JPH04139828A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04139828A
JPH04139828A JP26436390A JP26436390A JPH04139828A JP H04139828 A JPH04139828 A JP H04139828A JP 26436390 A JP26436390 A JP 26436390A JP 26436390 A JP26436390 A JP 26436390A JP H04139828 A JPH04139828 A JP H04139828A
Authority
JP
Japan
Prior art keywords
opening
film
forming
organic coating
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26436390A
Other languages
Japanese (ja)
Inventor
Tomio Yamamoto
山本 冨男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26436390A priority Critical patent/JPH04139828A/en
Publication of JPH04139828A publication Critical patent/JPH04139828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the etching of organic coating and thus prevent the increase in contact resistance by forming a first opening in an organic coating, applying an insulating film over the coating, forming a second opening in the first opening, and applying another insulating film to cover the organic coating completely. CONSTITUTION:A lower wiring layer 2 is formed on a semiconductor substrate coated with a first insulating film 1, and a second insulating film 3 is overlaid. An organic coating 4 is applied to the film 3 and patterned to form a first opening 7A above the lower wiring layer 2. After a third insulating film 5 is formed over the surface including the opening 7A, the third and second insulating films 3 and 5 are etched to form a second opening 8A in the first opening 7A. A conductive film is formed over the whole surface including the opening 8A and patterned into an upper wiring layer 6. This keeps the organic coating 4 unexposed and thus protects its sides against etching, thereby eliminating the increase in contact resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に多層配線の
形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming multilayer wiring.

〔従来の技術〕[Conventional technology]

多層配線を有する半導体装置においては、層間膜として
プラズマCVD法による窒化膜や常圧CVD法による酸
化膜が主に用いられる。しがし、高集積化により下層の
配線間隔がせまくなってくると、上層の配線のステップ
カバレッジを良くするため、平坦化技術が必要となる。
In a semiconductor device having multilayer wiring, a nitride film formed by plasma CVD or an oxide film formed by atmospheric pressure CVD is mainly used as an interlayer film. However, as the interconnect spacing in the lower layer becomes narrower due to higher integration, planarization technology becomes necessary to improve the step coverage of the upper layer interconnect.

平坦化技術としては、プラズマ窒化膜等の絶縁膜の間に
シリカフィルムをはさむ方法が一般的であるが、近年高
集積化が進むにつれて、さらに平坦化が必要とされるた
め、エッチバック法やシリカフィルムの多数回塗布法が
用いられてきている。しかし、これらの方法を用いても
平坦化が不十分なため、最近では、シリコンポリイミド
等の有機塗布膜が使用されるようになってきた。
A common planarization technique is to sandwich a silica film between insulating films such as plasma nitride films, but as the integration density has increased in recent years, even more planarization is required, so etchback methods and Multiple application methods of silica films have been used. However, even if these methods are used, planarization is insufficient, so recently, organic coating films such as silicon polyimide have been used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

平坦化のためにシリコンポリイミド等の有機塗布膜を使
用する場合、従来は第3図に示すように、半導体基板上
にSiO2膜1を介して下層配線としての第1のA(配
線2を形成したのち、プラズマ窒化膜等の絶縁膜3Aを
形成し、その上に有機塗布膜4を形成し、続いて下層配
線と上層配線を接続するための開口部7を形成し、更に
第2のAρ配線6からなる上層配線を形成していた。
When using an organic coating film such as silicon polyimide for planarization, conventionally, as shown in FIG. After that, an insulating film 3A such as a plasma nitride film is formed, an organic coating film 4 is formed thereon, an opening 7 for connecting the lower layer wiring and the upper layer wiring is formed, and a second Aρ An upper layer wiring consisting of wiring 6 was formed.

したがって、上層配線を形成する時に有機塗布膜4が露
出した状態となっていた。一般的に、上層配線を形成す
る場合、下層配線との接続抵抗を小さくするための、配
線膜をスパッタ等で形成する前に真空中でRFエツチン
グをおこなうが、この時、有機塗布膜4が同時にエツチ
ングされ、エツチングされた物質が開口部の下層配線上
に再付着し、接続抵抗を増加させるという欠点があった
Therefore, when forming the upper layer wiring, the organic coating film 4 was exposed. Generally, when forming an upper layer wiring, RF etching is performed in a vacuum before forming a wiring film by sputtering or the like in order to reduce the connection resistance with the lower layer wiring. At the same time, etching is performed, and the etched material re-deposit on the underlying wiring in the opening, resulting in an increase in connection resistance.

更に、有機塗布膜4はo2プラズマでエツチングされや
すいため、後工程で02プラズマによる処理ができない
という問題があった。
Furthermore, since the organic coating film 4 is easily etched by O2 plasma, there is a problem in that it cannot be treated with O2 plasma in a post-process.

これらの問題を解決するために、有機塗布膜4上に更に
第2のプラズマ窒化膜等を形成する方法がある。しかし
、この場合、下層配線と上層配線を接続するための開口
部を窒化膜等を形成した後に形成するため、有機塗布膜
のサイドエツチングにより第2のプラズマ窒化膜等がオ
ーバーハング状態となり、上層配線のステップカバレッ
ジを悪化させるという欠点があった。また、この方法に
おいても、開口部の側面には、有機塗布膜が露出するこ
とになる。したがって、上層配線膜をスパッタ等で形成
する前のRFエツチングにより、開口部側面の有機塗布
膜がエツチングされ、接続抵抗を増加させるという欠点
があった。
In order to solve these problems, there is a method of further forming a second plasma nitride film or the like on the organic coating film 4. However, in this case, since the opening for connecting the lower layer wiring and the upper layer wiring is formed after forming the nitride film, etc., the second plasma nitride film etc. becomes overhanged due to side etching of the organic coating film, and the upper layer This has the disadvantage of deteriorating the step coverage of wiring. Also in this method, the organic coating film is exposed on the side surface of the opening. Therefore, the organic coating film on the side surface of the opening is etched by RF etching before forming the upper wiring film by sputtering or the like, resulting in an increase in connection resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体基板上に第1
の絶縁膜を介して下層の配線を形成した後第2の絶縁膜
を形成する工程と、この第2の絶縁膜上に有機塗布膜を
形成したのちパターニングし、前記下層配線上に第1の
開口部を形成する工程と、この第1の開口部を含む全面
に第3の絶縁膜を形成したのち、第3の絶縁膜及び前記
第2の絶縁膜をエツチングし第1の開口部内に第2の開
口部を形成する工程と、この第2の開口部を含む全面に
導体膜を形成したのちパターニングし上層配線を形成す
る工程とを有するものである。
In the method for manufacturing a semiconductor device of the present invention, a first
A step of forming a second insulating film after forming a lower layer wiring through the insulating film, forming an organic coating film on the second insulating film, patterning it, and forming a first insulating film on the lower layer wiring. After forming an opening and forming a third insulating film over the entire surface including the first opening, the third insulating film and the second insulating film are etched to form a third insulating film in the first opening. This method includes a step of forming a second opening, and a step of forming a conductive film over the entire surface including the second opening and then patterning it to form an upper layer wiring.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(e)は本発明の第1の実施例を説明す
るための半導体チップの断面図である。
FIGS. 1(a) to 1(e) are cross-sectional views of a semiconductor chip for explaining a first embodiment of the present invention.

まず第1図(a)に示すように、能動素子等の領域を形
成した半導体基板−Fに5i02膜1を形成し、次でA
ρ膜を形成したのちパターニングし第1のAρ配線2を
形成する。続いて第1のSiN膜3をプラズマCVD法
等で200〜5000人の厚さに形成する。更にシリコ
ンポリイミド等の有機塗布Jlj4を10000〜15
000人の厚さに形成し平坦化する。
First, as shown in FIG. 1(a), a 5i02 film 1 is formed on a semiconductor substrate -F on which regions such as active elements are formed, and then a
After forming the ρ film, patterning is performed to form the first Aρ wiring 2. Subsequently, a first SiN film 3 is formed to a thickness of 200 to 5,000 wafers by plasma CVD or the like. Furthermore, apply organic coating Jlj4 such as silicon polyimide to 10,000 to 15
It is formed to a thickness of 0.000 mm and flattened.

次に第1図(b)に示すように、フォトレジスト膜から
なるマスクを形成後、有機塗布膜4をエツチングし第1
の開口部7Aを形成する。次に第1図(c)に示すよう
に、全面に第2のSiN膜5を形成したのちパターニン
グし、第1図(d)に示すように第1の開口部より小さ
い第2の開口部8Aを形成する。次で第1図(e)に示
すように、全面にAρ膜を形成したのちパターニングし
、第2のAA配線6を形成する。
Next, as shown in FIG. 1(b), after forming a mask made of a photoresist film, the organic coating film 4 is etched and the first
An opening 7A is formed. Next, as shown in FIG. 1(c), a second SiN film 5 is formed on the entire surface and then patterned to form a second opening smaller than the first opening as shown in FIG. 1(d). Form 8A. Next, as shown in FIG. 1(e), an Aρ film is formed on the entire surface and then patterned to form the second AA wiring 6.

ここで第1の開口部7Aは有機塗布膜4を02を用いる
RIE法でエツチングし、第2の開口部8Aは、等方性
エツチング法と異方性エツチング法の2ステツプエツチ
ングにより形成する。また、第2のA(配線6形成時の
スパッタ直前には、数mTorrの圧力でRFエツチン
グをおこない、第1のAρ配線2との接続抵抗を小さく
する。
Here, the first opening 7A is formed by etching the organic coating film 4 by RIE using 02, and the second opening 8A is formed by two-step etching of isotropic etching and anisotropic etching. Immediately before sputtering when forming the second A (wiring 6), RF etching is performed at a pressure of several mTorr to reduce the connection resistance with the first Aρ wiring 2.

この第1の実施例においては、SiN膜の代りに5iO
N膜やSiO膜を用いてもよい。また、AA配線はAf
−3t配線やA、&−Cu配線でも良いことは容易に推
測できる。更に、第1のAiI配線2及び第2のAiI
配線6はそれぞれ第n番目のAρ配線、第n+1番目の
AII配線(nは整数)でもよい。このように第1の実
施例によれば、有機塗布膜4は開口部においても、Si
N膜に覆われているため、RFエツチングの際にエツチ
ンクされるにとはない。
In this first embodiment, 5iO is used instead of the SiN film.
An N film or a SiO film may also be used. Also, the AA wiring is Af
It can be easily inferred that -3t wiring or A, &-Cu wiring may also be used. Furthermore, the first AiI wiring 2 and the second AiI
The wiring 6 may be an nth Aρ wiring and an (n+1)th AII wiring (n is an integer), respectively. In this way, according to the first embodiment, the organic coating film 4 is made of Si even in the openings.
Since it is covered with an N film, it is unlikely to be etched during RF etching.

第2図(a)〜(c)は本発明の第2の実施例を説明す
るための半導体チップの断面図である。
FIGS. 2(a) to 2(c) are cross-sectional views of a semiconductor chip for explaining a second embodiment of the present invention.

基本的な製造方法は第1の実施例と同じであるが、第1
の開口部形成を次のようにしておこなう。
The basic manufacturing method is the same as the first example, but the first
The opening is formed as follows.

第2図(a、 )に示すように、第1の実施例と同様に
シリコンポリイミド等の有機塗布膜4形成後、ポジ型フ
ォトレジスト膜9を5000〜1、 OOO0人塗布し
第1の開口部パターンを形成する。次に、ボストベーク
を150℃程度でおこない、開口部の淵に傾斜をつける
。次に第2図(b)に示すように、この状態で02プラ
ズマによる等方性エツチングをおこない、第1の開口部
7Bを形成する。この時、150℃程度のボストベーク
によるフォトレジスト膜9の開口部の淵の傾斜と02プ
ラズマの等方性エツチングのため、第1の開口部7Bの
淵には大きな傾斜ができる。
As shown in FIG. 2(a, ), after forming the organic coating film 4 of silicone polyimide or the like in the same manner as in the first embodiment, a positive photoresist film 9 of 5000 to 1 OOO0 is applied to form the first opening. form a partial pattern. Next, a boss bake is performed at about 150° C. to create a slope at the edge of the opening. Next, as shown in FIG. 2(b), in this state, isotropic etching is performed using 02 plasma to form a first opening 7B. At this time, due to the inclination of the edge of the opening of the photoresist film 9 due to the boss baking at about 150° C. and the isotropic etching of the 02 plasma, a large inclination is formed at the edge of the first opening 7B.

才な、シリコンポリイミド等の有機塗布膜4とフォトレ
ジスI・膜9は02プラズマにおけるエツチングレート
がほぼ同等のためエッチバックされ、有機塗布膜4がほ
ぼ完全に平坦化される。以下第2図(c)に示すように
、第2のSiN膜5を形成したのち、第1の開口部7B
より幅の小さい第2の開口部8Bを形成したのち、第1
のAρ配線6を形成する。
The organic coating film 4, such as silicon polyimide, and the photoresist I film 9 are etched back because the etching rate in the 02 plasma is almost the same, and the organic coating film 4 is almost completely planarized. As shown in FIG. 2(c), after forming the second SiN film 5, the first opening 7B is opened.
After forming the second opening 8B with a smaller width, the first opening 8B is formed.
An Aρ wiring 6 is formed.

本節2の実施例では、有機塗布膜4の開口部に傾斜をつ
けているため、第2のAρ配線のステップカバレッジが
大幅に改善される。
In the embodiment of Section 2, since the opening of the organic coating film 4 is sloped, the step coverage of the second Aρ wiring is greatly improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、層間膜に有機塗布膜を使
用する多層配線構造の半導体装置において、有機塗布膜
に第1の開口部を形成した後、全面に絶縁膜を形成し、
続いて第1の開口部の内側に第2の開口部を形成して有
機塗布膜が全て絶縁膜でおおわれるように構成すること
により、上層の配線材料をスパッタ等で形成する前のR
Fエツチングの際に、従来のように有機塗布膜がエツチ
ングされ、下層配線との接続用開口部に再付着すること
を防止できる。従って下層配線と上層配線との接続抵抗
の増加を防止できる効果がある。
As explained above, in a semiconductor device having a multilayer wiring structure using an organic coating film as an interlayer film, the present invention forms a first opening in the organic coating film, and then forms an insulating film on the entire surface.
Subsequently, a second opening is formed inside the first opening so that the organic coating film is entirely covered with an insulating film, thereby reducing the R before forming the upper layer wiring material by sputtering or the like.
During F etching, it is possible to prevent the organic coating film from being etched and re-adhering to the opening for connection to the underlying wiring as in the conventional case. Therefore, it is possible to prevent an increase in connection resistance between the lower layer wiring and the upper layer wiring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の第1及び第2実施例を説明
するための半導体チップの断面図、第3図は従来例を説
明するための半導体チップの断面図である。 1・・・5i02膜、2・・・第1のAρ配線、3・・
・第1のSiN膜、3A・・・絶縁膜、4・・・有機塗
布膜、5・・・第2のSiN膜、6・・・第2のAρ配
線、7・・・開口部、7A、7B・・・第1の開口部、
8A、8B・・・第2の開口部、9・・・フォトレジス
ト膜。
1 and 2 are cross-sectional views of a semiconductor chip for explaining first and second embodiments of the present invention, and FIG. 3 is a cross-sectional view of a semiconductor chip for explaining a conventional example. 1...5i02 film, 2...1st Aρ wiring, 3...
・First SiN film, 3A... Insulating film, 4... Organic coating film, 5... Second SiN film, 6... Second Aρ wiring, 7... Opening, 7A , 7B...first opening,
8A, 8B... second opening, 9... photoresist film.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に第1の絶縁膜を介して下層の配線を形
成した後第2の絶縁膜を形成する工程と、この第2の絶
縁膜上に有機塗布膜を形成したのちパターニングし、前
記下層配線上に第1の開口部を形成する工程と、この第
1の開口部を含む全面に第3の絶縁膜を形成したのち、
第3の絶縁膜及び前記第2の絶縁膜をエッチングし第1
の開口部内に第2の開口部を形成する工程と、この第2
の開口部を含む全面に導体膜を形成したのちパターニン
グし上層配線を形成する工程とを有することを特徴とす
る半導体装置の製造方法。
A step of forming a lower wiring layer on the semiconductor substrate via the first insulating film and then forming a second insulating film, and forming an organic coating film on the second insulating film and then patterning the lower layer wiring. After forming a first opening on the wiring and forming a third insulating film on the entire surface including the first opening,
etching the third insulating film and the second insulating film;
forming a second opening within the opening of the second opening;
1. A method of manufacturing a semiconductor device, comprising the steps of: forming a conductive film over the entire surface including the opening, and then patterning the conductive film to form an upper layer wiring.
JP26436390A 1990-10-01 1990-10-01 Manufacture of semiconductor device Pending JPH04139828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26436390A JPH04139828A (en) 1990-10-01 1990-10-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26436390A JPH04139828A (en) 1990-10-01 1990-10-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04139828A true JPH04139828A (en) 1992-05-13

Family

ID=17402117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26436390A Pending JPH04139828A (en) 1990-10-01 1990-10-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04139828A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645274A (en) * 1992-02-28 1994-02-18 Sgs Thomson Microelectron Inc Method for manufacture of contact via in integrated circuit
JP2009267426A (en) * 2002-04-09 2009-11-12 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2010251735A (en) * 2009-03-27 2010-11-04 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2012185514A (en) * 2002-05-17 2012-09-27 Semiconductor Energy Lab Co Ltd Display device
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645274A (en) * 1992-02-28 1994-02-18 Sgs Thomson Microelectron Inc Method for manufacture of contact via in integrated circuit
JP4652470B2 (en) * 2002-04-09 2011-03-16 株式会社半導体エネルギー研究所 Display device
US9666614B2 (en) 2002-04-09 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
JP2010153890A (en) * 2002-04-09 2010-07-08 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method therefof
JP4515528B2 (en) * 2002-04-09 2010-08-04 株式会社半導体エネルギー研究所 Semiconductor device
JP2010206216A (en) * 2002-04-09 2010-09-16 Semiconductor Energy Lab Co Ltd Semiconductor device, liquid crystal display device, television, laptop type personal computer, and personal digital assistant
US11101299B2 (en) 2002-04-09 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
JP4602466B2 (en) * 2002-04-09 2010-12-22 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US10854642B2 (en) 2002-04-09 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
JP2009267426A (en) * 2002-04-09 2009-11-12 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2010072654A (en) * 2002-04-09 2010-04-02 Semiconductor Energy Lab Co Ltd Display device
KR101021052B1 (en) * 2002-04-09 2011-03-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 A display device, and a method for manufacturing a display device
US10700106B2 (en) 2002-04-09 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10083995B2 (en) 2002-04-09 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10050065B2 (en) 2002-04-09 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US8946717B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US8946718B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9406806B2 (en) 2002-04-09 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9105727B2 (en) 2002-04-09 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
JP4652476B2 (en) * 2002-04-09 2011-03-16 株式会社半導体エネルギー研究所 Semiconductor device, liquid crystal display device, television, notebook personal computer and portable information terminal
US9366930B2 (en) 2002-05-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device with capacitor elements
JP2019117406A (en) * 2002-05-17 2019-07-18 株式会社半導体エネルギー研究所 Display device and liquid crystal display device
US11422423B2 (en) 2002-05-17 2022-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2017151482A (en) * 2002-05-17 2017-08-31 株式会社半導体エネルギー研究所 Display device
JP2017173838A (en) * 2002-05-17 2017-09-28 株式会社半導体エネルギー研究所 Display device
JP2014158034A (en) * 2002-05-17 2014-08-28 Semiconductor Energy Lab Co Ltd Method for manufacturing display device
JP2014041386A (en) * 2002-05-17 2014-03-06 Semiconductor Energy Lab Co Ltd Display device
US10133139B2 (en) 2002-05-17 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2019091085A (en) * 2002-05-17 2019-06-13 株式会社半導体エネルギー研究所 Display device
JP2022037166A (en) * 2002-05-17 2022-03-08 株式会社半導体エネルギー研究所 Display device
JP2019139244A (en) * 2002-05-17 2019-08-22 株式会社半導体エネルギー研究所 Display device
US10527903B2 (en) 2002-05-17 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2020060767A (en) * 2002-05-17 2020-04-16 株式会社半導体エネルギー研究所 Display
JP2013077011A (en) * 2002-05-17 2013-04-25 Semiconductor Energy Lab Co Ltd Display device
JP2020177240A (en) * 2002-05-17 2020-10-29 株式会社半導体エネルギー研究所 Display device
JP2012185514A (en) * 2002-05-17 2012-09-27 Semiconductor Energy Lab Co Ltd Display device
JP2010251735A (en) * 2009-03-27 2010-11-04 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US9012918B2 (en) 2009-03-27 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor
US9705003B2 (en) 2009-03-27 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including first and second gate electrodes and stack of insulating layers

Similar Documents

Publication Publication Date Title
JP2934353B2 (en) Semiconductor device and manufacturing method thereof
JPH0982804A (en) Semiconductor device and manufacture thereof
JPH04139828A (en) Manufacture of semiconductor device
JPH0669351A (en) Manufacture of contact of multilayer metal interconnection structure
JP3102338B2 (en) Method for manufacturing semiconductor device
JP2716156B2 (en) Method for manufacturing semiconductor device
JPS6376351A (en) Formation of multilayer interconnection
JPH05114575A (en) Manufacture of semiconductor device
JP2856489B2 (en) Method for manufacturing semiconductor device
JP2699389B2 (en) Method for manufacturing semiconductor device
JPH02262338A (en) Manufacture of semiconductor device
KR100275940B1 (en) Method of fabricating an interlayer in semiconductor devices
JP2783898B2 (en) Method for manufacturing semiconductor device
JPH04303943A (en) Manufacture of semiconductor device
JPS62219961A (en) Manufacture of thin film mos structure semiconductor device
KR100454850B1 (en) Method for manufacturing shallow trench isolation of semiconductor devices
JP2001053229A (en) Manufacture of capacitor element
JPH03248533A (en) Semiconductor integrated circuit device
JPH07211714A (en) Manufacture of semiconductor device
JPH0337857B2 (en)
JPH03153035A (en) Manufacture of semiconductor device
JPH0246747A (en) Formation of multilayer interconnection
JPH06232125A (en) Manufacture of semiconductor
JPS6362255A (en) Method for flattening semiconductor device
JPH05160126A (en) Formation of multilayer wiring