JPH05109316A - マイクロ波用誘電体磁器の製造方法 - Google Patents

マイクロ波用誘電体磁器の製造方法

Info

Publication number
JPH05109316A
JPH05109316A JP3264770A JP26477091A JPH05109316A JP H05109316 A JPH05109316 A JP H05109316A JP 3264770 A JP3264770 A JP 3264770A JP 26477091 A JP26477091 A JP 26477091A JP H05109316 A JPH05109316 A JP H05109316A
Authority
JP
Japan
Prior art keywords
porcelain
temperature
firing
dielectric ceramic
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3264770A
Other languages
English (en)
Inventor
Seiichiro Hirahara
誠一郎 平原
Tomoji Kawaguchi
智司 川口
Nobuyoshi Fujikawa
信儀 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3264770A priority Critical patent/JPH05109316A/ja
Publication of JPH05109316A publication Critical patent/JPH05109316A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

(57)【要約】 【構成】La2 3 −CaO−TiO2 −MgO系やB
aO−Nd2 3 −TiO2 系などのマイクロ波用誘電
体磁器を構成する金属酸化物の混合物あるいは仮焼物を
成形後、1250℃〜1700℃の酸化性雰囲気中で焼
成し、その後、冷却過程で焼成温度から500℃までの
温度領域で5℃/hr〜200℃/hrで徐冷する領域
を設けたり、焼成後の磁器をその焼成最高温度から50
0℃の温度範囲の酸化性雰囲気中で熱処理し、望ましく
は、磁器中の酸素空孔濃度が7×1018個/cm3 以下
に制御する。 【効果】マイクロ波領域においてQ値を顕著に高めるこ
とができ、量産性に優れ、良好な特性を有する磁器を安
定して製造することができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、誘電体磁器、特にマイ
クロ波領域での共振器や回路基板材料として適した高い
Q値を有する誘電体磁器の製造方法に関する。
【0002】
【従来技術】近年、自動車電話、コードレステレホン、
パーナル無線機、衛星放送受信機の実用化に伴ってマイ
クロ波領域での誘電体磁器が広く使用されている。この
ようなマイクロ波用誘電体磁器は主として共振器に用い
られるが、そこに要求される特性として(1)誘電体中
では波長が1/εr1/2 に短縮されるので、小型化の要
求に対して比誘電率が大きい事、(2)高周波での誘電
損失が小さいこと、すなわち高Q値であること、(3)
共振周波数の温度に対する変化が小さいこと、即ち、比
誘電率の温度依存性が小さく且つ安定であることの3特
性が主として挙げられる。
【0003】従来、この種の誘電体磁器としては、例え
ば、BaO−TiO2 系材料、BaO−REO−TiO
2 (但し、REOは希土類元素酸化物) 系材料、MgT
iO3 −CaTiO3 系材料及び複合ペロブスカイト系
材料などの複合酸化物磁器材料が知られている。このよ
うな誘電体磁器は、通常、磁器を構成する金属酸化物を
所定の割合になるように秤量混合したものを、所望によ
り仮焼した後に成形し、その後、酸化性雰囲気中でその
組成における最適焼成温度で焼成して得られている。
【0004】また、マイクロ波用誘電体磁器に対する前
述の3つの要求特性の中で、最近では使用周波数の高周
波化、大電力化に伴い、高Q値を有することが特に要求
されている。そこで、従来より、K.Wakino et al.J.Am.
Ceram.Soc.,67,278 (1984)に示されるように、結晶粒中
の不純物や不純物相を除去したり、あるいはS.Kwashima
et al.J.Am.Ceram.Soc.,66,421 (1983)に示されるよう
に複合ペロブスカイト系材料において陽イオンを規則的
に配列化する試みがなされている。
【0005】
【発明が解決しようとする問題点】しかし乍ら、Q値を
高めるために不純物を除去する方法では、原料の高純度
化や製造工程の精密な制御が必要でありコスト高の要因
となる。また、陽イオンの規則配列化による改善は、不
規則配列の結晶構造に比べて規則配列した結晶構造がエ
ネルギ−的に安定である特殊な複合ペロブスカイト系材
料にのみ適用できるもので、その他の一般的な材料に対
しては適用できないという問題があった。
【0006】また、上記いずれの方法でも、各種の条件
を設定しても高Q値の再現性に乏しいためにその制御が
難しく、量産時等において特性の安定した磁器を製造す
ることが難しかった。
【0007】よって、本発明は、高いQ値を有するとと
もにQ値の制御を容易に行うことのできるマイクロ波用
として適した誘電体磁器の製造方法を提供するにある。
【0008】
【問題点を解決するための手段】本発明者等は、Q値を
高めるための製造方法について検討したところ、誘電体
磁器のQ値が磁器中の酸素空孔濃度により決定され、そ
の酸素空孔濃度を低減することにより高Q値が得られる
という新規知見に基づいて検討を加えた結果、誘電体磁
器を構成する複数の金属の酸化物をよりなる混合粉末や
仮焼粉末を所定の形状に成形した後、最適な焼成温度で
焼成し、その後、冷却過程で酸化性雰囲気中、焼成最高
温度よりも低く500℃以上の温度領域で所定時間保持
するか、あるいは焼成後、室温まで冷却後に焼成最高温
度よりも低く、500℃以上の温度領域で熱処理する
か、あるいは焼成後の冷却過程で最高焼成温度から50
0℃までの温度領域で5℃/hr〜200℃/hrの速
度で徐冷する領域を設けることにより、Q値を向上でき
ることを見出したものである。
【0009】以下に、本発明を詳述する。本発明は、マ
イクロ波誘電体磁器のQ値が磁器中の酸素空孔濃度によ
り決定されるという新規知見に基づくものである。即
ち、マイクロ波領域での誘電特性は主にイオン分極によ
り発現する。3次元結晶格子のイオン分極による複素比
誘電率は2原子1次元の格子振動モデルを用いて簡略し
て考えることができ、その誘電率ε'(ω) は数1で与え
られる。
【0010】
【数1】
【0011】なお、式中、ωT は格子振動の横波の光学
モ−ドの角周波数、γは減衰定数、ε(無限大)は電子
分極による比誘電率、ε(0)はマイクロ波より低い周
波数における比誘電率である。
【0012】さらにマイクロ波領域においてはωT >>
ωであるので数2および数3のように近似される。
【0013】
【数2】
【0014】
【数3】
【0015】したがってQ値を高めるためには格子振動
を減衰させるγを小さくすればよいことになる。
【0016】ここで、γを大きくする要因について解析
を行ったところ、結晶格子中の酸素空孔が、格子振動を
減衰させるγを大きくすることがわかった。即ち、酸素
空孔濃度を小さくすることにより、γも小さくなり、そ
れに伴い磁器のQ値も大きくすることができると考えら
れる。
【0017】この酸素空孔濃度は、熱重量法によって求
められるもので、例えば、温度T1 (大気中)で焼成さ
れた磁器を焼成温度よりも低い温度T2 (大気中)で熱
処理して、低い熱処理温度での熱平衡に到達するように
酸素を供給し、熱処理前後の磁器の単位体積当たりの重
量変化から酸素空孔濃度の変化量(△〔Vo¨〕)を求
める。次に、この酸素空孔生成反応の平衡定数から熱処
理前後での酸素空孔濃度の比〔Vo¨〕1 /〔Vo¨〕
2 を求める。そしてこの比〔Vo¨〕1 /〔Vo¨〕2
と前述の△〔Vo¨〕とから、それぞれの温度における
酸素空孔濃度〔Vo¨〕1 、〔Vo¨〕2 を求めること
ができる。具体的には次の数2および数3から、〔Vo
¨〕1 、〔Vo¨〕2 を求めることができる。
【0018】
【数4】
【0019】
【数5】
【0020】ここで、kはボルツマン定数、△HVoは酸
素空孔の生成エンタルピ−であり、格子欠陥を実験的に
解くことにより求めることができる。さらに熱処理にお
いて熱平衡状態に未到達の状態の酸素空孔濃度はそれぞ
れの状態での△〔Vo¨〕の測定と前述の〔Vo¨〕1
とから求めることができる。
【0021】本発明のマイクロ波用誘電体磁器の製造方
法は、上記見解により酸素空孔濃度を効率的に低減する
ための方法である。まず、第1の方法としては、原料粉
末として誘電体磁器を構成する金属の酸化物、あるいは
焼成や熱処理により酸化物に変換し得る硝酸塩、炭酸塩
等の粉末を所定の割合になるように混合する。この混合
粉末を所望により仮焼処理する。この仮焼処理は、大気
等の酸化性雰囲気で1000℃〜1300℃℃で行わ
れ、その後粉砕し1.5μm以下の粒子に造粒する。
【0022】その後、混合粉末あるいは仮焼粉末を所望
の形状に成形する。成形は、周知の成形方法、例えば、
プレス成形、押し出し成形、ドクターブレード成形、等
の方法で成形する。
【0023】次に、上記の方法により得られた成形体を
その組成物の最適焼成温度にて焼成する。本発明によれ
ば、その組成により焼成温度が異なるが、その組成物が
長欠するに最適な焼成温度に設定され、およそ1250
℃〜1700℃で1時間〜4時間程度焼成する。なお、
この時の雰囲気は大気等の酸化性雰囲気であることが必
要であるが、場合によっては、酸素分圧をさらに高めた
雰囲気で行うこともできる。
【0024】通常、上記の条件で焼成した後は、室温ま
で放冷されるが、このような一般的な方法では、磁器中
には酸素空孔濃度が大きく、磁器のQ値が小さい。
【0025】そこで、本発明の製造方法によれば、焼成
後の磁器に対して、酸化性雰囲気中でその焼成最高温度
より低く、500℃以下の温度範囲、特にその焼成最高
温度より低く、800℃以上の温度で熱処理する。な
お、この熱処理は、焼成後の冷却過程で焼成工程の一部
として行うか、または焼成後、一旦室温で冷却した後に
焼成工程とは異なる工程としてこの熱処理を行っても同
様な結果が得られる。なお、この熱処理温度を上記の範
囲に設定したのは、熱処理温度が焼成最高温度より高い
と熱平衡状態の酸素空孔濃度が大きくなり、500℃よ
り低いと磁器中での酸素の拡散速度が遅く、現実的な時
間では磁器中に酸素が取り込まれないからである。
【0026】また、熱処理時間は、熱処理温度により変
動するが、望ましくは磁器中の酸素空孔濃度がその温度
における熱平衡状態に達するに充分な時間であることが
よく、およそ2〜100時間が適当である。さらに、処
理時の雰囲気は酸化性雰囲気であることが必要であり、
大気中、あるいは酸素分圧をそれより高めた雰囲気で処
理することができる。
【0027】また、本発明の他の製造方法によれば、焼
成後の冷却過程において、焼成最高温度より500℃ま
での降温過程で200℃/hr以下、特に50℃/hr
以下の速度で冷却する徐冷工程を含む。この徐冷工程
は、焼成温度から500℃までのどの温度領域で行うこ
とができ、この徐冷工程を500℃以下で実施してもQ
値の向上効果はない。冷却過程の雰囲気は焼成時と同様
に大気中等の酸化性雰囲気であればよい。なお、この時
の冷却速度を上記の範囲に設定したのは、上記範囲の徐
冷により磁器中に十分酸素が拡散し、従って酸素空孔濃
度が小さくなり、Q値が向上するからであり、冷却速度
が200℃/hrよりも早い冷却速度では酸素空孔濃度
が大きく、Q値の向上が望めないからである。なお、徐
冷速度は、実用的な点から5℃/hr以上であることが
望ましい。
【0028】このようにして得られる誘電体磁器は、本
発明者等による酸素空孔濃度とQ値との関係に関する検
討の結果、磁器中の酸素空孔濃度が7×1018個/cm
3 以下、特に4×1018個/cm3 以下に制御すれば、
安定した高Q値を有する誘電体磁器が得られることを見
出した。よって、上記焼成後の冷却速度あるいは熱処理
条件を酸素空孔濃度が上記範囲に設定されるように制御
すればよい。
【0029】本発明の上記製造方法によるQ値の改善効
果は、金属複合酸化物として知られるあらゆる誘電体組
成物に対して適用できるものであるが、マイクロ波用誘
電体磁器として高誘電率等の他の特性を満足するために
は、例えば、金属複合酸化物の金属成分中にTiを含む
ものが望ましい。さらに例えば、La−Ti−Mg−C
a−O系の誘電体磁器でLa:Ti:Mg:Caが原子
比で40〜60:15〜45:15〜45:0〜35よ
りなる組成物や、またはBa−Ti−RE−O系を主成
分とし、Ba:Ti:REが原子比で10〜20:60
〜80:10〜20の比率で、さらにBiやPb等を酸
化物換算で5〜30重量%程度添加したものが好適に使
用される。
【0030】なお、これらの組成物での焼成条件は、L
a−Ti−Mg−Ca−O系では1500℃〜1700
℃℃、Ba−RE−Ti−O系では1250℃〜140
0℃℃が好適である。
【0031】また、本発明はマイクロ波用の電子部品に
対して有用なものであるが、具体的には0.1〜10G
Hzの周波数帯域に対して特に有用であり、マイクロ波
帯域に適用される共振器や基板材料として用いられるも
のである。
【0032】
【作用】本発明の製造方法によれば、焼成後の磁器に対
して、上記特定の速度で徐冷するかあるいは特定の条件
で熱処理することにより、処理時に雰囲気中の酸素が磁
器中に拡散し、それにより磁器中の酸素空孔濃度が低減
される。それにより、減衰定数γが小さくなり、結果と
して磁器のQ値を大きく向上させることができる。ま
た、この方法によれば、磁器の誘電率に対しては何ら影
響を及ぼすことがなく、Q値のみを向上することができ
る。
【0033】
【実施例】
実施例1 出発原料として純度99.5%のLa2 3 粉末、Ca
CO3 粉末、TiO2 粉末、MgCO3 粉末、BaCO
3 粉末、Nd2 3 粉末、Bi2 3 粉末を用いてそれ
らを表1の組成になるように秤量し、純水を加え20時
間湿式混合を行なった。この混合物を乾燥後、1200
℃で2時間仮焼し、さらに約1重量%のバインダーを加
えてから整粒し、得られた粉末を約1000kg/cm
2 の圧力で成形し、1250℃〜1700℃で2時間大
気中において焼成した。この焼成物の円筒部を平面研磨
し、アセトン中で超音波洗浄し、150℃で1時間乾燥
した。その後、この焼成物を大気中で表1の保持温度、
保持時間を変化させて熱処理を行い、熱処理前後の重量
変化を測定した。一方、熱平衡状態に達したときの磁器
の重量と、この熱処理前の重量との差から酸素空孔濃度
の変化量Δ〔Vo¨〕を求め、前述した数式により熱処
理前の磁器の酸素空孔濃度〔Vo¨〕1 を求めた。そし
て、先の処理後の重量変化に基づき、各熱処理後の磁器
の酸素空孔濃度を算出した。また、得られた磁器に対し
てLa2 3 −CaO:TiO2 −MgO系に対しては
周波数4GHz、BaO−Nd2 3 −TiO2 −Bi
2 3 系では2GHzにおける比誘電率及びQ値を円柱
共振器法にて測定した。結果は、表1に示した。
【0034】
【表1】
【0035】表1によれば、熱処理を実施しなかった試
料No.1では、全く良好な特性を得ることができなかっ
たが、本発明によれば、熱処理を行うことにより、Q値
の改善を行うことができた。しかしながら、熱処理温度
が500℃より低い試料No.2では、酸素空孔濃度提言
の効果が低く、従って十分にQ値の改善ができず、処理
温度が1700℃で焼成温度よりも高い試料No.6では
酸素空孔濃度が大きくなり、Q値の低下が認められた。
【0036】実施例2 出発原料として実施例1と同様な原料を用いて、これら
を表2の組成になるように秤量混合し、純水を加え20
時間湿式混合を行なった。この混合物を乾燥後、120
0℃で2時間仮焼し、さらに約1重量%のバインダーを
加えてから整粒し、得られた粉末を約1000kg/c
2 の圧力で成形し、1250℃〜1700℃℃で大気
中で2時間焼成した。なお、試料No.23については、
焼成時の酸素分圧1atmの加圧酸素雰囲気中で設定し
て行った。その後、焼成温度からの冷却過程で磁器を表
2に示す温度で所定時間一時保持して熱処理を行った。
【0037】得られた磁器の円筒部を平面研磨し、実施
例1と同様にして比誘電率とQ値を測定した。また、酸
素空孔濃度を求めるために、磁器を先に設定した焼成温
度まで昇温し、400℃/hrで冷却する温度プロファ
イルで熱処理を施した後、磁器の重量を測定した。この
処理前後の重量変化と実施例1で求めた〔Vo¨〕1
から酸素空孔濃度を算出した。結果を表2に示した。
【0038】
【表2】
【0039】表2によれば、熱処理を全く行わない試料
No.1ではQ値が小さく、また酸素空孔濃度が大きいも
のであったが、本発明に基づき熱処理をおこなったもの
は、いずれも試料No.1と比較しても非常に高いQ値を
示し、酸素空孔濃度も低減されていた。また、熱処理時
間を長くするに伴い、Q値が大きくなる傾向にあった。
なお、熱処理温度が本発明の範囲を逸脱する試料No.1
4および19は、いずれも特性の劣化が見られた。
【0040】実施例3 出発原料として純度99.5%以上のLa2 3 粉末、
CaCO3 粉末、TiO2 粉末、MgCO3 粉末、Ba
CO3 粉末、Nd2 3 粉末、Bi2 3 粉末の各粉末
を用いて、これらを表3の組成になるように秤量混合
し、純水を加え20時間湿式混合を行なった。この混合
物を乾燥後、1200℃で2時間仮焼し、さらに約1重
量%のバインダーを加えてから整粒し、得られた粉末を
約1000kg/cm2 の圧力で成形し、1200℃〜
1700℃で大気中で2時間焼成した。なお、表中、試
料No.32については酸素分圧1atmで実施した。そ
の後、焼成温度から500℃まで(試料No.33は45
0℃〜200℃)を表3の冷却速度で冷却し、磁器を得
た。
【0041】得られた磁器の円筒部を平面研磨し、アセ
トン中で超音波洗浄し、150℃で1時間乾燥する。そ
の後磁器の重量をマイクロ天秤にて測定し、実施例1と
同様にして比誘電率及びQ値を測定した。その後、実施
例2と同様な方法により酸素空孔濃度を求めた。これら
の酸素空孔濃度とQ値及び比誘電率の測定結果を表に示
す。
【0042】
【表3】
【0043】表3より明らかなように、冷却速度が20
0℃/hrを越える速度で冷却した試料No.6の磁器は
磁器の酸素空孔濃度が大きく、Q値が低いものであっ
た。これに対して、冷却速度を本発明に基づき適性な条
件に設定した試料はいずれも優れたQ値を示し、特に酸
素空孔濃度が4×1018個/cm3 以下の試料では20
00以上のQ値が得られた。
【0044】
【発明の効果】以上、詳述した通り、本発明の製造方法
によれば、他の特性に影響を及ぼすことなく、マイクロ
波領域におけるQ値を高めることができ、しかも安易な
簡便な方法であることから良好な特性の誘電体磁器を安
定して製造することができる。
【0045】これにより高周波化、大電力化に対して充
分に対応可能な共振器材料あるいは基板材料を提供でき
る。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】複数種の金属酸化物よりなる混合物あるい
    はその仮焼物を所定の形状に成形し、該成形体を酸化性
    雰囲気中、その組成物の最適焼成温度で焼成した後、該
    焼結体を酸化性雰囲気中で焼成最高温度よりも低く50
    0℃以上の温度領域で熱処理することを特徴とするマイ
    クロ波用誘電体磁器の製造方法。
  2. 【請求項2】前記熱処理が焼成後、室温まで冷却した後
    に行われる請求項1記載のマイクロ波用誘電体磁器の製
    造方法。
  3. 【請求項3】前記熱処理が焼成後の冷却過程で行われる
    請求項1記載のマイクロ波用誘電体磁器の製造方法。
  4. 【請求項4】前記誘電体磁器の酸素空孔濃度が7×10
    18個/cm3 以下である請求項1乃至請求項3記載のマ
    イクロ波用誘電体磁器の製造方法。
  5. 【請求項5】複数種の金属酸化物よりなる混合物あるい
    はその仮焼物を所定の形状に成形し、該成形体を酸化性
    雰囲気中、その組成物の最適焼成温度で焼成した後、該
    焼成温度から500℃までの降温過程で200℃/hr
    以下の速度で冷却する徐冷工程を具備することを特徴と
    するマイクロ波用誘電体磁器の製造方法。
  6. 【請求項6】前記誘電体磁器の酸素空孔濃度が7×10
    18個/cm3 以下である請求項5記載のマイクロ波用誘
    電体磁器の製造方法。
JP3264770A 1991-10-14 1991-10-14 マイクロ波用誘電体磁器の製造方法 Pending JPH05109316A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3264770A JPH05109316A (ja) 1991-10-14 1991-10-14 マイクロ波用誘電体磁器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3264770A JPH05109316A (ja) 1991-10-14 1991-10-14 マイクロ波用誘電体磁器の製造方法

Publications (1)

Publication Number Publication Date
JPH05109316A true JPH05109316A (ja) 1993-04-30

Family

ID=17407949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3264770A Pending JPH05109316A (ja) 1991-10-14 1991-10-14 マイクロ波用誘電体磁器の製造方法

Country Status (1)

Country Link
JP (1) JPH05109316A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908897A (zh) * 2020-06-28 2020-11-10 杭州电子科技大学 MgO基微波陶瓷介质材料及其制备方法
CN113636839A (zh) * 2021-08-13 2021-11-12 北京元六鸿远电子科技股份有限公司 一种高绝缘电阻率高介微波陶瓷材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908897A (zh) * 2020-06-28 2020-11-10 杭州电子科技大学 MgO基微波陶瓷介质材料及其制备方法
CN111908897B (zh) * 2020-06-28 2022-09-13 杭州电子科技大学 MgO基微波陶瓷介质材料及其制备方法
CN113636839A (zh) * 2021-08-13 2021-11-12 北京元六鸿远电子科技股份有限公司 一种高绝缘电阻率高介微波陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
JP3152700B2 (ja) マイクロ波用誘電体磁器の製法
KR20000071242A (ko) 유전체자기(誘電體磁器) 조성물, 유전체자기의 제조방법및 유전체 공진기(共振器)
US2305327A (en) Ceramic material made of magnesium titanate and method of preparing the same
JPH05345662A (ja) フォルステライト磁器の作製方法
Tseng The effect CuO additive on the microwave dielectric properties of Mg (Zr0. 05Ti0. 95) O3 ceramics
JPH0542762B2 (ja)
JPH05109316A (ja) マイクロ波用誘電体磁器の製造方法
JPH0255884B2 (ja)
JPH05109317A (ja) マイクロ波用誘電体磁器の製造方法
Zheng et al. Composite dielectric ceramics based on BaO–Ln2O3–TiO2 (Ln= Nd, La)
JP3479324B2 (ja) マイクロ波誘電体磁器組成物及びその製造方法
JP3493316B2 (ja) 高周波用誘電体磁器組成物および誘電体共振器
JPH0625025B2 (ja) 誘電体磁器の製造方法
JP2004168600A (ja) 誘電体磁器組成物及びその製造方法並びに電子部品
JP3330024B2 (ja) 高周波用誘電体磁器組成物
JP3359427B2 (ja) 高周波用誘電体磁器組成物
JPH04303513A (ja) 誘電体磁器用仮焼物の製造方法
JP3347613B2 (ja) 誘電体磁器組成物
JP4006655B2 (ja) マイクロ波用誘電体磁器組成物
JP2835253B2 (ja) 高周波用誘電体磁器組成物および誘電体材料
JPH0877828A (ja) 誘電体磁器組成物及びその製造方法
JPH0731936B2 (ja) 高周波用誘電体共振器の製造方法
JPH05262562A (ja) フォルステライト磁器の作製方法
JPH044509A (ja) 誘電体磁器
JPH0757708B2 (ja) 高周波用誘電体磁器組成物