JPH05171414A - 超伝導薄膜およびその製造方法 - Google Patents

超伝導薄膜およびその製造方法

Info

Publication number
JPH05171414A
JPH05171414A JP3344520A JP34452091A JPH05171414A JP H05171414 A JPH05171414 A JP H05171414A JP 3344520 A JP3344520 A JP 3344520A JP 34452091 A JP34452091 A JP 34452091A JP H05171414 A JPH05171414 A JP H05171414A
Authority
JP
Japan
Prior art keywords
thin film
oxide
film
superconducting
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3344520A
Other languages
English (en)
Inventor
Hiroshi Ichikawa
洋 市川
Kentaro Setsune
謙太郎 瀬恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3344520A priority Critical patent/JPH05171414A/ja
Priority to DE69209145T priority patent/DE69209145T2/de
Priority to EP92109241A priority patent/EP0517148B1/en
Priority to EP94116681A priority patent/EP0643400B1/en
Priority to DE69224214T priority patent/DE69224214T2/de
Priority to EP94116712A priority patent/EP0640994B1/en
Priority to DE69219623T priority patent/DE69219623T2/de
Publication of JPH05171414A publication Critical patent/JPH05171414A/ja
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/64

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【目的】Tl系組成の層状酸化物超伝導薄膜と、Bi−
Ta系の層状酸化物絶縁体薄膜が交互に積層された超伝
導薄膜とすることにより、超伝導転移温度が高いかつ安
定に再現性よく得る。 【構成】基体47上に、主成分としてTlを含む酸化物
と、主成分としてCuおよびアルカリ土類(IIa族)を
含む酸化物とをそれぞれターゲット41と42から飛来
させ周期的に積層させて形成する酸化物薄膜と、少なく
ともBiを含む酸化物と少なくともW含む酸化物とをそ
れぞれターゲット43、44から飛来させて周期的に積
層させて形成する酸化物薄膜とを交互に積層させる。こ
れにより再現性よくTl-Ba-Ca-Cu-O薄膜とBi-W−
O薄膜との積層体を得る。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、高性能でかつ安定に得
ることができる超伝導薄膜およびその製造方法に関す
る。
【0002】
【従来の技術】現在、最も応用が急がれている材料のひ
とつに酸化物高温超伝導体がある。このペロブスカイト
系化合物は、金属化合物超伝導体よりさらに高い転移温
度が期待され、Ba−La−Cu−O系の高温超伝導体
が提案された[J.G.ベトノルツ、K.A.ミュラ
ー、ツァイトシュリフト・フュア・フィジーク(Zeitshr
ift Fur Physik B)-Condensed Matter Vol.64,189-193
(1986) ]。さらに、Tl-Ba-Ca-Cu-O系の材料が1
00K以上の転移温度を示すことも発見された[Z.Z.Sh
eng and A.M.Hermann,ネイチャー(Nature)Vol.332,55-5
8(1988) ]。この種の材料の超伝導機構の詳細は明らか
ではないが、転移温度が室温以上に高くなる可能性があ
り、高温超伝導体として従来の2元系化合物より、電子
デバイス分野での応用が期待されている。
【0003】そして、これらの酸化物超伝導体の開発と
あいまって、この材料を電子デバイスへの応用を考え、
酸化物超伝導体を作製する際に経る高熱過程に対しても
安定な絶縁体および絶縁薄膜の開発が行われている[市
川ら、日本応用物理学会誌(Japanese Journal of Appli
ed Physics)Vol.27,L381-L383(1988)]。
【0004】さらに超伝導体と絶縁体とを交互に積層す
ることにより、より高い超伝導転移温度が従来から期待
されていた[M.H.チェン、D.H.ダクラス,ジュ
ニア、フィジカル・レビュー・レターズ(Physical Revi
ew Letters)Vol.19,118-121(1967)]。
【0005】
【発明が解決しようとする課題】しかしながら、酸化物
超伝導体の材料は、良好な超伝導特性を得るためには少
なくとも600℃以上の熱処理あるいは形成時の加熱が
必要であり、そのため絶縁体の結晶性が崩れ、絶縁体お
よび絶縁薄膜と超伝導体との間で各元素の相互拡散が起
こり、超伝導体の特性劣化並びに絶縁体の特性劣化が起
こり、特に高温酸化物超伝導体と絶縁膜との周期的な積
層構造を得ることは極めて困難であり、ジョセフソンデ
バイスが代表応用例としてあげられるこの構造を利用し
た集積化デバイスを構成を不可能に近いものとしてい
た。
【0006】さらに、高温超伝導体および薄膜にとって
最適な絶縁薄膜が得られていないため、超伝導体と絶縁
体との有効な積層構造が達成されないために、超伝導材
料そのものの超伝導転移温度の上昇は望めないのが現状
であった。
【0007】本発明は、前記従来技術の問題を解決する
ため、超伝導転移温度が高くかつ安定して製造が可能
な、超伝導体と絶縁体との積層構造体及びその製造方法
を提供することを目的とする。
【0008】
【課題を解決するための手段】前記目的を達成するた
め、本発明の超伝導薄膜は、基体上に主体成分が少なく
ともタリウム(Tl)、銅(Cu)及びアルカリ土類
(IIa族)から成る層状酸化物超伝導薄膜と、主体成分
が少なくともBi及びタングステン(W)から成る層状
酸化物絶縁体薄膜が交互に積層されたという構成を備え
たものである。(ここでアルカリ土類は、IIa族元素の
うちの少なくとも一種あるいは二種以上の元素を示
す。)次に本発明の超伝導薄膜の製造方法は、基体上に
積層構造の超伝導薄膜を製造する方法であって、少なく
ともTlを含む酸化物と少なくともCuおよびアルカリ
土類(IIa族)を含む酸化物とを周期的に積層させて形
成する酸化物薄膜と、少なくともBiを含む酸化物と少
なくともW含む酸化物とを周期的に積層させて形成する
酸化物薄膜とを、交互に積層させることを特徴とする
(ここでアルカリ土類は、IIa族元素のうちの少なくと
も一種あるいは二種以上の元素を示す)。
【0009】前記した本発明方法においては、薄膜を形
成させる際の基体温度が600℃以下であることが好ま
しい。また前記した本発明方法においては、薄膜形成後
少なくとも酸素を含む雰囲気中で熱処理をすることが好
ましい。
【0010】また前記した本発明方法においては、積層
物質の蒸発を少なくとも二種以上の蒸発源で行うことが
好ましい。また前記した本発明方法においては、積層物
質の蒸発をスパッタリングで行なうことが好ましい。
【0011】
【作用】前記第1の発明によれば、Tl2 2 酸化膜層
またはこれを主体とした層により覆われた結晶構造とな
っているところのTl系超伝導薄膜とTl系超伝導体結
晶と格子定数がほぼ等しく、また熱的に安定なBi2
2 酸化膜層またはこれを主体とした層に覆われた結晶構
造を有するBi-W−O絶縁薄膜が交互に積層された構造
をとることによって、超伝導薄膜と絶縁膜との間での元
素の相互拡散のない積層が可能になり、その結果Tl系
超伝導薄膜における超伝導転移温度を安定に再現性よく
実現することができる。
【0012】さらに第2の発明においては第1の発明を
極めて安定に、しかも微細スケールでの構造を達成する
ため、少なくともTlを含む酸化物層と、少なくともC
uおよびアルカリ土類(IIa族)を含む酸化物層と、少
なくともBiを含む酸化物層と少なくともWを含む酸化
物層を、周期的に積層させて分子レベルの制御による薄
膜の作製を行うことによって、再現性よくTl系超伝導
薄膜と絶縁膜との積層を実現することができる。
【0013】
【実施例】通常、Tl-Ba-Ca-Cu-O系等の酸化物超伝
導薄膜は600 ℃以下の基体上に蒸着して得る。蒸着後、
700 〜950 ℃の熱処理を施し、超伝導特性を向上させ
る。
【0014】しかしながら、基体温度が高い時に絶縁膜
を酸化物超伝導薄膜に続いて積層したり、絶縁膜を形成
後熱処理を行った場合、超伝導膜と絶縁膜との間で、元
素の相互拡散が起こり超伝導特性が大きく劣化すること
が判明した。相互拡散を起こさないためには、超伝導
膜、絶縁膜の結晶性が優れていること、超伝導膜・絶縁
膜間での格子の整合性が優れていること、絶縁膜が700
〜950 ℃の熱処理に対して安定であることが不可欠と考
えられる。
【0015】まず、本発明者らはBi2 2 酸化物層に
挟まれた構造を持つBi-W−O誘電体が高温の熱処理に
対して、極めて安定であるり、さらにTl系超伝導体の
結晶構造が似かよっており格子定数が近く、またその結
晶構造が単純なBi-O層とW−O層の積層になっている
ことに着目し、本発明者らは、第1、第2の発明に至っ
たのである。
【0016】さらに本発明をより具体的に説明するため
以下の実施例を挙げる。 実施例1 図1に本実施例で作製した薄膜の断面図を模式的にあら
わす。すなわち、基体1上にTl-Ba-Ca-Cu-O膜2と
Bi-W−O膜3を交互に積層した。本実施例で用いた薄
膜作成装置の構造概略図を図2に示す。積層の方法とし
ては、Tl-Ba-Ca-Cu-O膜は2元ターゲットの高周波
マグネトロンスパッタ法で蒸着した。スパッタリングタ
ーゲットとして、空気中において850 ℃、5時間焼成し
た混合酸化物のTl3 Ba2 Ca2 Cu2 x ディスク
ターゲット21と、Bi2 WOy ディスクターゲット2
2を用いた。23はシャッター、24はスリット、25
は基体を示す。MgO(100)基体25に焦点を結ぶように各
ターゲットが約30°傾いて設置されている。ターゲッ
トの前方には回転するシャッター23があり、その中に
設けられたスリット24の回転をパルスモーターで制御
することにより、Tl-Ba-Ca-Cu-O薄膜とBi-W−O
薄膜を交互に基体25上に堆積できる。ArとO2 の混
合ガス(Ar:O2 =1:9、0.5Pa)をスパッタリ
ングガスとして用いた。ターゲット21、22にそれぞ
れ80W、60Wのスパッタ電力を注入してターゲット
をスパッタし、500℃に加熱した基体25上にTl-B
a-Ca-Cu-O薄膜とBi-W−O薄膜の積層堆積をおこな
った。堆積はTl-Ba-Ca-Cu-O薄膜から始めた。Tl-
Ba-Ca-Cu-O薄膜の膜厚を50nmの一定にし、Bi-
W−O薄膜の膜厚を変化させ、4周期の堆積を行なっ
た。薄膜堆積後、酸素雰囲気中で900℃、10分間の
熱処理を施した。
【0017】一周期あたりのBi-W−O薄膜の膜厚変化
に対する超伝導薄膜の抵抗の温度特性を図3に示す。図
3において31、32、33はBi-W−O薄膜層の厚み
がそれぞれ30nm、15nm、5nmのときの結果を
示す。Bi-W−O薄膜層の厚みが15nmのとき、最も
高い超伝導転移温度およびゼロ抵抗温度、すなわち特性
32が得られた。特性32の超伝導転移温度、ゼロ抵抗
温度はTl-Ba-Ca-Cu-O膜本来のそれらの値よりも約
8K高いものであった。この効果の詳細な理由について
は未だ不明であるが、Tl-Ba-Ca-Cu-O膜とBi-W−
O膜とを周期的に積層することによって、Tl-Ba-Ca-
Cu-O膜とBi-W−O膜が互いにBi2 2 層を介して
エピタキシャル成長していることにより積層界面での元
素の相互拡散の影響がなく、かつ結晶性に優れた薄いB
i-W−O膜を介して同じくBi-W−Oと結晶の整合性が
良いために結晶性に優れたTl-Ba-Ca-Cu-O膜がエピ
タキシャル成長し、積層することによりTl-Ba-Ca-C
u-O膜において超伝導機構になんらかの変化が引き起こ
されたことが考えられるが、機構はまだあきらかできな
い。
【0018】なお、Tlの蒸気圧が異常に高いことか
ら、基体25を高い温度に加熱した薄膜からTlが薄膜
から再蒸発してしまい薄膜にTlが含まれないことがわ
かった。さらに、薄膜堆積後Tl-Ba-Ca-Cu-Oの結晶
性を向上させるために熱処理を施すことからTl-Ba-C
a-Cu-O層とBi-W−O層の間で各元素の相互拡散が起
きないよう薄膜堆積時にBi-W−O薄膜がBi2 WO6
結晶になっている必要があることから、基体25の温度
と薄膜の結晶性の関係を調べた結果、基体25の温度は
300℃から600℃の間にあればよいことがわかっ
た。
【0019】種々の検討を行った結果、上記Bi-W−O
が絶縁体として優れていることもわかった。この理由と
して、この材料はBi2 2 酸化物層がWおよび酸素の
元素からなる構造体を挟み込んだ層状ペロブスカイトを
示し、このBi2 2 層は同種の結晶構造の物質の界面
に対して高温の熱処理においても非常に安定であり、T
l-Ba-Ca-Cu-O酸化物超伝導体とその結晶におけるa
軸、b軸の長さがほぼ等しいことから、格子の整合性が
きわめて優れており、この材料を薄膜化した場合、Tl-
Ba-Ca-Cu-O酸化物超伝導体上へBi-W−O、さらに
Bi-W−O上へのTl-Ba-Ca-Cu-O酸化物超伝導体の
連続エピタキシャル成長が可能であることがあげられ
る。しかし、Tl-Ba-Ca-Cu-O酸化物高温超伝導体を
電子デバイスに応用する場合、絶縁膜の厚みは数10n
m程度であることが要求されること、またこのTl-Ba-
Ca-Cu-O超伝導体の結晶構造はTl-O、Ba-Cu-O、
Ca-Cu-Oの各層部分を順次積層した形となっており、
一方、Bi-W−OはBi-OとW−Oの各層部分を順次積
層した形となっているが確認できた。
【0020】実施例2 図4は、本実施例で用いた4元マグネトロンスパッタ装
置内部の概略図であり、41はTlターゲット、42は
Ba-Ca-Cu-Oターゲット、43はBiターゲット、4
4はWターゲット、45はシャッター、46はスリッ
ト、47は基体を示す。ターゲット41、43、44は
金属のターゲット、ターゲット42は元素比率Ba:C
a:Cu=2:2:3の焼成ディスクターゲットであ
り、図4に示すように配置させた。すなわち、MgO(100)
基体47に焦点を結ぶように各ターゲットが約30°傾
いて設置されている。ターゲットの前方には回転するシ
ャッター45があり、その中に設けられたスリット46
の回転をパルスモーターで制御することにより、(Tl
→Ba-Ca-Cu-O→Tl)のサイクルと(Bi→W→Bi)
のサイクルでスパッタ蒸着が行なうことができる。積層
の様子を概念的に図5に示す。図5において51はTl
2 2 層、52はW−O層、53はBa層、54はCu
−O層、55はCa−O層である。そして、図4のター
ゲット41、42、43、44への入力電力、それぞれ
のターゲットのスパッタ時間を制御することにより、基
体47上に蒸着するTl-Ba-Ca-Cu-O膜、Bi-W−O
膜の膜厚を変えることができる。基体47を約500℃
に加熱し、アルゴン・酸素(1:1)混合雰囲気0.5
Paのガス中で各ターゲットのスパッタリングを行なっ
た。薄膜作製後は酸素雰囲気中において、900℃の熱
処理を10分間施した。
【0021】本実施例では、Tl-Ba-Ca-Cu-O膜の元
素の組成比率がTl:Ba:Ca:Cu=2: 2: 2: 3、Bi-
W- O膜の元素の組成比率がBi:W= 2: 1になるよ
う、スパッタ時間スパッタ電流を調節した。この場合、
結晶性を維持したまま薄くできる膜厚の限界は数nmで
あると思われる。絶縁膜はできるだけ薄い方が好ましい
ので、k・(Tl→Ba-Ca-Cu-O→Tl)→l・(Bi
→W→Bi)と書き表せる周期を20周期行なった。な
お、良好な結晶構造を保ったまま作製できるBi-W−O
膜の膜厚はk=2が限度であった。
【0022】そこで、k=2のとき、kを変化させて、
できあがった薄膜の抵抗率の温度変化を調べた。そのと
きの結果を図6に示す。図6において、61はl=2、
62はl=6、63はl=10のときの結果を示す。こ
の図からわかるように、l=6のとき最も超伝導転移温
度並びにゼロ抵抗温度が絶縁膜Bi-W−Oと積層しない
場合に比べ上昇することがわかった。この物理的な原因
は、本発明の第2発明により、Tl-Ba-Ca-Cu-O薄膜
とBi-W−O薄膜の両方をきわめて制御性よく積層でき
たことによるものと考えられる。
【0023】さらにスパッタリング法に換えて、Tlの
酸化物と、Ba、Ca、Cu、Bi、Wの酸化物を異な
る蒸発源から真空中で別々に蒸発させ、同様の構造を周
期的に積層させた場合、前記したスパッタリングを用い
た、積層構造作製方法と同じく制御性良く、安定した膜
質の、薄膜をうることが可能である。Tl-O、Ba-Ca-
Cu-O- O、Bi-O、W- Oを周期的に積層させる方法
としては、他にもいくつか考えられる。一般に、MBE
(モレキュラービームエピタキシャル)装置あるいは多
元のEB(エレクトロンビーム)蒸着装置で蒸発源の前
を開閉シャッターで制御したり、気相成長法で作製する
際にガスの種類を切り替えたりすることにより、周期的
積層を達成することができる。しかしこの種の非常に薄
い層の積層には従来スパッタリング蒸着は不向きとされ
ていた。この理由は、成膜中のガス圧の高さに起因する
不純物の混入およびエネルギーの高い粒子によるダメー
ジと考えられている。
【0024】しかしながら、このTl系酸化物超伝導体
と絶縁薄膜に対してスパッタリングにより異なる薄い層
の積層を行なったところ、意外にも良好な積層膜作製が
可能なことを見い出した。スパッタ中の高い酸素ガス圧
およびスパッタ放電により、膜内への酸素導入がより促
進され、超伝導特性の再現性、安定化が図られ、、Tl
系の100K以上の臨界温度を持つ相の形成、および絶
縁薄膜の形成に都合がよいためであると考えられる。
【0025】スパッタ蒸着で異なる物質を積層させる方
法としては、組成分布を設けた1ケのスパッタリングタ
ーゲットの放電位置を周期的に制御するという方法があ
るが、組成の異なる複数個のターゲットのスパッタリン
グという方法を用いると比較的簡単に達成することがで
きる。この場合、複数個のターゲットの各々のスパッタ
量を周期的に制御したり、あるいはターゲットの前にシ
ャッターを設けて周期的に開閉したりして、周期的積層
膜を作製することができる。また基板を周期的運動させ
て各々ターゲットの上を移動させる方法でも作製が可能
である。レーザースパッタあるいはイオンビームスパッ
タを用いた場合には、複数個のターゲットを周期運動さ
せてビームの照射するターゲットを周期的に変えれば、
周期的積層膜が実現される。このように複数個のターゲ
ットを用いたスパッタリングにより比較的簡単にTl系
酸化物の周期的積層が作製可能となる。前記実施例2で
示したようにTl-O、Ba-Ca-Cu-O−O、Bi-Oを別
々の蒸発源から蒸発させ、Tl-Ba-Ca-Cu-O超伝導薄
膜とBi-W−O絶縁膜を周期的に積層した時、極めて制
御性良くm(Tl-Ba-Ca-Cu-O)・n(Bi-W−O)
の周期構造を持つ薄膜を形成できることを見いだした。
ここでm,nは正の整数を示す。また、蒸発源としてT
l-Ba-Ca-Cu-O、Bi-W−Oの複合酸化物を用いて
も、簡単な方法で薄膜を作製できる。別々の蒸発源を用
いると、より結晶性が優れ、組成制御性がきわめて良
い、作製方法となる。また、超伝導転移温度、臨界電流
密度等の特性に勝っていることも併せて見いだした。さ
らに本発明者らは、上記の方法で作製したTl-Ba-Ca-
Cu-O超伝導薄膜とBi-W−O絶縁膜はともに薄膜表面
が極めて平坦であることを見いだした。これは、それぞ
れ層状構造を構成する異なる元素を別々に順次積層して
いくことにより、基体表面に対し平行な面内だけで積層
された蒸着元素が動くだけで、基体表面に対し垂直方向
への元素の移動がないことによるものと考えられる。さ
らに、この組成の絶縁薄膜は層状ペロブスカイト構造の
結晶であり、a軸の長さは、Tl-Ba-Ca-Cu-Oのそれ
とほぼ等しく、連続的にエピタキシャル成長が可能であ
ることによるものと考えられる。
【0026】さらに以外にも、良好な超伝導特性を得る
に必要な基体の温度、熱処理温度も、従来より低いこと
を見いだした。
【0027】
【発明の効果】前記したように本発明の第1の発明によ
れば、Tl2 2 酸化膜層またはこれを主体とした層に
より覆われた結晶構造となっているところのTl系超伝
導薄膜とTl系超伝導体結晶と格子定数がほぼ等しく、
また熱的に安定なBi2 2 酸化膜層またはこれを主体
とした層に覆われた結晶構造を有するBi-W−O絶縁薄
膜が交互に積層された構造をとることによって、超伝導
薄膜と絶縁膜との間での元素の相互拡散のない積層が可
能になり、その結果Tl系超伝導薄膜における超伝導転
移温度を安定に再現性よく実現することができる。
【0028】さらに第2の発明においては第1の発明を
極めて安定に、しかも微細スケールでの構造を達成する
ため、少なくともTlを含む酸化物層と、少なくともC
uおよびアルカリ土類(IIa族)を含む酸化物層と、少
なくともBiを含む酸化物層と少なくともWを含む酸化
物層を、周期的に積層させて分子レベルの制御による薄
膜の作製を行うことによって、再現性よくTl系超伝導
薄膜と絶縁膜との積層を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施例1によって得られた薄膜断面の
構造概念図である。
【図2】本発明の実施例1で用いた装置の概略図であ
る。
【図3】本発明の実施例1によって得られた超伝導薄膜
の抵抗の温度依存性である。
【図4】本発明の実施例2で用いた装置の概略図であ
る。
【図5】本発明の実施例2によって得られた薄膜の構造
概念図である。
【図6】本発明の実施例2で得られた薄膜の抵抗率の温
度特性である。
【符号の説明】
21,22,41,42,43,44 スパッタリング
ターゲット 23,25 シャッター 24,46 スリット 25,47 MgO基体 31,32,33,61,62,63 薄膜の抵抗の温
度特性
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA B 8728−4M

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 基体上に、主体成分が少なくともタリウ
    ム(Tl)、銅(Cu)及びアルカリ土類(IIa族)か
    ら成る層状酸化物超伝導薄膜と、主体成分が少なくとも
    Bi及びタングステン(W)から成る層状酸化物絶縁体
    薄膜が交互に積層された超伝導薄膜。(ここでアルカリ
    土類は、IIa族元素のうちの少なくとも一種あるいは二
    種以上の元素を示す。)
  2. 【請求項2】 基体上に積層構造の超伝導薄膜を製造す
    る方法であって、少なくともTlを含む酸化物と少なく
    ともCuおよびアルカリ土類(IIa族)を含む酸化物と
    を周期的に積層させて形成する酸化物薄膜と、少なくと
    もBiを含む酸化物と少なくともW含む酸化物とを周期
    的に積層させて形成する酸化物薄膜とを、交互に積層さ
    せることを特徴とする超伝導薄膜の製造方法。(ここで
    アルカリ土類は、IIa族元素のうちの少なくとも一種あ
    るいは二種以上の元素を示す。)
  3. 【請求項3】 薄膜を形成させる際の基体温度が600
    ℃以下である請求項2に記載の超伝導薄膜の製造方法。
  4. 【請求項4】 薄膜形成後、少なくとも酸素を含む雰囲
    気中で熱処理をする請求項3に記載の超伝導薄膜の製造
    方法。
  5. 【請求項5】 積層物質の蒸発を少なくとも二種以上の
    蒸発源で行う請求項2に記載の超伝導薄膜の製造方法。
  6. 【請求項6】 積層物質の蒸発をスパッタリングで行な
    う請求項2に記載の超伝導薄膜の製造方法。
JP3344520A 1991-06-04 1991-12-26 超伝導薄膜およびその製造方法 Pending JPH05171414A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3344520A JPH05171414A (ja) 1991-12-26 1991-12-26 超伝導薄膜およびその製造方法
DE69209145T DE69209145T2 (de) 1991-06-04 1992-06-02 Verfahren zur Herstellung einer Dünnfilmisolationsschicht mit Bi-W-Sauerstoff
EP92109241A EP0517148B1 (en) 1991-06-04 1992-06-02 Method of making a thin film insulating layer with Bi-W-Oxygen
EP94116681A EP0643400B1 (en) 1991-06-04 1992-06-02 Method for making a superconductor thin film
DE69224214T DE69224214T2 (de) 1991-06-04 1992-06-02 Herstellungsverfahren für Dünnschicht-Supraleiter
EP94116712A EP0640994B1 (en) 1991-06-04 1992-06-02 Superconductor thin film and manufacturing method
DE69219623T DE69219623T2 (de) 1991-06-04 1992-06-02 Dünnfilmsupraleiter und Herstellungsmethode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3344520A JPH05171414A (ja) 1991-12-26 1991-12-26 超伝導薄膜およびその製造方法

Publications (1)

Publication Number Publication Date
JPH05171414A true JPH05171414A (ja) 1993-07-09

Family

ID=18369915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3344520A Pending JPH05171414A (ja) 1991-06-04 1991-12-26 超伝導薄膜およびその製造方法

Country Status (1)

Country Link
JP (1) JPH05171414A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624804B2 (en) 1998-04-06 2003-09-23 Ethertouch Limited Of Brumby House Positioning a cursor on the display screen of a computer
KR100830380B1 (ko) * 2005-07-04 2008-05-20 세이코 엡슨 가부시키가이샤 진공 증착 장치 및 전기 광학 장치의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624804B2 (en) 1998-04-06 2003-09-23 Ethertouch Limited Of Brumby House Positioning a cursor on the display screen of a computer
KR100830380B1 (ko) * 2005-07-04 2008-05-20 세이코 엡슨 가부시키가이샤 진공 증착 장치 및 전기 광학 장치의 제조 방법

Similar Documents

Publication Publication Date Title
JP3037514B2 (ja) 薄膜超伝導体及びその製造方法
JPH05171414A (ja) 超伝導薄膜およびその製造方法
JP2979422B2 (ja) 絶縁体および絶縁薄膜の製造方法と、超伝導薄膜および超伝導薄膜の製造方法
JP2669052B2 (ja) 酸化物超電導薄膜およびその製造方法
JP2741277B2 (ja) 薄膜超電導体およびその製造方法
JP3478543B2 (ja) 酸化物超伝導薄膜およびその製造方法
JPH05170448A (ja) セラミックス薄膜の製造方法
EP0643400B1 (en) Method for making a superconductor thin film
JP2555477B2 (ja) 超伝導薄膜およびその製造方法
JP2733368B2 (ja) 超電導薄膜およびその製造方法
JP3025891B2 (ja) 薄膜超電導体およびその製造方法
JP2866476B2 (ja) 積層超電導体及びその製造方法
JPH0316920A (ja) 酸化物超電導薄膜およびその製造方法
JP2502744B2 (ja) 薄膜超電動体の製造方法
JPH0822740B2 (ja) 酸化物超電導薄膜およびその製造方法
JPH0822742B2 (ja) 薄膜超電導体およびその製造方法
JPH0437609A (ja) 酸化物超伝導薄膜およびその製造方法
JPH0822741B2 (ja) 超電導薄膜およびその製造方法
JPH0722662A (ja) 絶縁体とその製造方法及び超電導体薄膜とその製造方法
JPH07223818A (ja) 絶縁体とその製造方法及び超電導体薄膜とその製造方法
JPH05194095A (ja) 薄膜電気伝導体の製造方法
JPH0714817B2 (ja) 酸化物超電導薄膜およびその製造方法
JP2502743B2 (ja) 薄膜超電導体の製造方法
JPH042617A (ja) 酸化物超電導薄膜およびその製造方法
JPH06338638A (ja) 薄膜酸化物超伝導体及びその製造方法