JPH04188717A - ダイヤモンド基板およびその製造方法 - Google Patents

ダイヤモンド基板およびその製造方法

Info

Publication number
JPH04188717A
JPH04188717A JP31576390A JP31576390A JPH04188717A JP H04188717 A JPH04188717 A JP H04188717A JP 31576390 A JP31576390 A JP 31576390A JP 31576390 A JP31576390 A JP 31576390A JP H04188717 A JPH04188717 A JP H04188717A
Authority
JP
Japan
Prior art keywords
diamond
layer
substrate
smooth
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31576390A
Other languages
English (en)
Inventor
Tadashi Tomikawa
唯司 富川
Nobuhiko Fujita
藤田 順彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP31576390A priority Critical patent/JPH04188717A/ja
Publication of JPH04188717A publication Critical patent/JPH04188717A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヒートシンクや半導体素子等の製造に有用な
表面平滑なダイヤモンド基板およびその製造方法に関す
る。特に、大量に安価なヒートシンクや半導体素子を生
産する上で有利な、面積が大きく表面平滑なダイヤモン
ド基板を提供できるものである。
〔従来の技術〕
ダイヤモンドは世の中で最も硬く、熱伝導度の高い物質
であり、工具、ヒートシンク等の機構部品への応用が進
んでいる。しかし、ダイヤモンド材料を安価に入手する
ことは容易ではない。現状では、このダイヤモンド基板
の工業的生産は超高圧合成により1cm角程度のものが
得られるに留まっているにすぎない。面積が小さいとい
うだけでな(、その価格自体も高価であり、大量かつ安
価に部品を生産する上での重大な問題であった。
一方最近になって、炭素を含むガスと水素との混合ガス
を、マイクロ波や熱を用いて励起して気相反応させるこ
とにより基板上にダイヤモンド膜を形成する気相合成法
(CVD法)が確立された。この場合の基板として、ダ
イヤモンド単結晶、金属、シリコン等が試みられている
ダイヤモンド単結晶を基板とした場合、ダイヤモンド基
板上にエピタキシャル成長した表面の平滑な単結晶ダイ
ヤモンド膜の形成が確認されている〔文献; Fuji
a+ori et al、、Vacuum vol。
36.99〜+02.(+986))  。
しかし、このCVD法を用いても、シリコンなどの異種
基板上には表面の凹凸の激しい多結晶ダイヤモンド膜し
か得られていない。ヒートシンク等の機構部品への応用
の際にはダイヤモンド膜表面のラッピング等の研磨工程
が必要であり、大量かつ安価に部品を生産する上で問題
であった。また、シリコン以外の多様な基板の上にもダ
イヤモンド膜を成長させる試みが多くなされているが、
すべて多結晶ダイヤモンド膜であり、未だ実用に供し得
るような異種基板上での「表面の平滑なダイヤモンド(
以下、平滑ダイヤモンドと略す)」膜成長は報告されて
いない。
また、ダイヤモンドは半導体としても好ましい性質を有
し、耐熱、耐環境性に優れた半導体素子、あるいは高出
力パワートランジスタなどの用途への応用が検討されて
いる。
従来から半導体材料としてはシリコン、ガリウムーヒ素
等が主に利用されてきたが、半導体素子を形成するため
の半導体の材料としては、良好な単結晶もしくは単結晶
層であることが重要である。特に、半導体素子の特性向
上のためには、結晶欠陥の少ない単結晶が不可欠である
しかしながら、単結晶ダイヤモンド膜は前記の高圧合成
法で作成した高価なダイヤモンド単結晶基板の上にしか
形成できない。このため安価かつ大面積の単結晶ダイヤ
モンド基板を提供するに至っていないのが現状である。
〔発明が解決しようとする課題〕
上述のように、ヒートシンク用途や半導体素子形成等に
必要な平滑ダイヤセン1一基板もしくは単結晶ダイヤモ
ンド基板は、従来は高圧下で合成されたもの、または高
圧合成された基板上にCVD法により形成されたものし
かなかった。
そして、高圧で合成された単結晶ダイヤモンドはそれ自
体が高価である点で、これを材料としてダイヤモンド半
導体もしくはダイヤモンドヒートンンクを大量かつ安価
に生産する上で問題であった。
このような問題点を解決し、ヒートシンク用途や半導体
素子形成等に必要な平滑ダイヤモンド基板もしくは単結
晶ダイヤモンド基板およびこれらのダイヤモンド基板を
大量且つ安価に製造できる方法を提供することが本発明
の目的である。
〔課題を解決するための手段〕
本発明のダイヤモンド基板は、シリコン基板上立方晶望
化ホウ素層と、さらに上層としてダイヤモンド層とを有
してなることを特徴とする。
また、本発明のダイヤモンド基板の製造方法は、シリコ
ン基板上に立方晶窒化ホウ素層を形成する工程と、該立
方晶窒化ホウ素層上にダイヤモンド層を成長させる工程
とを有することを特徴とする。
本発明において使用するシリコン基板は、引き上げ法等
の通常の方法により製造されたインゴットから切り出し
た基板(ウェハー)でよい。
また、該シリコン基板上に中間層として形成される立方
晶窒化ホウ素層および該立方晶窒化ホウ素層を中間層と
してその上に形成されるダイヤモンド層は、それぞれ公
知技術により形成することができる。このような公知技
術として、例えばマイクロ波プラズマCVD法、熱フイ
ラメントCVD法、ECRプラズマCVD法、DCジェ
ット法等の化学的気相蒸着法(CVD)法、もしくは物
理的気相蒸着(PVD)法例えばイオンビーム蒸着法、
スパッタ法、レーザーアクレーション法等、を挙げるこ
とができる。
〔作用〕
ダイヤモンドの格子定数は3.5667人、シリコンの
格子定数は5.4301人と、格子定数が大きく異なる
ので、シリコン基板はその上に直接ダイヤモンドをエビ
タキンヤル成長させることは困難である。
そこで本発明者らは、シリコン基板上に中間層として平
滑な立方晶窒化ホウ素層を介在させることにより、その
上に平滑ダイヤモンドを成長させることに成功し、本発
明に到ったものである。
なお、本発明にいう平滑なダイヤモンド層とは、その表
面粗さが表面粗さ計による測定でRmaxが1000人
程度以下のものであり、このように平滑なダイヤモンド
層は、単結晶、双晶を含む単結晶もしくは多結晶からな
っていると考えられる。この中では単結晶、特に双晶が
少ない単結晶が特に好ましい。
立方晶窒化ホウ素の格子定数は3.61.5人であり、
ダイヤモンドの格子定数に極めて近い。
立方晶窒化ホウ素上ではダイヤモンドがエピタキシャル
成長するため、平滑なダイヤモンドが得られると考えら
れる。
現在のところ、ダイヤモンドの格子定数に極めて近く、
シリコンのそれに比べて大きく異なる格子定数をもつ立
方晶窒化ホウ素が、なぜシリコン基板上で平滑膜となる
のかは明らかではないが、次のように推論される。
立方晶窒化ホウ素の格子定数の3倍の値と、シリコンの
格子定数の2倍の値は、それぞれ10、845人と10
.8602人で、ミスフィツト率は0.14である。ダ
イヤモンドの格子定数の3倍の値が10.7001人で
、シリコンの格子定数の2倍の値とのミスフィツト率は
1.47%であるのに比べ、1桁以上小さい。この小さ
いミスフィツト率のため、シリコンの単位格子2個に対
し立方晶窒化ホウ素の3個の単位格子が対応して成長し
、平滑な立方晶窒化ホウ素層が得られると考えられる。
ここで、立方晶窒化ホウ素中間層としてはノンドープ層
でよいが、SiやSをドーピングしたn型半導体もしく
はBeなどをドーピングしたp型半導体として、半導体
デバイスの能動層として用いてもよい。また、下地基板
の81をエツチング等により除去し、立方晶窒化ホウ素
とその上に成長させたダイヤモンドからなる自立膜とす
ることもできる。
立方晶窒化ホウ素中間層の膜厚は、薄すぎると中間層と
しての効果がなく、中間層上に平滑ダイヤモンド層が得
られないため、少なくとも20Å以上が好ましい。才た
、立方晶窒化ホウ素中間層にドーピングを行い半導体デ
、バイスの能動層として用いる場合には、下地基板界面
から発生する転位の影響を避けるため、少なくとも10
00Å以上であることが好ましい。
一方、立方晶窒化ホウ素中間層が厚すぎると、熱膨張係
数差による基板の反りが生じるため、10μm以下が好
ましいが、51基板をエツチング等により除去する場合
には10μm以上でも差し支えない。
立方晶窒化ホウ素層上に成長させるダイヤモンド層の膜
厚は、100μm以上の厚膜でもよく、用途により適宜
選択できる。
〔実施例〕
(実施例1) 基板は直径2インチ、面方位(100)の単結晶シリコ
ンとし、バッフアート・フッ酸により表面酸化膜を除去
したものを用いた。シリコン基板温度を650aとし、
圧力を2X10−’TorrのN2雰囲気中で、六方晶
窒化ホウJi’ (h−BN)をターゲットとしたマグ
ネトロン・スパッタ法により、膜厚2000人の立方晶
窒化ホウ素中間層を形成した。
この立方晶窒化ホウ素を反射電子線回折により評価した
ところ、膜中に双晶が含まれているもののストリーク状
の回折パターンが認められ、双晶を含んだ(100)面
であることがわかった。また、表面粗さ計により測定し
た表面粗さは最大で100人であった。
次に、この立方晶窒化ホウ素中間層上に、マイクロ波プ
ラズマCVD法により、基板温度850℃および圧力8
Q Torrで、0,4%CH。
を含むH2を分解して、膜厚400人のダイヤモンド層
を形成した。得られたダイヤモンド層についても、反射
電子線回折を行った結果、立方晶窒化ホウ素中間層と同
様にストリーク状の回折パターンとなっており、双晶を
含んだ(100)面であることがわかった。また、表面
粗さは最大で120人であった。
(実施例2) 実施例1と同様にシリコン基板上に立方晶窒化ホウ素中
間層を形成した。次に、この立方晶窒化ホウ素中間層上
に、基板温度900℃および圧力3 Q Torrで、
タングステンフィラメントを2000℃に加熱して、0
.4%のCH,を含むH2を励起して分解するCVD法
により、膜厚1000人のダイヤモンド層を形成した。
反射電子線回折の結果ストリーク状の回折パターンとな
っており、このダイヤモンド層は双晶を含んだ(100
)面となっていることがわかった。
また表面粗さは最大で100人であった。
続いて、0.4%CH,と0.0001%B2Hsを含
むH2を同様に励起し分解して、上記ダイヤモンド層の
上にBドーピングしたダイヤモンド層を形成した。膜厚
は2000人とした。
得られた最上層のBドープダイキモ21層の結晶状態を
反射電子線回折により評価した結果、ストリーク状の回
折パターンが認められ、双晶を含んだ(100)面であ
ることがわかった。
また、表面粗さは最大で110人であった。
さらに、最上層のBドープダイキモ21層は、比抵抗が
8 X 10−’Ω・CEで、ホール効果の測定により
p型半導体であって、キャリア密度2X l O”cm
 lおよびホール移動度210cm’/v −seeで
あった。
(比較例) 実施例1と同じ単結晶シリコン基板上に、立方晶窒化ホ
ウ素中間層を形成することなく、実施例1と同様のマイ
クロ波プラズマCVD法によりダイヤモンド層を形成し
たが、粒状の結晶がバラバラに堆積するだけで、膜状の
成長は認められなかった。このときの表面粗さは最大で
8μmであった。
また、同じ単結晶基板に核発生密度を高めるためダイヤ
モンド砥粒(# 8000)で傷をつけてから、同様に
ダイヤモンド層を形成したところ、三角形の結晶面が凹
凸に存在する膜が得られた。この膜を反射電子線回折に
より評価したところリング状のパターンとなっており、
多結晶膜であることが確認された。このときの表面粗さ
は最大で11μmであった。
〔発明の効果〕
本発明によれば、ヒートシンク用途や半導体素子形成等
に必要な、面積の大きな平滑ダイヤモンド基板もしくは
単結晶ダイヤモンド基板を大量に安価に製造することが
できる。

Claims (2)

    【特許請求の範囲】
  1. (1)シリコン基板上に立方晶窒化ホウ素層と、さらに
    上層としてダイヤモンド層とを有してなるダイヤモンド
    基板。
  2. (2)シリコン基板上に立方晶窒化ホウ素層を形成する
    工程と、該立方晶窒化ホウ素層上にダイヤモンド層を成
    長させる工程とを有することを特徴とするダイヤモンド
    基板の製造方法。
JP31576390A 1990-11-22 1990-11-22 ダイヤモンド基板およびその製造方法 Pending JPH04188717A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31576390A JPH04188717A (ja) 1990-11-22 1990-11-22 ダイヤモンド基板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31576390A JPH04188717A (ja) 1990-11-22 1990-11-22 ダイヤモンド基板およびその製造方法

Publications (1)

Publication Number Publication Date
JPH04188717A true JPH04188717A (ja) 1992-07-07

Family

ID=18069252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31576390A Pending JPH04188717A (ja) 1990-11-22 1990-11-22 ダイヤモンド基板およびその製造方法

Country Status (1)

Country Link
JP (1) JPH04188717A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597445A2 (en) * 1992-11-10 1994-05-18 Norton Company Method of making synthetic diamond film
EP0614998A1 (en) * 1993-03-10 1994-09-14 Canon Kabushiki Kaisha Diamond covered member and process for producing the same
JP2011176336A (ja) * 2005-06-20 2011-09-08 Nippon Telegr & Teleph Corp <Ntt> ダイヤモンド半導体素子およびその製造方法
JP2015044700A (ja) * 2013-08-27 2015-03-12 日本電信電話株式会社 ダイヤモンド成長用基板及びその作製方法、並びにこの基板を用いた大面積単結晶ダイヤモンド薄膜及び自立膜の作製方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597445A2 (en) * 1992-11-10 1994-05-18 Norton Company Method of making synthetic diamond film
EP0597445A3 (en) * 1992-11-10 1995-11-22 Norton Co Process for the preparation of a synthetic diamond film.
EP0614998A1 (en) * 1993-03-10 1994-09-14 Canon Kabushiki Kaisha Diamond covered member and process for producing the same
US5483084A (en) * 1993-03-10 1996-01-09 Canon Kabushiki Kaisha Diamond covered member and process for producing the same
JP2011176336A (ja) * 2005-06-20 2011-09-08 Nippon Telegr & Teleph Corp <Ntt> ダイヤモンド半導体素子およびその製造方法
JP2015044700A (ja) * 2013-08-27 2015-03-12 日本電信電話株式会社 ダイヤモンド成長用基板及びその作製方法、並びにこの基板を用いた大面積単結晶ダイヤモンド薄膜及び自立膜の作製方法

Similar Documents

Publication Publication Date Title
JP2654232B2 (ja) 高圧相物質単結晶の製造方法
Iriarte et al. Synthesis of c-axis oriented AlN thin films on different substrates: A review
US5964942A (en) Wafer and method of producing same
JPH06263595A (ja) ダイヤモンド被覆部材及びその製造方法
JP3350992B2 (ja) ダイヤモンドの合成方法
JP3549228B2 (ja) 高配向性ダイヤモンド放熱基板
JPH08310900A (ja) 窒化物薄膜単結晶及びその製造方法
JPH0658891B2 (ja) 薄膜単結晶ダイヤモンド基板
JPH06107494A (ja) ダイヤモンドの気相成長法
JPH04188717A (ja) ダイヤモンド基板およびその製造方法
JP2916580B2 (ja) エピタキシャル被覆半導体ウエハー及びその製造方法
JP3252926B2 (ja) ダイヤモンド被覆体およびその製造方法
JPH0666273B2 (ja) 薄膜単結晶ダイヤモンド基板
JPH05102048A (ja) ダイヤモンド基板及びその製造方法
CN114141910B (zh) 一种蓝宝石衬底生长纯相Ga2O3薄膜的方法及日盲紫外探测器
JPH05102047A (ja) ダイヤモンド基板及びその製造方法
CN1096548A (zh) 金刚石单晶薄膜的制造方法
JP2023104318A (ja) ダイヤモンド接合体、電子デバイス及びダイヤモンド接合体の製造方法
Myronov et al. Single step silicon carbide heteroepitaxy on a silicon wafer at reduced temperature
Huang et al. The growth of boron nitride on poly-crystalline Ni by plasma-assisted molecular beam epitaxy
JPH08259387A (ja) 単結晶ダイヤモンド膜の気相合成用基板
CN114373828A (zh) 一种单晶二维半导体碲化钼薄膜与任意晶格失配单晶基底异质集成的方法
JPH07315998A (ja) 硼素含有窒化アルミニウム薄膜および製造方法
JPH02199098A (ja) 単結晶ダイヤモンドの製造法
CN114232089A (zh) 金刚石在碳化硅衬底上成核密度周期性调制方法