JPH0345531B2 - - Google Patents

Info

Publication number
JPH0345531B2
JPH0345531B2 JP56501696A JP50169681A JPH0345531B2 JP H0345531 B2 JPH0345531 B2 JP H0345531B2 JP 56501696 A JP56501696 A JP 56501696A JP 50169681 A JP50169681 A JP 50169681A JP H0345531 B2 JPH0345531 B2 JP H0345531B2
Authority
JP
Japan
Prior art keywords
laser
substrate
flux
target
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56501696A
Other languages
English (en)
Other versions
JPS57500492A (ja
Inventor
Uiriamu Toomasu Shirufuasuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Technologies Inc filed Critical AT&T Technologies Inc
Publication of JPS57500492A publication Critical patent/JPS57500492A/ja
Publication of JPH0345531B2 publication Critical patent/JPH0345531B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

請求の範囲 1 高エネルギーのパルス状ビームをターゲツト
基板に照射し、該ターゲツト基板物質のイオン粒
子フラツクスを生成する工程と、前記イオン粒子
フラツクスが該イオン粒子フラツクスの流路内に
配置されたコレクタ基板上に到達する前に、該コ
レクタ基板表面にエネルギー源からの放射パルス
を照射して少なくともその一部を溶融せしめる工
程と、該コレクタ基板表面に到達した前記イオン
粒子フラツクス中の物質を前記コレクタ基板上に
堆積せしめる工程とからなり、前記イオンフラツ
クス中に含まれる物質の少なくとも一部は前記コ
レクタ基板の溶融表面の内部に浸透することによ
り、ターゲツト基板物質のコレクタ基板への付着
性を向上せしめることを特徴とするイオン粒子フ
ラツクス中の物質をコレクタ基板上に堆積する方
法。
2 請求の範囲第1項に記載の方法において、前
記エネルギー源がレーザ源であることを特徴とす
る方法。
3 請求の範囲第1項に記載の方法において、前
記エネルギー源が電子ビーム源であることを特徴
とする方法。
4 請求の範囲第1項乃至第3項のいづれかに記
載の方法において、前記溶融したコレクタ基板表
面は次回の放射パルスの照射前に固化することを
特徴とする方法。
5 請求の範囲第1項乃至第4項のいづれかに記
載の方法において、前記ターゲツト基板に照射さ
れるパルスビームと前記コネクタ基板に照射され
る放射パルスは共通のエネルギー源から照射され
ることを特徴とする方法。
6 請求の範囲第5項に記載の方法において、該
エネルギー源はレーザ源であり、該レーザ源の強
さは108W/cm2以上であることを特徴とする方法。
7 請求の範囲第1項乃至第4項のいづれかに記
載の方法において、前記ターゲツト基板に照射さ
れるパルスビームと前記コレクタ基板に照射され
る放射パルスは異なるエネルギー源から照射され
ることを特徴とする方法。
8 請求の範囲第7項に記載の方法において、前
記ターゲツト基板に照射されるパルスビーム供給
源はレーザ源であり、該レーザ源の強さは
108W/cm2以上であることを特徴とする方法。
9 内部にターゲツト基板とコレクタ基板が配置
される排気チヤンバ10と、第1の照射源1と、
ターゲツト基板からの物質のイオンフラツクスを
供給するために前記第1の照射をターゲツト基板
に照射してイオン粒子フラツクスをコレクタ基板
にむけて移動せしめるための手段とからなるコレ
クタ基板5上にターゲツト基板8の物質を堆積さ
せるための装置であつて、第2の照射源2と、前
記イオン粒子フラツクスが前記コレクタ基板の表
面領域上に到達する以前に第2の照射パルスを前
記コレクタ基板に照射して表面領域を溶融させる
手段4とを有することにより、ターゲツト基板物
質のコレクタ基板への付着性を向上せしめること
を特徴とする蒸着装置。
10 請求の範囲第9項に記載の装置において、
前記第1の照射源はレーザ源であることを特徴と
する装置。
11 請求の範囲第9項に記載の装置において、
前記第1の照射源は電子ビーム源であることを特
徴とする装置。
12 請求の範囲第9項乃至第11項のいづれか
に記載の装置において、前記第2の照射源はレー
ザ源であることを特徴とする装置。
13 請求の範囲第9項乃至第11項のいづれか
に記載の装置において、前記第2の照射源が電子
ビーム源であることを特徴とする装置。
発明の背景 本発明は基板上への物質の堆積の分野に関す
る。
物質のデポジシヨンに使用するための物質の薄
い膜を蒸発させるためにレーザー光線を使用する
ことは例えばジイ・ハス(G.Hass)およびジエ
ー・ビ・ロムセイ(J.B.Ramsey)による論文
“CO2レーザーによる誘電および半導体膜の真空
蒸着”(1969年6月発行の応用光学、第6巻、第
6号、第1115−1118ページ)およびケー・ジイ
ー・ニコルス(K.G.Nichols)による論文”レー
ザーおよびマイクロエレクトロニクス”(1965年
6月英国通信および電子技術、第12巻、第368−
369ページ)のような参考文献に記載されている。
これらの参考文献は、レーザー蒸発が基板上に適
用される物質の薄い膜を作り出すために将来有望
な方法であることを示している。しかしながら、
薄膜のコーテイングはそれらが適用される基板上
の密接に付着しない。
発明の要約 基板上に粒子のフラツクス、例えばレーザーで
作り出された粒子のフラツクスを注入すること
は、例えばレーザー、電子ビーム源、あるいは高
エネルギー光源のようなパルス式の高エネルギー
源からの放射ビームで基板の表面を予め溶融させ
ることによつて高められる。予め溶融すること
は、粒子フラツクスが溶融された基板の領域の上
に衝突させられるように、粒子フラツクスの到着
の前に行われる。本発明の一実施例においては、
基板の領域はさらにそれ以上の粒子フラツクスあ
るいはさらにそれ以上のエネルギーパルスが適用
される前に固化することができる。
【図面の簡単な説明】
本発明の完全な理解は添付図面に関して以下に
行う詳細な説明を考慮することにより得られるで
あろう。
第1図は第1および第2のレーザー源を用いる
本発明の一実施例を概略的に示すものである。
詳細な説明 基板上に粒子フラツクス、例えばレーザーで作
り出された粒子フラツクスを注入することは、例
えばレーザー、電子ビーム源、あるいは高エネル
ギー光源のようなパルス式の高エネルギー源から
の放射ビームで基板の表面を予め溶融させること
により高められる。例えば、エー・シー・グリン
ワルド(A.C.Greenwald)およびアール・ジイ
ー・リトル(R.G.Little)による論文“半導体素
子のパルス式電子ビーム処理”(1979年4月、固
体技術、第143−148ページ)は、半導体素子の処
理にパルス式電子ビームを使用することを開示し
ている。予溶融は、粒子フラツクスが溶融される
基板の領域上に衝突させられるように、粒子フラ
ツクスの到着の前に行われる。本発明の一実施例
においては、基板の領域はさらにそれ以上の粒子
フラツクスあるいはさらにそれ以上のエネルギー
パルスを適用する前に固化することができる。当
業者にとつては、本発明を実施する方法は多くの
手段により得られる粒子フラツクスを用いること
が明白であろう。しかしながら、本発明の説明の
目的のため、本発明者は、粒子フラツクスがレー
ザーで作り出される粒子フラツクスとして提供さ
れる実施例について説明する。
レーザーが固体物質の平坦面の上に照射される
と、レーザーの強さが〜106W/cm2以上である場
合には固体物質は蒸発する。レーザーの強さが〜
106W/cm2である場合、パルス当たり103〜104
オンの粒子フラツクスが表面から作り出される
が、一方、レーザーの強さが108〜109W/cm2の場
合には、パルス当たり1015〜1020イオンの有意義
なフラツクスが作り出される。
レーザー輻射の適用はイオンの流れを作り出
し、このイオンの流れは106cm/secまたはそれよ
り速いオーダーの速度でターゲツト面から外側に
流れ出す。ターゲツト面から蒸発した物質の膜は
イオンフラツクスの通路内に配置されたコレクタ
基板面の上にデポジツトされる。2つの面すなわ
ちターゲツトおよびコレクタを収容するチヤンバ
(第1図に示す)が低い周囲圧力を有している場
合、イオンはレーザーの焦点領域内のターゲツト
物質から直線状に移動する。
コレクト基板面に衝突するイオンの濃度は、タ
ーゲツト基板上に照射された各レーザービーム1
パルス当り1原子あるいはそれ以上のオーダーの
厚さのターゲツト基板物質の表面層をコレクタ基
板上に作り出すのに十分な濃度である。この結晶
成長技術は、物質の分子または原子ビームが炉か
ら放出される分子ビームエピタキシー(MBE)
と概念的に類似している。しかしながら、レーザ
ー蒸発の場合、粒子フラツクスはMBEの場合の
分子または原子ビームと異なりイオンの流れより
なる。
レーザー蒸発法の利点は、レーザーパルス当た
り1原子層の比率であれば、1μmの厚さの層を
作り出すために単に約1000パルスだけが必要であ
るに過ぎないということである。この迅速な成長
速度は、分子ビームエピキタシー方法を悩ませて
いるチヤンバの残留背圧中に濃縮する不純物の濃
度を減少させるのに有用である。最大レーザーパ
ルス速度は結晶集積基板面の再構成のために要求
される時間の長さにより決定される。この時間は
固体基板の熱振動のオーダーとなるであろう。レ
ーザー蒸発のさらに別の利点は、レーザー蒸着法
の更に別の利点は、レーザー蒸発されたターゲツ
トからの高速のイオンがコレクタ基板の内部へ侵
入し、分子線エピタキシーにおいては典型的な低
速粒子では到達できない空格子点にイオンがアク
セスするのを可能にするという点である。このこ
とは、亜鉛のような高蒸気圧物質にとつては重要
なことである。さらに、レーザー蒸発法の高速特
性は、コレクタ面が次の層により覆われる前に高
蒸気圧物質がコレクタ面から発することを禁止す
る。
本発明により提供される方法の実施例に従え
ば、コレクタ基板面上に注入された粒子フラツク
スのエピタキシヤル成長は、ターゲツト物質のレ
ーザー蒸発により作り出される物質の粒子フラツ
クスがコレクタ基板に到着する前に、コレクタ基
板面の一部分をレーザー輻射のパルスで溶融させ
ることにより改善される。
第1図においては、ターゲツト基板6およびコ
レクタ基板5が真空チヤンバ10の中に置かれて
いる。ビーム100はレーザー源1により作り出
される。焦点系3はビーム100をターゲツト基
板6の表面8の上に焦点を結ばせて粒子フラツク
ス200を作り出す。粒子フラツクス200中の
イオンは約107cm/secの速度で集積用基板面5に
向けて移動する。粒子フラツクス200中のイオ
ンのパルスがコレクタ基板5の表面7に到着する
直前に、ビーム100、レーザー源2により作り
出されかつ焦点系4により焦点を結ばれたレーザ
ー輻射のパルスは集積用基板5の表面7に到着す
る。ビーム110は該ビームが衝突する領域の表
面7を溶融させる。本発明により提案される方法
の効果は、1〜5KeVのエネルギーを持つ粒子フ
ラツクス200中のイオンは表面7の液体部分に
は極めて容易に侵入するのに対し、ターゲツト基
板6の物質の原子が固体に侵入する場合には50〜
100KeVのオーダーのはるかに高いエネルギーが
必要であるということにある。
イオンが液体中に侵入した後、イオンは拡散し
て一様な分布を形成し、エピタキシヤル成長パタ
ーンで固化する。拡散長さは再結晶時間により制
限される。この再結晶時間はビーム110のパル
ス持続時間を調整することにより調整される。こ
のようにして、この方法は迅速なイオンの注入お
よび同時的な基板のアニーリングの両方を提供す
る。
本発明の一実施例においては、CO2−TEAレ
ーザーで作り出されたボロンのプラズマがn型シ
リコンウエハにイオンを注入するために使用でき
る。CO2−TEAレーザーからの5J出力は7.62cmの
焦点長さのレンズで10-5Torrの真空中に置かれ
たボロンターゲツト基板の上に焦点を結ばされ
る。真空中でボロンターゲツト基板の上に焦点を
結ばされた単一のレーザーパルスから作り出され
るイオンフラツクスは1keVのイオンエネルギー
を提供し、このエネルギーはボロンの粒子フラツ
クス中における1.3×107cm/secまでの速度に対
応している。シリコンウエハ、コレクタ基板で利
用できるイオンフラツクス濃度は1016粒子/cm2
sよりも大きいものと見積られる。
レーザーで作り出される粒子フラツクスを作り
出す場合には、レーザーは、パルスエネルギーの
3分の1を含む200nsスパイクおよびパルスエネ
ルギーの3分の2を含む2μsのテールを持つ10.6μ
mのレーザーパルスを持つものが使用される。タ
ーゲツト基板は、該ターゲツトが常態では入射レ
ーザーパルスに対して45゜の角度をなすように位
置付けられている。ターゲツト物質の得られたプ
ラズマフラツクスはターゲツト面に対して直角方
向に放出され、また〜0.15ステラジアンのオーダ
ーの立体角に制限される。シリコンのコレクタ基
板のサンプルはボロンのターゲツト基板に対して
平行に位置付けられ、またボロンのターゲツト面
から2.5cmの距離でレーザーの焦点領域から投射
されるる法線に対してセンタリングされる。この
構造は、シリコンコレクタ基板が入射レーザー光
線と干渉することなく最大のボロンフラツクスを
受けることを許容し、またボロンのターゲツト基
板により反射されたレーザー光線がコレクタ基板
をバイパスすることを許容する。2.5cmの距離で、
ボロンのプラズマフラツクスの大部分はシリコン
のコレクタ基板面上の〜1cm2の領域内に集中して
いる。
ボロンイオンフラツクスの速度は排気されたセ
ル内の様々な位置におけるイオンの遅れた到着を
観察することによつて測定できる。電子およびイ
オンの濃度はプラズマの伝播時間内に十分に再結
合放射を引き起こすことができる濃度である。再
結合輻射はボロンのターゲツト基板からシリコン
のコレクタ基板サンプルまでの法線に沿つた様々
な位置で観察できた。可視スペクトル中の最強の
放出は4487Åで起こり、これはB2+の励起スペク
トル中の放出線に対応している。このことは、プ
ラズマ中の優勢な種がB2+であることを示唆して
いる。ボロンのターゲツト基板から2つの異なる
距離におけるB2+放出の前縁部間の相対的時間遅
れは1.3×107/cmsのイオン速度あるいは1.0keV
のイオンエネルギーを意味している。ボロンのタ
ーゲツト基板に対して〜30kVまでの電圧でシリ
コンのコレクタ基板をバイアスすることによるイ
オンの加速または減速を試みたが、注入の結果の
重大な変化は検出されなかつた。この結果は何ら
驚くべきものではない。なぜならば、高密度の中
性プラズマは電界に対して反応しないのみなら
ず、正または負の電荷は電界に応答してデバイ長
よりもはるかに大きい距離だけ分離しようとする
傾向もないからである。
ボロンの10Å表面層はレーザーパルス当たりシ
リコンの上にデポジツトされた。デイ・エイチ・
オートン(D.H.Auston)、ジエー・エー・グロベ
ヘンコ(J.A.Golovchenko)、エー・エル・シモ
ンズ(A.L.Simons)およびシー・エム・スルコ
(C.M.Surko)による輪文“Q−スイツチ式レー
ザーアニーリング”(1979年6月1日、応用物理
学誌、(Applied Physics Letter)第34巻、第11
号、第777−779ページ)は、ターゲツト基板面の
溶融工程に従つて前記したレーザーで作り出され
る粒子フラツクスと共に使用できる情報を開示し
ている。Ge(未注入)、1016/cm2の50−keVのTe
を持つGaAs(注入済)、シリコン(未注入)およ
び1.06μmおよび.53μmの放射に露出された
1015/cm2の30keVのヒ素を持つシリコン(注入
済)のサンプルの処理において、前記論文は、周
波数を倍にした(.53μm)放射は1.06μmの放射
の場合よりもシリコンの溶融プロセスを開始する
のにかなり効率的であることを開示している。前
記論文の著者はまた、1.06μmおよび.53μmで注
入済のシリコンサンプル中に吸収された光エネル
ギーの比は約1:20であり、この比はこれらのサ
ンプルのための溶融閾値の比とかなり似たもので
あるという事実も開示している。530nmでGeと
GaAsを溶融させるために必要なエネルギーはよ
り低い融点の故にシリコンのエネルギーから減じ
られるものである。
最後に、前記論文は、その中に報告されたデー
タの申請書において、500−nmの光は1060−n
mの光よりも固体に結合するのにはるかに有効な
ものであるということを付け加えている。前記論
文の著者はさらに次のようにコメントを付け加え
ている。
“このことは、より短い波長に周波数を倍増さ
せるプロセスはせいぜい〜30パーセントの効率で
行われるという事実に鑑みて天恵の組み合せによ
るものと思われる。われわれの実験では、この値
は10パーセントに近付いた。それにもかかわら
ず、入射エネルギーの全部は、入射光線の未変換
成分のサンプルを照射することを許された場合、
530nmのケースに近い効率で固体と結合するこ
とができる。その理由は、一度530nmの光がシ
リコンの上層を溶融させると、1060nmの光のた
めの吸収効率は劇的に増大し、入射光のこの主要
成分のための高い結合効率を生じるということに
よるものである。液体層をトリガーするための用
途においては単に530−nmの光が必要であるに
過ぎない。このようにして、大きいNdレーザー
系からの全エネルギーは、1060−nmのアニーリ
ングについて存在することが知られている閾値ま
たは最終深さの分布のドーピングレベルの依存の
ような複雑さを伴うことなく、アニーリングのた
めに利用できる。” したがつて、表面を予め溶融させるためのレー
ザーの要件はいくぶん制限的である。Si基板を溶
融させるために要求されるエネルギーは1−
10J/cm2の範囲内にある。それに加えて、レーザ
ーの波長は、結晶が吸収性(しかしあまり吸収性
であつてはならない)であるような領域になけれ
ばならない。ほとんどの物質の場合、これは可視
光線あるいは近似赤外線のレーザーを含んでい
る。それに加えて、レーザーのパルス長さが重要
である。レーザーが高い濃縮物質フラツクスの到
着と干渉することを避けるためには、パルス長さ
は100nsecよりも少なくなければならない。他方、
パルス長さがあまりにも短い場合、前記したエネ
ルギーを提供するためには、強さは、蒸発が溶融
の代わりにほとんど起こりそうな高さのものでな
ければならないであろう。したがつて、ナノ秒の
10倍のオーダーのパルス長さは最も適当な長さで
あるものと思われる。
前記条件は1.06μmで動作するかあるいはSiを
溶融させるためには5300Åで倍増されるNd:
YAGレーザーで満足せられる。
当業者にとつては、レーザーで作り出された粒
子フラツクスを利用する本発明のさらに別の実施
例は、レーザーで作り出された粒子フラツクスお
よびターゲツト基板を溶融させるために使用され
る放射の両方を提供するため1つのレーザーを用
いることによつて得られることが明白である。前
記した説明から、粒子フラツクスを作り出すため
に必要な放射の強さとコレクタ基板を溶融させる
ために必要な放射の強さとは異なることは明白で
あるから、この強さの差を考慮したメカニズムが
使用される。さらに、前記したように、コレクタ
基板の溶融は放射波長の関数であり、周波数の倍
増のような周波数変更技術も本発明により提供さ
れる方法を最適なものにするために適当なもので
ある。
ガラス基板上への金属接点の付着を試験するた
め1つの実験を行つた。CO2レーザー光線の一部
分はCuイオンの高いフラツクスを作り出すため
に銅のターゲツト(強さ108W/cm2)上に照射さ
れた。イオンはガラス基板の方向に向かい、この
ガラス基板は同じCO2レーザー(強さ〜106W/
cm2)からのレーザー光線の一部分により予め溶融
された。予溶融が行われたガラス基板の領域にお
いては、ガラス上へのCuの付着は、予溶融が行
われなかつた領域の場合よりもはるかに高いこと
が判明した。また、このような付着は、同様なガ
ラス基板上へのCuの通常の真空蒸着の結果とし
て得られるものよりもはるかに高いものであつ
た。
JP56501696A 1980-05-12 1981-05-01 Expired - Lifetime JPH0345531B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/149,234 US4281030A (en) 1980-05-12 1980-05-12 Implantation of vaporized material on melted substrates

Publications (2)

Publication Number Publication Date
JPS57500492A JPS57500492A (ja) 1982-03-18
JPH0345531B2 true JPH0345531B2 (ja) 1991-07-11

Family

ID=22529334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56501696A Expired - Lifetime JPH0345531B2 (ja) 1980-05-12 1981-05-01

Country Status (8)

Country Link
US (1) US4281030A (ja)
EP (1) EP0051639B1 (ja)
JP (1) JPH0345531B2 (ja)
CA (1) CA1150668A (ja)
DE (1) DE3175704D1 (ja)
GB (1) GB2075555B (ja)
IT (1) IT1136992B (ja)
WO (1) WO1981003344A1 (ja)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579750A (en) * 1980-07-07 1986-04-01 Massachusetts Institute Of Technology Laser heated CVD process
US4348263A (en) * 1980-09-12 1982-09-07 Western Electric Company, Inc. Surface melting of a substrate prior to plating
US4701592A (en) * 1980-11-17 1987-10-20 Rockwell International Corporation Laser assisted deposition and annealing
DE3122341A1 (de) * 1981-06-05 1982-12-23 Chemische Werke Hüls AG, 4370 Marl Feinteilige expandierbare styrolpolymerisate
US4394237A (en) * 1981-07-17 1983-07-19 Bell Telephone Laboratories, Incorporated Spectroscopic monitoring of gas-solid processes
JPS5864368A (ja) * 1981-10-12 1983-04-16 Inoue Japax Res Inc 化学メツキ方法
GB2114809B (en) * 1982-02-04 1986-02-05 Standard Telephones Cables Ltd Metallic silicide production
JPS58176929A (ja) * 1982-04-09 1983-10-17 Fujitsu Ltd 半導体装置の製造方法
JPS5949508A (ja) * 1982-09-14 1984-03-22 Sony Corp 複屈折板の製造方法
US4576697A (en) * 1983-04-21 1986-03-18 Combustion Engineering, Inc. Synthesis of carbon-containing intercalatable layered transition metal chalocogenides
DE3472574D1 (en) * 1983-10-14 1988-08-11 Hitachi Ltd Process for forming an organic thin film
US4496607A (en) * 1984-01-27 1985-01-29 W. R. Grace & Co. Laser process for producing electrically conductive surfaces on insulators
GB2155042B (en) * 1984-02-21 1987-12-31 Hughes Technology Pty Ltd Laser induced ion beam generator
AU589892B2 (en) * 1984-02-21 1989-10-26 Laser Holdings Limited Laser substrate coater & tracker layer
GB8417040D0 (en) * 1984-07-04 1984-08-08 Salford University Of Modifying properties of material
DE3426201A1 (de) * 1984-07-17 1986-01-23 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Verfahren zum aufbringen von schutzschichten
US4624736A (en) * 1984-07-24 1986-11-25 The United States Of America As Represented By The United States Department Of Energy Laser/plasma chemical processing of substrates
IT1179061B (it) * 1984-08-20 1987-09-16 Fiat Auto Spa Procedimento per l'effettuazione di un trattamento su pezzi metallici con l'aggiunta di un materiale d'apporto e con l'impiego di un laser di potenza
FR2578095B1 (fr) * 1985-02-28 1988-04-15 Avitaya Francois D Procede et dispositif de depot par croissance epitaxiale d'un materiau dope
US4631197A (en) * 1985-07-17 1986-12-23 Motorola, Inc. Apparatus and method for adjusting the frequency of a resonator by laser
US4664935A (en) * 1985-09-24 1987-05-12 Machine Technology, Inc. Thin film deposition apparatus and method
US5064681A (en) * 1986-08-21 1991-11-12 International Business Machines Corporation Selective deposition process for physical vapor deposition
JPS63227766A (ja) * 1986-10-27 1988-09-22 Hitachi Ltd 超微粒子膜の形成方法
US4740386A (en) * 1987-03-30 1988-04-26 Rockwell International Corporation Method for depositing a ternary compound having a compositional profile
USH872H (en) * 1987-09-15 1991-01-01 The United States Of America As Represented By The Department Of Energy Method of applying coatings to substrates
US4987007A (en) * 1988-04-18 1991-01-22 Board Of Regents, The University Of Texas System Method and apparatus for producing a layer of material from a laser ion source
US5411797A (en) * 1988-04-18 1995-05-02 Board Of Regents, The University Of Texas System Nanophase diamond films
SE463213B (sv) * 1988-05-06 1990-10-22 Ibm Svenska Ab Anordning och foerfarande foer att foerse ett metallsubstrat med en stoetbestaendig yta
DE3914476C1 (ja) * 1989-05-02 1990-06-21 Forschungszentrum Juelich Gmbh, 5170 Juelich, De
JPH03104861A (ja) * 1989-05-26 1991-05-01 Rockwell Internatl Corp レーザアブレーションに使用するための装置
JPH0323238A (ja) * 1989-06-19 1991-01-31 Nippon Sheet Glass Co Ltd ガラス基材の表面改質法
JP2559492B2 (ja) * 1989-07-05 1996-12-04 シャープ株式会社 化合物半導体発光素子の製造方法
DE69028662T2 (de) * 1989-07-06 1997-03-06 Toyoda Chuo Kenkyusho Kk Verfahren und Vorrichtung zum Laseraufdampfen
DE3925085C1 (ja) * 1989-07-28 1991-01-10 Battelle-Institut Ev, 6000 Frankfurt, De
DE4022817C1 (ja) * 1990-07-18 1991-11-07 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt Ev, 5300 Bonn, De
CA2065581C (en) 1991-04-22 2002-03-12 Andal Corp. Plasma enhancement apparatus and method for physical vapor deposition
US5368947A (en) * 1991-08-12 1994-11-29 The Penn State Research Foundation Method of producing a slip-resistant substrate by depositing raised, bead-like configurations of a compatible material at select locations thereon, and a substrate including same
US5227204A (en) * 1991-08-27 1993-07-13 Northeastern University Fabrication of ferrite films using laser deposition
IT1250211B (it) * 1991-11-22 1995-04-03 Fiat Auto Spa Procedimento per il trattamento superficiale a mezzo laser di metalli da rivestire.
DE4204650C1 (ja) * 1992-02-15 1993-07-08 Hoffmeister, Helmut, Dr., 4400 Muenster, De
US5320882A (en) * 1992-04-22 1994-06-14 General Electric Company Laser ablative particulate composite
US5405659A (en) * 1993-03-05 1995-04-11 University Of Puerto Rico Method and apparatus for removing material from a target by use of a ring-shaped elliptical laser beam and depositing the material onto a substrate
US5432313A (en) * 1993-06-23 1995-07-11 The United States Of America As Represented By The Secretary Of The Army Target configurations for increasing the size of films prepared by laser ablation
US5849371A (en) * 1996-07-22 1998-12-15 Beesley; Dwayne Laser and laser-assisted free electron beam deposition apparatus and method
US6562705B1 (en) * 1999-10-26 2003-05-13 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing semiconductor element
US7635656B2 (en) * 2006-06-29 2009-12-22 International Business Machines Corporation Serial irradiation of a substrate by multiple radiation sources
US7790636B2 (en) * 2006-06-29 2010-09-07 International Business Machines Corporation Simultaneous irradiation of a substrate by multiple radiation sources
US8076607B2 (en) * 2007-06-27 2011-12-13 Ross Technology Corporation Method and apparatus for depositing raised features at select locations on a substrate to produce a slip-resistant surface
GB201202128D0 (en) * 2012-02-08 2012-03-21 Univ Leeds Novel material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1493822A (fr) * 1966-08-30 1967-09-01 Temescal Metallurgical Corp Article résistant à l'abrasion et son procédé de fabrication
GB1252254A (ja) * 1967-11-02 1971-11-03
US3560252A (en) * 1968-08-13 1971-02-02 Air Reduction Vapor deposition method including specified solid angle of radiant heater
JPS5235596B2 (ja) * 1973-02-23 1977-09-09
CA1035675A (en) * 1974-01-07 1978-08-01 Avco Everett Research Laboratory Formation of surface layer casings on articles
US4108751A (en) * 1977-06-06 1978-08-22 King William J Ion beam implantation-sputtering
JPS54131866A (en) * 1978-04-05 1979-10-13 Nippon Telegr & Teleph Corp <Ntt> Heat treatment device
DE2820289C2 (de) * 1978-05-10 1986-09-18 Leybold-Heraeus GmbH, 5000 Köln Verfahren zum Beschichten von metallischen Substraten mit Legierungsschichten bei erhöhter Substrattemperatur
FR2475069A1 (fr) * 1980-02-01 1981-08-07 Commissariat Energie Atomique Procede de dopage rapide de semi-conducteurs

Also Published As

Publication number Publication date
JPS57500492A (ja) 1982-03-18
CA1150668A (en) 1983-07-26
EP0051639B1 (en) 1986-12-10
US4281030A (en) 1981-07-28
DE3175704D1 (en) 1987-01-22
GB2075555B (en) 1984-04-04
IT1136992B (it) 1986-09-03
GB2075555A (en) 1981-11-18
EP0051639A4 (en) 1982-11-25
IT8121601A0 (it) 1981-05-08
EP0051639A1 (en) 1982-05-19
WO1981003344A1 (en) 1981-11-26

Similar Documents

Publication Publication Date Title
JPH0345531B2 (ja)
US5660746A (en) Dual-laser process for film deposition
Auston et al. Time‐resolved reflectivity of ion‐implanted silicon during laser annealing
US5858478A (en) Magnetic field pulsed laser deposition of thin films
USRE39988E1 (en) Deposition of dopant impurities and pulsed energy drive-in
Abelson et al. Epitaxial GexSi1− x/Si (100) structures produced by pulsed laser mixing of evaporated Ge on Si (100) substrates
KR20030045082A (ko) 레이저 제거 방법을 이용한 박막의 증착
JPS60500860A (ja) 原子束の発生法ならびにその原子線エピタキシ−プロセスおよび同装置における利用法
Witke et al. Investigation of plasma produced by laser and electron pulse ablation
Auston et al. Dynamics of laser annealing
JPH1030168A (ja) 成膜方法
JPS636738A (ja) レ−ザ励起質量分析計
Vitali et al. Low‐power pulsed‐laser annealing of implanted GaAs
Ristoscu et al. Optical emission spectroscopy and time-of-flight investigations of plasmas generated from AlN targets in cases of pulsed laser deposition with sub-ps and ns ultraviolet laser pulses
JPH05279848A (ja) レーザアブレーションによる薄膜形成方法
Novodvorsky et al. Erosion plume characteristics determination in ablation of metallic copper, niobium, and tantalum targets
JPH1055899A (ja) X線発生装置
JPH06248439A (ja) レーザーアブレーション装置およびそれを用いた半導体形成法
Jadin et al. Excimer-laser-induced ablation of thin selenium films
JPH04362171A (ja) レーザーアブレーション装置
Rimini et al. Ruby laser pulse effects in ion implanted semiconductors
Szigeti et al. Investigation of aluminium blow-off beam composition by laser ionization mass spectrometry
Mesli et al. Analysis and origin of point defects in silicon after liquid phase transient annealing
JPH06172978A (ja) レーザーアブレーション装置
Deutch et al. Pulsed, Q-switched ruby laser annealing of Bi implanted Si crystals investigated by channeling