JPH0327551A - Wiring structure of semiconductor device - Google Patents

Wiring structure of semiconductor device

Info

Publication number
JPH0327551A
JPH0327551A JP16168489A JP16168489A JPH0327551A JP H0327551 A JPH0327551 A JP H0327551A JP 16168489 A JP16168489 A JP 16168489A JP 16168489 A JP16168489 A JP 16168489A JP H0327551 A JPH0327551 A JP H0327551A
Authority
JP
Japan
Prior art keywords
film
insulating film
organic insulating
wiring
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16168489A
Other languages
Japanese (ja)
Other versions
JP2782801B2 (en
Inventor
Takuya Kato
卓哉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1161684A priority Critical patent/JP2782801B2/en
Publication of JPH0327551A publication Critical patent/JPH0327551A/en
Application granted granted Critical
Publication of JP2782801B2 publication Critical patent/JP2782801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a wiring structure with improved adhesion property by forming an inorganic insulating film on one part of the surface of a conductive film which is provided on a first organic insulating film, covering both the conductive film and the inorganic insulating film, and forming a second organic insulating film which is in contact with the first organic insulating film. CONSTITUTION:It is possible to achieve an improved adhesion between a conductive film 2 and a second organic insulating film 4 since an inorganic insulating film 3 exists between them. on the other hand. since a first organic insulating film 1 and the second organic insulating film 4 are in direct contact at an area other than the conductive film 2. it is possible to allow gas generated on heat treatment to be escaped readily. thus enhancing adhesion property between the first organic insulating film 1 and the second organic insulating film 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に有機絶縁膜を眉間絶縁
膜に使用した配線構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a wiring structure using an organic insulating film as a glabellar insulating film.

〔従来の技術〕[Conventional technology]

近年の半導体装置の高密度化に伴い、上下の配線を絶縁
する眉間絶縁膜の平坦化の要求がますまず大きくなって
きている。従来、層間絶縁膜としてはもっぱら無機膜が
使用されているが、上述した平坦化の要求に応えるため
に、最近では有機絶縁膜を使用することが提案されてい
る。
With the recent increase in the density of semiconductor devices, there is an increasing demand for flattening of the glabellar insulating film that insulates upper and lower wiring. Conventionally, inorganic films have been exclusively used as interlayer insulating films, but in order to meet the above-mentioned flattening requirements, it has recently been proposed to use organic insulating films.

例えば、第5図はその一例であり、層間絶縁膜として第
1有機絶縁膜゛41を形威し、この上に配線としての導
電膜42を形威し、更にこの上にカバー絶縁膜として第
2有機絶縁膜43を形威している。
For example, FIG. 5 shows an example of this, in which a first organic insulating film 41 is formed as an interlayer insulating film, a conductive film 42 is formed as a wiring on this, and a second organic insulating film 41 is formed as a cover insulating film on top of this. 2 organic insulating film 43 is formed.

また、第6図は他の例であり、第1有機絶縁膜5l上に
導電膜52を形威し、全面を薄い無機絶縁膜53が覆っ
た上で第2有機絶縁膜54を被着している。ここでは、
無機絶縁膜53と第2有機絶縁膜54の二層膜がカバー
絶縁膜となっている。
Further, FIG. 6 shows another example in which a conductive film 52 is formed on the first organic insulating film 5l, the entire surface is covered with a thin inorganic insulating film 53, and then a second organic insulating film 54 is applied. ing. here,
The two-layer film of the inorganic insulating film 53 and the second organic insulating film 54 serves as a cover insulating film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第5図に示した配線構造では、導電膜42が直接第2有
機絶縁膜43に覆われているために、導電膜42と第2
有機絶縁膜43との密着性が十分でなく、この部分から
第2有機絶縁膜43が剥がれ易く、カバーとしての機能
が低下され、半導体装置の信頼性が低下されるという問
題が必る。
In the wiring structure shown in FIG. 5, since the conductive film 42 is directly covered with the second organic insulating film 43, the conductive film 42 and the second
The adhesion with the organic insulating film 43 is insufficient, and the second organic insulating film 43 is likely to peel off from this portion, resulting in a problem that the function as a cover is degraded and the reliability of the semiconductor device is degraded.

また、第6図に示した配線構造では、導電膜52と第2
有機絶縁膜54の間に無機絶縁膜53が存在しているた
め、これら導電膜52と第2有機絶縁膜54の密着性は
十分である。しかし、第1有機絶縁膜51と第2有機絶
縁膜52の間に無機絶縁膜53が存在するために、高温
で熱処理を行った際に第l有機絶縁膜51中で発生した
ガスがフ!!(機絶縁膜53でせき止められて外部に逃
がすことができなくなり、第l有機絶縁膜51と無機絶
縁膜53との密着性が悪化され、カバー絶縁膜の剥がれ
が生じる等の問題がある。
Further, in the wiring structure shown in FIG. 6, the conductive film 52 and the second
Since the inorganic insulating film 53 exists between the organic insulating films 54, the adhesion between the conductive film 52 and the second organic insulating film 54 is sufficient. However, since the inorganic insulating film 53 exists between the first organic insulating film 51 and the second organic insulating film 52, the gas generated in the first organic insulating film 51 when heat-treated at high temperature is released. ! (It is blocked by the organic insulating film 53 and cannot escape to the outside, which causes problems such as poor adhesion between the first organic insulating film 51 and the inorganic insulating film 53, and peeling of the cover insulating film.

本発明の目的はこのような問題を解消し、配線とその上
に形或する絶縁膜との密着性を改善し、′かつ配線の上
下に形威する絶縁膜相互の密着性をも改善した配線構造
を提供することにある。
The purpose of the present invention is to solve these problems, improve the adhesion between the wiring and the insulating film formed thereon, and also improve the adhesion between the insulating films formed above and below the wiring. The purpose is to provide a wiring structure.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の配線構造は、層間絶縁膜を構成する第1有機絶
縁膜上に配線を構成する導電膜を有し、この導電膜の上
面および側面に接して無機絶縁膜を有し、これら導電膜
と無機絶縁膜を覆い、かつ前記第1有機絶縁膜と接した
第2有機絶縁膜を有している。
The wiring structure of the present invention has a conductive film constituting a wiring on a first organic insulating film constituting an interlayer insulating film, an inorganic insulating film in contact with the top and side surfaces of this conductive film, and these conductive films and a second organic insulating film that covers the inorganic insulating film and is in contact with the first organic insulating film.

この場合、無機絶縁膜は、導電膜の上面のみに有してい
てもよく、或いは導電膜の側面のみに有していてもよい
In this case, the inorganic insulating film may be provided only on the upper surface of the conductive film, or may be provided only on the side surface of the conductive film.

〔作用〕[Effect]

この構成では、導電膜の表面一部に設けた無機膜により
導電膜と第2有機絶縁膜との密着性を改善する。また、
第1有機絶縁膜と第2有機絶縁膜は導電膜以外の領域で
直接接触し、両者の密着性を改善する。
In this configuration, the inorganic film provided on a part of the surface of the conductive film improves the adhesion between the conductive film and the second organic insulating film. Also,
The first organic insulating film and the second organic insulating film are in direct contact with each other in a region other than the conductive film to improve adhesion between the two.

〔実施例〕〔Example〕

次に、本発明を図面を参1<(Lて説明ずる。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の基木構成を示す断面図であり、層間絶
縁膜としての第1有機絶縁膜1の上に配線としての導電
膜2を形成している。そして、この導電膜2にはその上
面及び側面を覆うように無機絶縁膜3を形威し、しかる
上で全面に第2有機絶縁膜4を被着形成している。
FIG. 1 is a sectional view showing the basic structure of the present invention, in which a conductive film 2 as a wiring is formed on a first organic insulating film 1 as an interlayer insulating film. An inorganic insulating film 3 is formed on the conductive film 2 so as to cover its upper and side surfaces, and then a second organic insulating film 4 is formed over the entire surface.

この構成によれば、導電膜2と第2有機絶縁膜4との間
には無機絶縁膜3が介在しているため、両者の密着性を
優れたものにできる。一方、第1有機絶縁膜1と第2有
機絶縁膜4とは、導電膜2以外の領域では直接接触して
いるため、熱処理時に発生するガスを速やかに逃がすこ
とができ、両者の密着性を改善する。これにより、カハ
ー膜としての第2有機絶縁膜4の剥がれを防止し、半導
体装置の信頼性を改善する。
According to this configuration, since the inorganic insulating film 3 is interposed between the conductive film 2 and the second organic insulating film 4, excellent adhesion between the two can be achieved. On the other hand, since the first organic insulating film 1 and the second organic insulating film 4 are in direct contact with each other in areas other than the conductive film 2, gas generated during heat treatment can be quickly released, and the adhesion between the two can be improved. Improve. This prevents the second organic insulating film 4 as a Cacher film from peeling off and improves the reliability of the semiconductor device.

第2図(a)乃至(e)は第1図に示した配線構造の第
1実施例をその製造工程順に示す断面図である。
FIGS. 2(a) to 2(e) are cross-sectional views showing the first embodiment of the wiring structure shown in FIG. 1 in the order of manufacturing steps.

先ず、第2図(a)のように、層間絶縁膜を構成する第
1有機絶縁膜としてのポリイミド膜11上に、マグネト
ロンスパッタ法によりタングステン膜12を約2000
人形威し、さらに金膜13を約1μm形威して二層構造
の導電膜を形戒する。更に、この上に無機絶縁膜として
のシリコン窒化膜14をプラズマCVD法により約20
00入形或する。
First, as shown in FIG. 2(a), a tungsten film 12 with a thickness of about 2,000 yen is deposited on a polyimide film 11 as a first organic insulating film constituting an interlayer insulating film by magnetron sputtering.
Then, a gold film 13 with a thickness of about 1 μm is formed to form a two-layer conductive film. Furthermore, a silicon nitride film 14 as an inorganic insulating film is deposited on this film by plasma CVD for approximately 20 minutes.
There is a 00 type.

次いで、第2図(b)のように、通常のフォトリソグラ
フィー法によりシリコン窒化膜14,金膜l3およびタ
ングステン膜12のバターニングを行ない、配線を形威
する。
Next, as shown in FIG. 2(b), the silicon nitride film 14, the gold film 13, and the tungsten film 12 are patterned by conventional photolithography to form wiring.

次に、第2図(C)のように、全面にプラズマCVD法
により無機絶縁膜であるシリコン窒化膜15を約100
0人形戒する。
Next, as shown in FIG. 2(C), a silicon nitride film 15, which is an inorganic insulating film, is deposited on the entire surface by plasma CVD to a thickness of approximately 100%.
0 doll command.

その上で、第2図(d)のように、11;1記シリコン
窒化膜15に対して異方性ドライエッチングを行なう。
Then, as shown in FIG. 2(d), anisotropic dry etching is performed on the silicon nitride film 15 in step 11;1.

この結果、配線の上面にはシリコン窒化膜14が残され
、側面にはシリコン窒化膜15が残され、これらシリコ
ン窒化膜14.15により配線の表面ば被覆される。
As a result, the silicon nitride film 14 is left on the upper surface of the wiring, and the silicon nitride film 15 is left on the side surface, and the surface of the wiring is covered with these silicon nitride films 14 and 15.

しかる上で、第2図(e)のように、カバー膜としての
第2有機絶縁膜であるボリイξドl]!J16をスビン
オン塗布法により全面に形或する。
In addition, as shown in FIG. 2(e), the second organic insulating film, which is a cover film, is made of solid ξdl]! J16 is formed on the entire surface by a spin-on coating method.

このようにして得られた配線部の構造は、配線を構成す
る金膜l3とシリコン窒化膜l4、また金膜l3とシリ
コン窒化膜l5との密着性が良好であり、かつ、シリコ
ン窒化膜l4とポリイミド膜l6およびシリコン窒化膜
15とポリイミド膜16との密着性も良好であるので配
線とカバー膜との密着性が非常に優れた構造となってい
る。
The structure of the wiring section obtained in this way has good adhesion between the gold film l3 and the silicon nitride film l4 constituting the wiring, and between the gold film l3 and the silicon nitride film l5, and the silicon nitride film l4 Since the adhesion between the polyimide film 16 and the silicon nitride film 15 and the polyimide film 16 is also good, the structure has excellent adhesion between the wiring and the cover film.

しかも、ポリイξド膜11とポリイミド膜16が直接接
してい・るため、高温で熱処理を行った際にボリイξド
II!11中で発生するガスがポリイミド膜l6を通し
て逃げるので、ポリイミド膜11とポリイミド1模16
との密71性が劣化することはない。すなわち、層間絶
縁膜とカバー絶縁膜との密着性が高温熱処理によっても
劣化しない構造となっている。更に、金膜l3とポリイ
ミド膜1lの間にタングステン膜12が存在するので配
線と層間絶縁膜との密着性にも優れた構造となっている
Moreover, since the polyimide film 11 and the polyimide film 16 are in direct contact with each other, the polyimide film 11 and the polyimide film 16 are in direct contact with each other, so that when heat treatment is performed at a high temperature, the polyimide film 11 and the polyimide film 16 are in direct contact with each other. Since the gas generated in 11 escapes through the polyimide film 16, the polyimide film 11 and polyimide 1 pattern 16
There is no deterioration in the density 71. That is, the structure is such that the adhesion between the interlayer insulating film and the cover insulating film does not deteriorate even when subjected to high-temperature heat treatment. Furthermore, since the tungsten film 12 exists between the gold film 13 and the polyimide film 1l, the structure has excellent adhesion between the wiring and the interlayer insulating film.

第3図(a)乃至(c)は本発明の第2実施例を製造工
程順に示す断面図である。
FIGS. 3(a) to 3(c) are cross-sectional views showing the second embodiment of the present invention in the order of manufacturing steps.

先ず、第3図(a)のように、層間絶縁膜を構成する有
機シロキサンボリマー膜2l上にマグネトロンスパッタ
法によりアル旦ニウム膜22を約0.5μm形成し、更
にプラズマCVD法により無機絶縁膜であるシリコン酸
化膜23を約2000人形或する。
First, as shown in FIG. 3(a), an aluminum film 22 with a thickness of about 0.5 μm is formed by magnetron sputtering on the organic siloxane polymer film 2l constituting the interlayer insulating film, and an inorganic insulating film 22 is further formed by plasma CVD. There are about 2000 silicon oxide films 23.

次いで、第3図(b)のように、通常のフォトリソグラ
フィー法によりシリコン酸化膜23およびアルミニウム
膜22のパターニングを行ない、配線を形或する。
Next, as shown in FIG. 3(b), the silicon oxide film 23 and the aluminum film 22 are patterned by ordinary photolithography to form wiring.

しかる後、第3図(c)のように、カバー膜としてポリ
イミド膜24をスピンオン塗布法により形威する。
Thereafter, as shown in FIG. 3(c), a polyimide film 24 is formed as a cover film by spin-on coating.

このようにして得られた配線構造は、アルごニウム膜2
2の上面に無機絶縁膜であるシリコン酸化膜23が存在
するので配線の上面部とカバー膜との密着性に優れた構
造とされる。しかも、有機シロキサンポリマー膜21と
ボリイくド膜24が直接接しでいるため、高温で熱処理
を行った際に有機シロキサンポリマー膜21中で発生す
るガスがポリイξド膜24を通して逃げるので、有機シ
ロキサンボリマー膜2lとポリイミド膜24との密着性
が劣化することはない。すなわち、層間絶縁膜とカバー
絶縁膜との密着性が高温熱処理によっても劣化されるこ
とはない。
The wiring structure obtained in this way consists of an argonium film 2
Since the silicon oxide film 23, which is an inorganic insulating film, is present on the upper surface of 2, the structure has excellent adhesion between the upper surface of the wiring and the cover film. Moreover, since the organic siloxane polymer film 21 and the polyimide film 24 are in direct contact with each other, the gas generated in the organic siloxane polymer film 21 when heat-treated at high temperature escapes through the polyimide film 24. The adhesion between the polymer film 2l and the polyimide film 24 does not deteriorate. That is, the adhesion between the interlayer insulating film and the cover insulating film is not deteriorated even by high-temperature heat treatment.

第4図(a)乃至(e)は本発明の第3の実施例を製造
工程順に示す断面図である。
FIGS. 4(a) to 4(e) are cross-sectional views showing the third embodiment of the present invention in the order of manufacturing steps.

先ず、第4図(a)のように、層間絶縁膜を構成するポ
リイミド膜31上に、マグネトロンスパッタ法によりチ
タンタングステン合金膜32を約1000人形威し、さ
らに金膜33を約0.5μm形或する。
First, as shown in FIG. 4(a), about 1,000 titanium-tungsten alloy films 32 are deposited on the polyimide film 31 constituting the interlayer insulating film by magnetron sputtering, and then a gold film 33 is deposited with a thickness of approximately 0.5 μm. There is.

次いで、第4図(b)のように、通常のフオ1・リソグ
ラフィー法により、金膜33およびチタンタングステン
合金膜32のパターニングを行ない、配線を形威する。
Next, as shown in FIG. 4(b), the gold film 33 and the titanium-tungsten alloy film 32 are patterned by the usual photolithography method to form wiring.

次に、第4図(C)のように、プラズマCVD法により
、全面に無機絶縁膜である酸素含有シリコン窒化膜34
を約2000人形威する。
Next, as shown in FIG. 4(C), an oxygen-containing silicon nitride film 34, which is an inorganic insulating film, is formed on the entire surface by plasma CVD.
Approximately 2,000 dolls will be held.

しかる上で、第4図(d)のように、酸素含有シリコン
窒化膜34に対して異方性エッチングを行い、ボリイ兆
ドIf!31上面および金11i33上面に存在する酸
素含有シリコン窒化膜34を除去する。このとき金膜3
3の側面は酸素含有シリコン窒化膜34により覆われて
いる。
Then, as shown in FIG. 4(d), anisotropic etching is performed on the oxygen-containing silicon nitride film 34 to form a polyimide If! The oxygen-containing silicon nitride film 34 present on the upper surface of the gold layer 31 and the gold layer 11i33 is removed. At this time, gold film 3
The side surfaces of 3 are covered with an oxygen-containing silicon nitride film 34.

その後、第4図(e)のように、カバー絶縁膜としてポ
リイミド膜35をスピンオン塗布法により形成する。
Thereafter, as shown in FIG. 4(e), a polyimide film 35 is formed as a cover insulating film by spin-on coating.

このようにして得られた配線部の構造は、配線を構成す
る金膜33の側面に無機絶縁膜としての酸素含有シリコ
ン窒化膜34が存在するので、配線側面部とカバー絶縁
膜との密着性のすぐれた構造となっている。しかも、ポ
リイごド膜31とポリイミド膜35が直接接しているた
め、高温で熱処理を行った際にポリイミド膜3I中で発
生ずるガスがボリイごド膜35を通して逃げるのでポリ
9 10 イくド膜3lとポリイミド膜35との密着性が劣化する
ことはない。すなわち、層間絶縁膜とカハー絶縁膜との
密着性が高温熱処理によっても劣化されることはない。
The structure of the wiring section obtained in this way is such that the oxygen-containing silicon nitride film 34 as an inorganic insulating film is present on the side surface of the gold film 33 constituting the wiring, so that the adhesion between the side surface section of the wiring and the cover insulating film is high. It has an excellent structure. Moreover, since the polyimide film 31 and the polyimide film 35 are in direct contact with each other, the gas generated in the polyimide film 3I when heat-treated at high temperature escapes through the polyimide film 35. The adhesion between the polyimide film 35 and the polyimide film 35 does not deteriorate. That is, the adhesion between the interlayer insulating film and the Cacher insulating film is not deteriorated even by high-temperature heat treatment.

その上、金膜33とボリイξド膜31の間にチタンタン
グステン合金膜32が存在するので配線と下部層間絶縁
膜との密着性にも優れた構造となっている。
Furthermore, since the titanium-tungsten alloy film 32 is present between the gold film 33 and the bolioid ξ-do film 31, the structure has excellent adhesion between the wiring and the lower interlayer insulating film.

なお、前記各実施例では、導電膜の存在しない領域の全
てにおいて第1有機絶縁膜と第2有機絶縁膜が接触した
例を示しているが、一部の領域に無機絶縁膜が存在して
も、両有機絶縁膜の密着性が失われることはない。
In each of the above examples, the first organic insulating film and the second organic insulating film are in contact with each other in all the regions where no conductive film is present, but the inorganic insulating film is present in some regions. However, the adhesion between both organic insulating films is not lost.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、第1有機絶縁膜上に設け
た導電膜の表面一部に無機絶縁膜を形威した上で、第2
有機絶縁膜を形威した構成としているので、無機膜によ
り導電膜と第2有機絶縁膜との密着性を改善し、かつ第
1有機絶縁膜と第2有m1!!縁膜の直接接触により両
者の密着性を改善し、結果として密着性に優れた配線構
造を得ることができる。
As explained above, the present invention forms an inorganic insulating film on a part of the surface of a conductive film provided on a first organic insulating film, and then a second organic insulating film.
Since the structure uses an organic insulating film, the adhesion between the conductive film and the second organic insulating film is improved by the inorganic film, and the adhesion between the first organic insulating film and the second organic insulating film is improved. ! Direct contact of the edge films improves the adhesion between the two, and as a result, a wiring structure with excellent adhesion can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本構造を示す断面図、第2図(a)
乃至(e)は本発明の第1実施例を製造工程順に示す断
面図、第3図(a)乃至(c)は本発明の第2実施例を
製造工程順に示す断面図、第4図(a)乃至(e)は本
発明の第3実施例を製造工程順に示す断面図、第5図及
び第6図はそれぞれ異なる従来の配線構造を示す断面図
である。 1・・・第1有機絶縁膜、2・・・導電膜、3・・・無
機絶縁膜、4・・・第2有機絶縁膜、11・・・ポリイ
ξド膜、l2・・・タングステン膜、13・・・金膜、
l4・・・シリコン窒化膜、l5・・・シリコン窒化膜
、16・・・ポリイミド膜、21・・・有機シロキザン
ボリマー膜、22・・・アルミニウム膜、23・・・シ
リコン酸化膜、24・・・ポリイミド膜、31・・・ボ
リイ旦ド膜、32・・・チタンタングステン合金膜、3
3・・・金膜、34・・・酸素含有シリコン窒化膜、3
5・・・ポリイミド膜、41・・・第1有機絶縁膜、4
2・・・導電膜、43・・・第2有機絶縁膜、51・・
・第1有機絶縁膜、11 12 52・・・導電膜、53・・・無機絶縁膜、54・・・
第2有機絶縁膜。 13 第3 図 第5 図 第6 図
Figure 1 is a sectional view showing the basic structure of the present invention, Figure 2 (a)
3(a) to 3(c) are sectional views showing the second embodiment of the present invention in the order of manufacturing steps, and FIG. a) to (e) are cross-sectional views showing the third embodiment of the present invention in the order of manufacturing steps, and FIGS. 5 and 6 are cross-sectional views showing different conventional wiring structures, respectively. DESCRIPTION OF SYMBOLS 1... First organic insulating film, 2... Conductive film, 3... Inorganic insulating film, 4... Second organic insulating film, 11... Polyide ξ film, l2... Tungsten film , 13... gold film,
l4... Silicon nitride film, l5... Silicon nitride film, 16... Polyimide film, 21... Organic siloxane polymer film, 22... Aluminum film, 23... Silicon oxide film, 24... ...Polyimide film, 31...Bollywood film, 32...Titanium-tungsten alloy film, 3
3... Gold film, 34... Oxygen-containing silicon nitride film, 3
5... Polyimide film, 41... First organic insulating film, 4
2... Conductive film, 43... Second organic insulating film, 51...
・First organic insulating film, 11 12 52... Conductive film, 53... Inorganic insulating film, 54...
Second organic insulating film. 13 Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、層間絶縁膜を構成する第1有機絶縁膜上に配線を構
成する導電膜を有し、この導電膜の上面および側面に接
して無機絶縁膜を有し、これら導電膜と無機絶縁膜を覆
い、かつ前記第1有機絶縁膜と接した第2有機絶縁膜を
有することを特徴とする半導体装置の配線構造。 2、層間絶縁膜を構成する第1有機絶縁膜上に配線を構
成する導電膜を有し、この導電膜の上面に接して無機絶
縁膜を有し、これら導電膜と無機絶縁膜を覆い、かつ前
記第1有機絶縁膜と接した第2有機絶縁膜を有すること
を特徴とする半導体装置の配線構造。 3、層間絶縁膜を構成する第1有機絶縁膜上に配線を構
成する導電膜を有し、この導電膜の側面に接して無機絶
縁膜を有し、これら導電膜と無機絶縁膜を覆い、かつ前
記第1有機絶縁膜と接した第2有機絶縁膜を有すること
を特徴とする半導体装置の配線構造。
[Claims] 1. A conductive film constituting wiring is provided on a first organic insulating film constituting an interlayer insulating film, an inorganic insulating film is provided in contact with the top and side surfaces of this conductive film, and these conductive A wiring structure for a semiconductor device, comprising a second organic insulating film that covers the film and the inorganic insulating film and is in contact with the first organic insulating film. 2. having a conductive film constituting wiring on a first organic insulating film constituting an interlayer insulating film, having an inorganic insulating film in contact with the upper surface of the conductive film, covering these conductive films and the inorganic insulating film; A wiring structure for a semiconductor device, further comprising a second organic insulating film in contact with the first organic insulating film. 3. having a conductive film constituting a wiring on a first organic insulating film constituting an interlayer insulating film, having an inorganic insulating film in contact with the side surface of this conductive film, covering these conductive film and the inorganic insulating film; A wiring structure for a semiconductor device, further comprising a second organic insulating film in contact with the first organic insulating film.
JP1161684A 1989-06-23 1989-06-23 Wiring structure of semiconductor device Expired - Fee Related JP2782801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161684A JP2782801B2 (en) 1989-06-23 1989-06-23 Wiring structure of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161684A JP2782801B2 (en) 1989-06-23 1989-06-23 Wiring structure of semiconductor device

Publications (2)

Publication Number Publication Date
JPH0327551A true JPH0327551A (en) 1991-02-05
JP2782801B2 JP2782801B2 (en) 1998-08-06

Family

ID=15739883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161684A Expired - Fee Related JP2782801B2 (en) 1989-06-23 1989-06-23 Wiring structure of semiconductor device

Country Status (1)

Country Link
JP (1) JP2782801B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555386A (en) * 1991-08-23 1993-03-05 Nec Corp Manufacture of semiconductor device
JPH05211144A (en) * 1991-12-27 1993-08-20 Nec Corp Semiconductor device and its manufacture
JPH06168944A (en) * 1992-11-27 1994-06-14 Nec Corp Semiconductor device and its manufacture
US6188125B1 (en) * 1994-04-28 2001-02-13 Texas Instruments Incorporated Via formation in polymeric materials
JP2016042536A (en) * 2014-08-18 2016-03-31 富士通株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2017059753A (en) * 2015-09-18 2017-03-23 株式会社ジャパンディスプレイ Semiconductor device and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150235A (en) * 1984-12-24 1986-07-08 Hitachi Ltd Manufacture of multilayer interconnection structure
JPS6251242A (en) * 1985-08-30 1987-03-05 Toshiba Corp Manuacture of multilayer interconnection
JPS63148659A (en) * 1986-12-12 1988-06-21 Nec Corp Semiconductor device
JPS645038A (en) * 1987-06-26 1989-01-10 Nec Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150235A (en) * 1984-12-24 1986-07-08 Hitachi Ltd Manufacture of multilayer interconnection structure
JPS6251242A (en) * 1985-08-30 1987-03-05 Toshiba Corp Manuacture of multilayer interconnection
JPS63148659A (en) * 1986-12-12 1988-06-21 Nec Corp Semiconductor device
JPS645038A (en) * 1987-06-26 1989-01-10 Nec Corp Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555386A (en) * 1991-08-23 1993-03-05 Nec Corp Manufacture of semiconductor device
JPH05211144A (en) * 1991-12-27 1993-08-20 Nec Corp Semiconductor device and its manufacture
JPH06168944A (en) * 1992-11-27 1994-06-14 Nec Corp Semiconductor device and its manufacture
US6188125B1 (en) * 1994-04-28 2001-02-13 Texas Instruments Incorporated Via formation in polymeric materials
JP2016042536A (en) * 2014-08-18 2016-03-31 富士通株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2017059753A (en) * 2015-09-18 2017-03-23 株式会社ジャパンディスプレイ Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JP2782801B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JPH0613470A (en) Manufacture of semiconductor device
JPH08288391A (en) Wiring formation of semiconductor element
JPH0327551A (en) Wiring structure of semiconductor device
JPH11145141A (en) Semiconductor device
JPH04127454A (en) Semiconductor device
JP2643793B2 (en) Semiconductor device and manufacturing method thereof
JPH04139828A (en) Manufacture of semiconductor device
JPH06310597A (en) Semiconductor device
JPH03171758A (en) Semiconductor device and manufacture thereof
JP2739842B2 (en) Method for manufacturing semiconductor device
JP2538245Y2 (en) Semiconductor device
JP3203926B2 (en) Wiring formation method
JP3204164B2 (en) Method for manufacturing semiconductor device
KR20050032305A (en) Method of forming metal line in semiconductor devices
JPH0794548A (en) Semiconductor device and fabrication thereof
JPH03248533A (en) Semiconductor integrated circuit device
JPS62115744A (en) Semiconductor device
JPH0536837A (en) Multilayer interconnection formation method
JPH0536842A (en) Multilayer interconnection formation method
JPH02103954A (en) Semiconductor device
JPH08186168A (en) Manufacture of semiconductor device
JPH01109749A (en) Formation of wiring
JPH11214513A (en) Wiring structure of integrated circuit, and wiring formation method
JPH05136198A (en) Semiconductor device
JPH05152444A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees