Opening part 9,15,16 Silicon oxide film 10,12,17 TiW film 13,18 Pt film 14,19,22 Au film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に設けた下層配線と、前記
下層配線を含む表面に設けた有機層間絶縁膜と、前記下
層配線上の有機層間絶縁膜に設けた上層配線接続用の開
孔部と、前記開孔部の側壁に設けた無機絶縁膜と、前記
開孔部の下層配線と接続して設けた上層配線とを有する
ことを特徴とする半導体装置。
1. A lower layer wiring provided on a semiconductor substrate, an organic interlayer insulating film provided on a surface including the lower layer wiring, and an opening portion for connecting an upper layer wiring provided in the organic interlayer insulating film on the lower layer wiring. A semiconductor device comprising: an inorganic insulating film provided on a side wall of the opening; and an upper layer wiring provided in connection with a lower layer wiring of the opening.
【請求項2】 上層配線が少くとも最下層に高融点金属
膜又は高融点金属硅化物膜を有する多層構造の導体層か
らなる請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the upper layer wiring is composed of a conductor layer having a multi-layer structure having a refractory metal film or a refractory metal silicide film as at least the lowermost layer.
【請求項3】 下層配線が下部に高融点金属膜又は高融
点金属硅化物膜を有する多層構造の導体層からなり且つ
前記下層配線の少くとも側面を被覆して設けた無機絶縁
膜を有する請求項1又は請求項2記載の半導体装置。
3. The lower wiring comprises a multi-layered conductor layer having a refractory metal film or a refractory metal silicide film below, and an inorganic insulating film provided so as to cover at least a side surface of the lower wiring. The semiconductor device according to claim 1 or 2.
【請求項4】 有機層間絶縁膜がポリイミド系樹脂膜で
ある請求項1,請求項2又は請求項3記載の半導体装
置。
4. The semiconductor device according to claim 1, wherein the organic interlayer insulating film is a polyimide resin film.
【請求項5】 半導体基板上に設けた絶縁膜上に下層配
線を選択的に形成する工程と、前記下層配線を含む表面
に回転塗装法によりポリイミド系樹脂膜を塗布して上面
を平坦化した有機層間絶縁膜を形成する工程と、前記有
機層間絶縁膜を選択的に異方性エッチングして下層配線
に達する開孔部を形成する工程と、前記開孔部を含む表
面に無機絶縁膜を堆積してエッチバックし前記開孔部の
側壁にのみ無機絶縁膜を残して前記下層配線の上面を露
出させる工程と、前記開孔部を含む表面に高融点金属膜
又は高融点金属硅化物膜と高導電率の金属膜とを順次積
層してパターニングし前記開孔部の下層配線と電気的に
接続する上層配線を形成する工程とを含むことを特徴と
する半導体装置の製造方法。
5. A step of selectively forming a lower layer wiring on an insulating film provided on a semiconductor substrate, and a polyimide resin film is applied to the surface including the lower layer wiring by a spin coating method to planarize the upper surface. A step of forming an organic interlayer insulating film, a step of selectively anisotropically etching the organic interlayer insulating film to form an opening reaching the lower wiring, and an inorganic insulating film on the surface including the opening. A step of depositing and etching back to expose the upper surface of the lower layer wiring leaving an inorganic insulating film only on the side wall of the opening, and a refractory metal film or a refractory metal silicide film on the surface including the opening. And a metal film having a high conductivity are sequentially laminated and patterned to form an upper layer wiring electrically connected to the lower layer wiring of the opening portion, and a method for manufacturing a semiconductor device.
【請求項6】 下層配線が下部に高融点金属膜又は高融
点金属硅化物膜を有する多層構造の導体層からなり、且
つ前記下層配線の少くとも側面を無機絶縁膜で被覆する
工程を含む請求項5記載の半導体装置の製造方法。
6. The lower wiring comprises a conductor layer having a multi-layer structure having a refractory metal film or a refractory metal silicide film below, and a step of coating at least a side surface of the lower wiring with an inorganic insulating film. Item 6. A method of manufacturing a semiconductor device according to item 5.
【請求項7】 半導体基板上に設けた絶縁膜の上に高融
点金属膜又は高融点金属硅化物膜と高導電率の金属膜と
を順次堆積して積層構造の第1の導体層を形成する工程
と、前記第1の導体層を給電層として電気めっき法によ
り第1の導体層上に下層配線形成用パターンを有する第
2の導体層を選択的に形成する工程と、前記第2の導体
層の上に電気めっき法により上層配線接続用の第3の導
体層を選択的に形成する工程と、イオンミリング法によ
り前記第2の導電層をマスクとして前記第一の導体層を
エッチング除去し第1及び第2の導体層の積層構造から
なる下層配線を形成する工程と、全面に無機絶縁膜を堆
積してエッチバックし前記下層配線及び第3の導体層の
側壁にのみ前記無機絶縁膜を残す工程と、前記下層配線
及び第3の導体層を含む表面に回転塗布等によりポリイ
ミド系樹脂膜を塗布して上面を平坦化した有機層間絶縁
膜を形成した後前記有機層間絶縁膜をエッチバックして
前記第3の導体層の上面を露出させる工程と、前記第3
の導体層を含む表面に高融点金属膜又は高融点金属硅化
物膜と高導電率の金属膜を順次積層してパターニングし
前記第3の導体層を介して下層配線と接続する上層配線
を形成する工程とを含むことを特徴とする半導体装置の
製造方法。
7. A first conductor layer having a laminated structure is formed by sequentially depositing a refractory metal film or refractory metal silicide film and a metal film having high conductivity on an insulating film provided on a semiconductor substrate. And a step of selectively forming a second conductor layer having a lower wiring forming pattern on the first conductor layer by electroplating using the first conductor layer as a power supply layer, and the second A step of selectively forming a third conductor layer for connecting upper wiring on the conductor layer by an electroplating method, and etching and removing the first conductor layer using the second conductive layer as a mask by an ion milling method Then, a step of forming a lower layer wiring having a laminated structure of the first and second conductor layers, and an inorganic insulating film is deposited on the entire surface and etched back to form the inorganic insulation only on the side walls of the lower layer wiring and the third conductor layer. The step of leaving the film, the lower wiring and the third conductor layer A step of applying a polyimide resin film by spin coating or the like to the surface including the above to form an organic interlayer insulating film having a flattened upper surface, and then etching back the organic interlayer insulating film to expose the upper surface of the third conductor layer. And the third
A high-melting-point metal film or a high-melting-point metal silicide film and a high-conductivity metal film are sequentially laminated on the surface including the conductor layer and patterned to form an upper layer wiring connected to the lower layer wiring via the third conductor layer. A method of manufacturing a semiconductor device, comprising:
JP34567891A 1991-12-27 1991-12-27 Semiconductor device and its manufacture Pending JPH05211144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34567891A JPH05211144A (en) 1991-12-27 1991-12-27 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34567891A JPH05211144A (en) 1991-12-27 1991-12-27 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH05211144A true JPH05211144A (en) 1993-08-20

Family

ID=18378228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34567891A Pending JPH05211144A (en) 1991-12-27 1991-12-27 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH05211144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042536A (en) * 2014-08-18 2016-03-31 富士通株式会社 Semiconductor device and method for manufacturing semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196553A (en) * 1985-02-26 1986-08-30 Nec Corp Semiconductor device
JPS63188959A (en) * 1987-01-30 1988-08-04 Nec Corp Semiconductor device and its manufacture
JPH01150342A (en) * 1987-12-07 1989-06-13 Nec Corp Multilayer interconnection structure and manufacture thereof
JPH02121350A (en) * 1988-10-31 1990-05-09 Oki Electric Ind Co Ltd Formation of multilayer interconnection
JPH02125447A (en) * 1988-06-22 1990-05-14 Hitachi Ltd Semiconductor device and manufacture thereof
JPH02142162A (en) * 1988-11-22 1990-05-31 Nec Corp Semiconductor device and manufacture thereof
JPH02168625A (en) * 1988-09-14 1990-06-28 Nec Corp Multilayer wiring structure body and its manufacture
JPH0327551A (en) * 1989-06-23 1991-02-05 Nec Corp Wiring structure of semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196553A (en) * 1985-02-26 1986-08-30 Nec Corp Semiconductor device
JPS63188959A (en) * 1987-01-30 1988-08-04 Nec Corp Semiconductor device and its manufacture
JPH01150342A (en) * 1987-12-07 1989-06-13 Nec Corp Multilayer interconnection structure and manufacture thereof
JPH02125447A (en) * 1988-06-22 1990-05-14 Hitachi Ltd Semiconductor device and manufacture thereof
JPH02168625A (en) * 1988-09-14 1990-06-28 Nec Corp Multilayer wiring structure body and its manufacture
JPH02121350A (en) * 1988-10-31 1990-05-09 Oki Electric Ind Co Ltd Formation of multilayer interconnection
JPH02142162A (en) * 1988-11-22 1990-05-31 Nec Corp Semiconductor device and manufacture thereof
JPH0327551A (en) * 1989-06-23 1991-02-05 Nec Corp Wiring structure of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042536A (en) * 2014-08-18 2016-03-31 富士通株式会社 Semiconductor device and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP4373866B2 (en) Manufacturing method of semiconductor device
US4728627A (en) Method of making multilayered interconnects using hillock studs formed by sintering
JPH11330231A (en) Metal coat structure
US6064119A (en) Wiring structure and formation method thereof for semiconductor device
JP3379100B2 (en) Embedded wiring having single damascene structure and method of forming the same
JP2001257226A (en) Semiconductor integrated circuit device
JPH05211144A (en) Semiconductor device and its manufacture
JP3463961B2 (en) Semiconductor device
JP3087692B2 (en) Method for manufacturing semiconductor device
JPH10209276A (en) Wiring forming method
JP2659285B2 (en) Method for manufacturing semiconductor device
JPH06204345A (en) Semiconductor device
KR20020086100A (en) a forming method of a contact for multi-level interconnects
JP3166912B2 (en) Method for manufacturing semiconductor device
KR100503381B1 (en) Metal line in a semiconductor and method for forming the same
KR100943486B1 (en) Method for forming pad and fuse of semiconductor device
JPH04369853A (en) Semiconductor device
JP2003309120A (en) Semiconductor device
JPH10173051A (en) Wiring forming method
KR100407809B1 (en) Method for fabricating semiconductor device
KR0172725B1 (en) Multi-layer metal wire forming method of semiconductor device
JPH05206284A (en) Formation of multilayer interconnection
JPH06236931A (en) Wiring structure and its manufacture
JPH0282623A (en) Semiconductor integrated circuit device
JPH05304216A (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980324