JP2782801B2 - Wiring structure of semiconductor device - Google Patents

Wiring structure of semiconductor device

Info

Publication number
JP2782801B2
JP2782801B2 JP1161684A JP16168489A JP2782801B2 JP 2782801 B2 JP2782801 B2 JP 2782801B2 JP 1161684 A JP1161684 A JP 1161684A JP 16168489 A JP16168489 A JP 16168489A JP 2782801 B2 JP2782801 B2 JP 2782801B2
Authority
JP
Japan
Prior art keywords
film
insulating film
organic insulating
wiring
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1161684A
Other languages
Japanese (ja)
Other versions
JPH0327551A (en
Inventor
卓哉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1161684A priority Critical patent/JP2782801B2/en
Publication of JPH0327551A publication Critical patent/JPH0327551A/en
Application granted granted Critical
Publication of JP2782801B2 publication Critical patent/JP2782801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に有機絶縁膜を層間絶
縁膜に使用した配線構造に関する。
The present invention relates to a semiconductor device, and more particularly to a wiring structure using an organic insulating film as an interlayer insulating film.

〔従来の技術〕[Conventional technology]

近年の半導体装置の高密度化に伴い、上下の配線を絶
縁する層間絶縁膜の平坦化の要求がますます大きくなっ
てきている。従来、層間絶縁膜としてはもっぱら無機膜
が使用されているが、上述した平坦化の要求に応えるた
めに、最近では有機絶縁膜を使用することが提案されて
いる。
With the recent increase in the density of semiconductor devices, there has been an increasing demand for flattening an interlayer insulating film for insulating upper and lower wirings. Conventionally, an inorganic film has been used exclusively as an interlayer insulating film. However, in order to meet the above-mentioned requirement for flattening, the use of an organic insulating film has recently been proposed.

例えば、第5図はその一例であり、層間絶縁膜として
第1有機絶縁膜41を形成し、この上に配線としての導電
膜42を形成し、更にこの上にカバー絶縁膜として第2有
機絶縁膜43を形成している。
For example, FIG. 5 shows an example of this, in which a first organic insulating film 41 is formed as an interlayer insulating film, a conductive film 42 as a wiring is formed thereon, and a second organic insulating film 42 is formed thereon as a cover insulating film. A film 43 is formed.

また、第6図は他の例であり、第1有機絶縁膜51上に
導電膜52を形成し、全面を薄い無機絶縁膜53が覆った上
で第2有機絶縁膜54を被着している。ここでは、無機絶
縁膜53と第2有機絶縁膜54の二層膜がカバー絶縁膜とな
っている。
FIG. 6 shows another example, in which a conductive film 52 is formed on a first organic insulating film 51, and the entire surface is covered with a thin inorganic insulating film 53, and then a second organic insulating film 54 is applied. I have. Here, a two-layer film of the inorganic insulating film 53 and the second organic insulating film 54 is a cover insulating film.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第5図に示した配線構造では、導電膜42が直接第2有
機絶縁膜43に覆われているために、導電膜42と第2有機
絶縁膜43との密着性が十分でなく、この部分から第2有
機絶縁膜43が剥がれ易く、カバーとしての機能が低下さ
れ、半導体装置の信頼性が低下されるという問題があ
る。
In the wiring structure shown in FIG. 5, since the conductive film 42 is directly covered with the second organic insulating film 43, the adhesion between the conductive film 42 and the second organic insulating film 43 is not sufficient. Therefore, there is a problem that the second organic insulating film 43 is easily peeled off, the function as a cover is reduced, and the reliability of the semiconductor device is reduced.

また、第6図に示した配線構造では、導電膜52と第2
有機絶縁膜54の間に無機絶縁膜53が存在しているため、
これら導電膜52と第2有機絶縁膜54の密着性は十分であ
る。しかし、第1有機絶縁膜51と第2有機絶縁膜52の間
に無機絶縁膜53が存在するために、高温で熱処理を行っ
た際に第1有機絶縁膜51中で発生したガスが無機絶縁膜
53でせき止められて外部に逃がすことができなくなり、
第1有機絶縁膜51と無機絶縁膜53との密着性が悪化さ
れ、カバー絶縁膜の剥がれが生じる等の問題がある。
Further, in the wiring structure shown in FIG.
Since the inorganic insulating film 53 exists between the organic insulating films 54,
The adhesion between the conductive film 52 and the second organic insulating film 54 is sufficient. However, since the inorganic insulating film 53 exists between the first organic insulating film 51 and the second organic insulating film 52, the gas generated in the first organic insulating film 51 during the heat treatment at a high temperature becomes an inorganic insulating film. film
I was blocked by 53 and could not escape to the outside,
There is a problem that the adhesion between the first organic insulating film 51 and the inorganic insulating film 53 is deteriorated, and the cover insulating film is peeled off.

本発明の目的はこのような問題を解消し、配線とその
上に形成する絶縁膜との密着性を改善し、かつ配線の上
下に形成する絶縁膜相互の密着性をも改善した配線構造
を提供することにある。
An object of the present invention is to solve such a problem, improve the adhesion between the wiring and the insulating film formed thereon, and improve the wiring structure between the insulating films formed above and below the wiring. To provide.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の配線構造は、層間絶縁膜を構成する第1有機
絶縁膜上に配線を構成する導電膜を有し、この導電膜の
側面のみに接して無機絶縁膜を有し、前記導電膜と無機
絶縁膜を覆い、かつ前記第1有機絶縁膜と接した第2有
機絶縁膜を有することを特徴とする。
The wiring structure of the present invention has a conductive film forming a wiring on a first organic insulating film forming an interlayer insulating film, and has an inorganic insulating film in contact only with a side surface of the conductive film. A second organic insulating film that covers the inorganic insulating film and is in contact with the first organic insulating film.

〔作用〕[Action]

この構成では、導電膜の表面一部に設けた無機膜によ
り導電膜と第2有機絶縁膜との密着性を改善する。ま
た、第1有機絶縁膜と第2有機絶縁膜は導電膜以外の領
域で直接接触し、両者の密着性を改善する。
In this configuration, the adhesion between the conductive film and the second organic insulating film is improved by the inorganic film provided on a part of the surface of the conductive film. Further, the first organic insulating film and the second organic insulating film are in direct contact with each other in a region other than the conductive film to improve the adhesion between them.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の基本構成を示す断面図であり、層間
絶縁膜としての第1有機絶縁膜1の上に配線としての導
電膜2を形成している。そして、この導電膜2にはその
上面及び側面を覆うように無機絶縁膜3を形成し、しか
る上で全面に第2有機絶縁膜4を被着形成している。
FIG. 1 is a sectional view showing a basic structure of the present invention, in which a conductive film 2 as a wiring is formed on a first organic insulating film 1 as an interlayer insulating film. An inorganic insulating film 3 is formed on the conductive film 2 so as to cover the upper surface and side surfaces thereof, and a second organic insulating film 4 is formed on the entire surface.

この構成によれば、導電膜2と第2有機絶縁膜4との
間には無機絶縁膜3が介在しているため、両者の密着性
を優れたものにできる。一方、第1有機絶縁膜1と第2
有機絶縁膜4とは、導電膜2以外の領域では直接接触し
ているため、熱処理時に発生するガスを速やかに逃がす
ことができ、両者の密着性を改善する。これにより、カ
バー膜としての第2有機絶縁膜4の剥がれを防止し、半
導体装置の信頼性を改善する。
According to this configuration, since the inorganic insulating film 3 is interposed between the conductive film 2 and the second organic insulating film 4, the adhesion between the two can be improved. On the other hand, the first organic insulating film 1 and the second organic insulating film 1
Since the region other than the conductive film 2 is in direct contact with the organic insulating film 4, the gas generated during the heat treatment can be quickly released, and the adhesion between the two can be improved. This prevents peeling of the second organic insulating film 4 as a cover film, and improves the reliability of the semiconductor device.

第2図(a)乃至(e)は第1図に示した配線構造の
第1実施例をその製造工程順に示す断面図である。
2 (a) to 2 (e) are cross-sectional views showing a first embodiment of the wiring structure shown in FIG. 1 in the order of the manufacturing steps.

先ず、第2図(a)のように、層間絶縁膜を構成する
第1有機絶縁膜としてのポリイミド膜11上に、マグネト
ロンスパッタ法によりタングステン膜12を約2000Å形成
し、さらに金膜13を約1μm形成して二層構造の導電膜
を形成する。更に、の上に無機絶縁膜としてのシリコン
窒化膜14をプラズマCVD法により約2000Å形成する。
First, as shown in FIG. 2 (a), a tungsten film 12 is formed on a polyimide film 11 as a first organic insulating film constituting an interlayer insulating film by a magnetron sputtering method for about 2000.degree. A conductive film having a two-layer structure is formed to a thickness of 1 μm. Further, a silicon nitride film 14 as an inorganic insulating film is formed thereon by about 2000 約 by a plasma CVD method.

次いで、第2図(b)のように、通常のフォトリソグ
ラフィー法によりシリコン窒化膜14,金膜13およびタン
グステン膜12のパターニングを行ない、配線を形成す
る。
Next, as shown in FIG. 2 (b), the silicon nitride film 14, the gold film 13 and the tungsten film 12 are patterned by ordinary photolithography to form wiring.

次に、第2図(c)のように、全面にプラズマCVD法
により無機絶縁膜であるシリコン窒化膜15を約1000Å形
成する。
Next, as shown in FIG. 2 (c), a silicon nitride film 15, which is an inorganic insulating film, is formed on the entire surface by plasma CVD at a thickness of about 1000.

その上で、第2図(d)のように、前記シリコン窒化
膜15に対して異方性ドライエッチングを行なう。この結
果、配線の上面にはシリコン窒化膜14が残され、側面に
はシリコン窒化膜15が残され、これらのシリコン窒化膜
14,15により配線の表面は被覆される。
Then, as shown in FIG. 2 (d), the silicon nitride film 15 is subjected to anisotropic dry etching. As a result, the silicon nitride film 14 is left on the upper surface of the wiring, and the silicon nitride film 15 is left on the side surface.
The surface of the wiring is covered with 14,15.

しかる上で、第2図(e)のように、カバー膜として
の第2有機絶縁膜であるポリイミド膜16をスピンオン塗
布法により全面に形成する。
Then, as shown in FIG. 2E, a polyimide film 16 as a second organic insulating film as a cover film is formed on the entire surface by spin-on coating.

このようにして得られた配線部の構造は、配線を構成
する金膜13とシリコン窒化膜14、また金膜13とシリコン
窒化膜15との密着性が良好であり、かつ、シリコン窒化
膜14とポリイミド膜16およびシリコン窒化膜15とポリイ
ミド膜16との密着性も良好であるので配線とカバー膜と
の密着性が非常に優れた構造となっている。
The structure of the wiring portion obtained in this manner has good adhesion between the gold film 13 and the silicon nitride film 14 and the gold film 13 and the silicon nitride film 15 that constitute the wiring, and the silicon nitride film 14 Also, the adhesion between the polyimide film 16 and the silicon nitride film 15 and the polyimide film 16 is good, so that the structure is very excellent in the adhesion between the wiring and the cover film.

しかも、ポリイミド膜11とポリイミド膜16が直接接し
ているため、高温で熱処理を行った際にポリイミド膜11
中で発生するガスがポリイミド膜16を通して逃げるの
で、ポリイミド膜11とポリイミド膜16との密着性が劣化
することはない。すなわち、層間絶縁膜とカバー絶縁膜
との密着性が高温熱処理によっても劣化しない構造とな
っている。更に、金膜13とポリイミド膜11の間にタング
ステン膜12が存在するので配線と層間絶縁膜との密着性
にも優れた構造となっている。
Moreover, since the polyimide film 11 and the polyimide film 16 are in direct contact with each other, the polyimide film 11 is not heat-treated at a high temperature.
Since the gas generated inside escapes through the polyimide film 16, the adhesion between the polyimide film 11 and the polyimide film 16 does not deteriorate. That is, the structure is such that the adhesion between the interlayer insulating film and the cover insulating film is not deteriorated by the high-temperature heat treatment. Further, since the tungsten film 12 exists between the gold film 13 and the polyimide film 11, the structure has excellent adhesion between the wiring and the interlayer insulating film.

第3図(a)乃至(c)は本発明の第2実施例を製造
工程順に示す断面図である。
3 (a) to 3 (c) are sectional views showing a second embodiment of the present invention in the order of manufacturing steps.

先ず、第3図(a)のように、層間絶縁膜を構成する
有機シロキサンポリマー膜21上にマグネトロンスパッタ
法によりアルミニウム膜22を約0.5μm形成し、更にプ
ラズマCVD法により無機絶縁膜であるシリコン酸化膜23
を約2000Å形成する。
First, as shown in FIG. 3 (a), an aluminum film 22 is formed to a thickness of about 0.5 μm by a magnetron sputtering method on an organic siloxane polymer film 21 constituting an interlayer insulating film, and then an inorganic insulating film silicon is formed by a plasma CVD method. Oxide film 23
Form about 2000 mm.

次いで、第3図(b)のように、通常のフォトリソグ
ラフィー法によりシリコン酸化膜23およびアルミニウム
膜22のパターニングを行ない、配線を形成する。
Next, as shown in FIG. 3 (b), the silicon oxide film 23 and the aluminum film 22 are patterned by a usual photolithography method to form wiring.

しかる後、第3図(c)のように、カバー膜としてポ
リイミド膜24をスピンオン塗布法により形成する。
Thereafter, as shown in FIG. 3C, a polyimide film 24 is formed as a cover film by a spin-on coating method.

このようにして得られた配線構造は、アルミニウム膜
22の上面に無機絶縁膜であるシリコン酸化膜23が存在す
るので配線の上面部とカバー膜との密着性に優れた構造
とされる。しかも、有機シロキサンポリマー膜21とポリ
イミド膜24が直接接しているため、高温で熱処理を行っ
た際に有機シロキサンポリマー膜21中で発生するガスが
ポリイミド膜24を通して逃げるので、有機シロキサンポ
リマー膜21とポリイミド膜24との密着性が劣化すること
はない。すなわち、層間絶縁膜とカバー絶縁膜との密着
性が高温熱処理によっても劣化されることはない。
The wiring structure thus obtained has an aluminum film
Since the silicon oxide film 23, which is an inorganic insulating film, is present on the upper surface of the substrate 22, the structure has excellent adhesion between the upper surface of the wiring and the cover film. Moreover, since the organic siloxane polymer film 21 and the polyimide film 24 are in direct contact with each other, the gas generated in the organic siloxane polymer film 21 when heat treatment is performed at a high temperature escapes through the polyimide film 24. Adhesion with the polyimide film 24 does not deteriorate. That is, the adhesion between the interlayer insulating film and the cover insulating film is not deteriorated by the high-temperature heat treatment.

第4図(a)乃至(e)は本発明の第3の実施例を製
造工程順に示す断面図である。
4 (a) to 4 (e) are cross-sectional views showing a third embodiment of the present invention in the order of manufacturing steps.

先ず、第4図(a)のように、層間絶縁膜を構成する
ポリイミド膜31上に、マグネトロンスパッタ法によりチ
タンタングステン合金膜32を約1000Å形成し、さらに金
膜33を約0.5μm形成する。
First, as shown in FIG. 4A, a titanium-tungsten alloy film 32 is formed on a polyimide film 31 constituting an interlayer insulating film by a magnetron sputtering method at a thickness of about 1000 °, and a gold film 33 is formed at a thickness of about 0.5 μm.

次いで、第4図(b)のように、通常のフォトリソグ
ラフィー法により、金膜33およびチタンタングステン合
金膜32のパターニングを行ない、配線を形成する。
Next, as shown in FIG. 4B, the gold film 33 and the titanium-tungsten alloy film 32 are patterned by a normal photolithography method to form a wiring.

次に、第4図(c)のように、プラズマCVD法によ
り、全面に無機絶縁膜である酵素含有シリコン窒化膜34
を約2000Å形成する。
Next, as shown in FIG. 4C, an enzyme-containing silicon nitride film 34, which is an inorganic insulating film, is entirely formed by a plasma CVD method.
Form about 2000 mm.

しかる上で、第4図(d)のように、酸素含有シリコ
ン窒化膜34に対して異方性エッチングを行い、ポリイミ
ド膜31上面および金膜33上面に存在する酸素含有シリコ
ン窒化膜34を除去する。このとき金膜33の側面は酸素含
有シリコン窒化膜34により覆われている。
Then, as shown in FIG. 4D, anisotropic etching is performed on the oxygen-containing silicon nitride film 34 to remove the oxygen-containing silicon nitride film 34 present on the upper surfaces of the polyimide film 31 and the gold film 33. I do. At this time, the side surfaces of the gold film 33 are covered with the oxygen-containing silicon nitride film 34.

その後、第4図(e)のように、カバー絶縁膜として
ポリイミド膜35をスピンオン塗布法により形成する。
Thereafter, as shown in FIG. 4E, a polyimide film 35 is formed as a cover insulating film by a spin-on coating method.

このようにして得られた配線部の構造は、配線を構成
する金膜33の側面に無機絶縁膜としての酸素含有シリコ
ン窒化膜34が存在するので、配線側面部とカバー絶縁膜
との密着性にすぐれた構造となっている。しかも、ポリ
イミド膜31とポリイミド膜35が直接接しているため、高
温で熱処理を行った際にポリイミド膜31中で発生するガ
スがポリイミド膜35を通して逃げるのでポリイミド膜31
とポリイミド膜35との密着性が劣化することはない。す
なわち、層間絶縁膜とカバー絶縁膜との密着性が高温熱
処理によっても劣化されることはない。その上、金膜33
とポリイミド膜31の間にチタンタングステン合金膜32が
存在するので配線と下部層間絶縁膜との密着性にも優れ
た構造となっている。
The structure of the wiring portion obtained in this manner is such that since the oxygen-containing silicon nitride film 34 as an inorganic insulating film exists on the side surface of the gold film 33 constituting the wiring, the adhesiveness between the wiring side surface portion and the cover insulating film is high. It has an excellent structure. Moreover, since the polyimide film 31 and the polyimide film 35 are in direct contact, the gas generated in the polyimide film 31 when heat treatment is performed at a high temperature escapes through the polyimide film 35, so that the polyimide film 31
There is no deterioration in the adhesion between the film and the polyimide film 35. That is, the adhesion between the interlayer insulating film and the cover insulating film is not deteriorated by the high-temperature heat treatment. Besides, gold film 33
Since the titanium tungsten alloy film 32 exists between the wiring and the polyimide film 31, the structure has excellent adhesion between the wiring and the lower interlayer insulating film.

なお、前記各実施例では、導電膜の存在しない領域の
全てにおいて第1有機絶縁膜と第2有機絶縁膜が接触し
た例を示しているが、一部の領域に無機絶縁膜が存在し
ても、両有機絶縁膜の密着性が失われることはない。
In each of the above embodiments, the first organic insulating film and the second organic insulating film are in contact with each other in all the regions where the conductive film is not present. However, the adhesion between the two organic insulating films is not lost.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、本発明の基本構造に対
する第1ないし第3の実施例のうちでも、上面に無機絶
縁膜が存在しない第3実施例では導電膜上に配線導通用
のホールを開口する際に第2有機絶縁膜のみをエッチン
グすればよく、製造工程の点で他の実施例よりも有利で
あることから、第3実施例の構成を採用し、第1有機絶
縁膜上に設けた導電膜の側面のみに無機絶縁膜を形成し
た上で、第2有機絶縁膜を形成した構成としているの
で、無機膜により導電膜と第2有機絶縁膜との密着性を
改善し、かつ第1有機絶縁膜と第2有機絶縁膜の直接接
触により両者の密着性を改善し、結果として密着性に優
れた配線構造を得ることができる。
As described above, according to the present invention, among the first to third embodiments with respect to the basic structure of the present invention, in the third embodiment in which the inorganic insulating film does not exist on the upper surface, a hole for wiring conduction is formed on the conductive film. When the opening is formed, only the second organic insulating film needs to be etched, which is more advantageous than the other embodiments in the manufacturing process. Therefore, the configuration of the third embodiment is adopted and the first organic insulating film is formed on the first organic insulating film. Since the second organic insulating film is formed after forming the inorganic insulating film only on the side surface of the provided conductive film, the adhesion between the conductive film and the second organic insulating film is improved by the inorganic film, and The direct contact between the first organic insulating film and the second organic insulating film improves the adhesion between them, and as a result, a wiring structure having excellent adhesion can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の基本構造を示す断面図、第2図(a)
乃至(e)は本発明の第1実施例を製造工程順に示す断
面図、第3図(a)乃至(c)は本発明の第2実施例を
製造工程順に示す断面図、第4図(a)乃至(e)は本
発明の第3実施例を製造工程順に示す断面図、第5図及
び第6図はそれぞれ異なる従来の配線構造を示す断面図
である。 1……第1有機絶縁膜、2……導電膜、3……無機絶縁
膜、4……第2有機絶縁膜、11……ポリイミド膜、12…
…タングステン膜、13……金膜、14……シリコン窒化
膜、15……シリコン窒化膜、16……ポリイミド膜、21…
…有機シロキサンポリマー膜、22……アルミニウム膜、
23……シリコン酸化膜、24……ポリイミド膜、31……ポ
リイミド膜、32……チタンタングステン合金膜、33……
金膜、34……酸素含有シリコン窒化膜、35……ポリイミ
ド膜、41……第1有機絶縁膜、42……導電膜、43……第
2有機絶縁膜、51……第1有機絶縁膜、52……導電膜、
53……無機絶縁膜、54……第2有機絶縁膜。
FIG. 1 is a sectional view showing the basic structure of the present invention, and FIG.
3 (a) to 3 (e) are cross-sectional views showing the first embodiment of the present invention in the order of the manufacturing steps, FIGS. 3 (a) to 3 (c) are cross-sectional views showing the second embodiment of the present invention in the order of the manufacturing steps, and FIG. FIGS. 5A and 5E are cross-sectional views showing a third embodiment of the present invention in the order of manufacturing steps, and FIGS. 5 and 6 are cross-sectional views showing different conventional wiring structures. 1 ... first organic insulating film, 2 ... conductive film, 3 ... inorganic insulating film, 4 ... second organic insulating film, 11 ... polyimide film, 12 ...
... tungsten film, 13 ... gold film, 14 ... silicon nitride film, 15 ... silicon nitride film, 16 ... polyimide film, 21 ...
... organic siloxane polymer film, 22 ... aluminum film,
23 ... silicon oxide film, 24 ... polyimide film, 31 ... polyimide film, 32 ... titanium-tungsten alloy film, 33 ...
Gold film, 34 oxygen-containing silicon nitride film, 35 polyimide film, 41 first organic insulating film, 42 conductive film, 43 second organic insulating film, 51 first organic insulating film , 52 ... conductive film,
53 ... inorganic insulating film, 54 ... second organic insulating film.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】層間絶縁膜を構成する第1有機絶縁膜上に
配線を構成する導電膜を有し、この導電膜の側面のみに
接して無機絶縁膜を有し、前記導電膜と無機絶縁膜を覆
い、かつ前記第1有機絶縁膜と接した第2有機絶縁膜を
有することを特徴とする半導体装置の配線構造。
A conductive film forming a wiring on a first organic insulating film forming an interlayer insulating film; an inorganic insulating film in contact with only a side surface of the conductive film; A wiring structure for a semiconductor device, comprising: a second organic insulating film that covers a film and is in contact with the first organic insulating film.
JP1161684A 1989-06-23 1989-06-23 Wiring structure of semiconductor device Expired - Fee Related JP2782801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161684A JP2782801B2 (en) 1989-06-23 1989-06-23 Wiring structure of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161684A JP2782801B2 (en) 1989-06-23 1989-06-23 Wiring structure of semiconductor device

Publications (2)

Publication Number Publication Date
JPH0327551A JPH0327551A (en) 1991-02-05
JP2782801B2 true JP2782801B2 (en) 1998-08-06

Family

ID=15739883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161684A Expired - Fee Related JP2782801B2 (en) 1989-06-23 1989-06-23 Wiring structure of semiconductor device

Country Status (1)

Country Link
JP (1) JP2782801B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555386A (en) * 1991-08-23 1993-03-05 Nec Corp Manufacture of semiconductor device
JPH05211144A (en) * 1991-12-27 1993-08-20 Nec Corp Semiconductor device and its manufacture
JP2536377B2 (en) * 1992-11-27 1996-09-18 日本電気株式会社 Semiconductor device and manufacturing method thereof
JPH08139194A (en) * 1994-04-28 1996-05-31 Texas Instr Inc <Ti> Manufacture of electrical connection onto semiconductor device and semiconductor device with electrical connection manufactured by said method
JP6365106B2 (en) * 2014-08-18 2018-08-01 富士通株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6454250B2 (en) * 2015-09-18 2019-01-16 株式会社ジャパンディスプレイ Semiconductor device and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150235A (en) * 1984-12-24 1986-07-08 Hitachi Ltd Manufacture of multilayer interconnection structure
JPH0669068B2 (en) * 1985-08-30 1994-08-31 株式会社東芝 Manufacturing method of multilayer wiring
JPS63148659A (en) * 1986-12-12 1988-06-21 Nec Corp Semiconductor device
JPH0618239B2 (en) * 1987-06-26 1994-03-09 日本電気株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPH0327551A (en) 1991-02-05

Similar Documents

Publication Publication Date Title
JPH0817925A (en) Semiconductor device and its manufacture
JP2782801B2 (en) Wiring structure of semiconductor device
JP2001257226A (en) Semiconductor integrated circuit device
US6596633B2 (en) Method for manufacturing a semiconductor device
JPH04127454A (en) Semiconductor device
JP2000269265A (en) Semiconductor device
JPS62137853A (en) Formation of multilayer interconnection
JPH03171758A (en) Semiconductor device and manufacture thereof
JP3376745B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4047419B2 (en) Semiconductor device and manufacturing method thereof
JP2734675B2 (en) Method for manufacturing semiconductor device
JP2745550B2 (en) Method of forming multilayer wiring
JP3132194B2 (en) Method for manufacturing semiconductor device
JPH01268150A (en) Semiconductor device
JPH08293521A (en) Semiconductor device
JP3203926B2 (en) Wiring formation method
JPH05175196A (en) Wiring structure of semiconductor device
JPS62165342A (en) Semiconductor device
JPH07130732A (en) Semiconductor device and its manufacture
JP2538245Y2 (en) Semiconductor device
JPH0226375B2 (en)
JP2000232100A (en) Semiconductor device and its manufacture
JPH04264730A (en) Semiconductor device
JPH09246376A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0364921A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees