JPH023308B2 - - Google Patents

Info

Publication number
JPH023308B2
JPH023308B2 JP57030772A JP3077282A JPH023308B2 JP H023308 B2 JPH023308 B2 JP H023308B2 JP 57030772 A JP57030772 A JP 57030772A JP 3077282 A JP3077282 A JP 3077282A JP H023308 B2 JPH023308 B2 JP H023308B2
Authority
JP
Japan
Prior art keywords
nitride film
silicon nitride
film
silicon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57030772A
Other languages
Japanese (ja)
Other versions
JPS58147070A (en
Inventor
Tadashi Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3077282A priority Critical patent/JPS58147070A/en
Publication of JPS58147070A publication Critical patent/JPS58147070A/en
Publication of JPH023308B2 publication Critical patent/JPH023308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は特性の改善された薄膜構造の電界効果
トランジスタその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a field effect transistor having a thin film structure with improved characteristics.

第1図aは従来のこの種の電界効果トランジス
タ(以下FETという。)の構成を示す縦断面図、
第1図bはその平面図で、1はガラス基板、2は
クロム(Cr)で形成されたゲート電極、3は厚
さ約3000Åのシリコン窒化膜からなるゲート絶縁
膜、4はグロー放電で形成されたアモルフアスシ
リコン層、5aおよび5bはそれぞれアモルフア
スシリコン層4の表面上にゲート電極2に対応す
る部分を挾んで設けられ、アルミニウムAlで形
成されたソースおよびドレイン電極、6は表面保
護膜である。なお、第1図bでは基板1および表
面保護膜6は省略されている。
Figure 1a is a vertical cross-sectional view showing the configuration of a conventional field effect transistor (hereinafter referred to as FET) of this type.
Figure 1b is a plan view of the same, where 1 is a glass substrate, 2 is a gate electrode made of chromium (Cr), 3 is a gate insulating film made of a silicon nitride film with a thickness of about 3000 Å, and 4 is formed by glow discharge. The amorphous silicon layers 5a and 5b are respectively provided on the surface of the amorphous silicon layer 4, sandwiching a portion corresponding to the gate electrode 2, source and drain electrodes made of aluminum Al, and 6 a surface protective film. It is. Note that the substrate 1 and the surface protection film 6 are omitted in FIG. 1b.

このような構成のFETにおいてドレイン5b
とソース5aとの間に10Vの電圧が印加される
が、アモルフアスシリコン層4はバンドギヤツプ
が通常のシリコンに比して広いので、光が当つて
もキヤリアが励起される確率は低い。従つて、光
を当てた状態でも抵抗は非常に高く、電流はほと
んど流れない。ゲート2に5〜20V程度の正電圧
が印加されると、ゲート絶縁膜3を介してアモル
フアスシリコン層4の界面に電界が加えられチヤ
ネルが開いて、ドレイン5b、ソース5a間が導
通できるようになり電流が流れはじめる。このと
き、従来のFETではゲート絶縁膜3が窒化膜で
あるので、アモルフアスシリコン層4との界面に
多数の準位が形成され、これに対するキヤリアの
トラツプや放出のため、FETの電気特性の再現
性に問題があり、長時間でのドリフトなど実用上
問題が多い。また、アモルフアスシリコン層をレ
ーザなどのエネルギー線で多結晶化してキヤリア
モビリテイの増加をはかるような場合には、さら
に電気特性上の上述の問題点が顕著になつてく
る。
In an FET with such a configuration, the drain 5b
A voltage of 10 V is applied between the amorphous silicon layer 4 and the source 5a, but since the bandgap of the amorphous silicon layer 4 is wider than that of ordinary silicon, there is a low probability that carriers will be excited even when exposed to light. Therefore, even when exposed to light, the resistance is extremely high and almost no current flows. When a positive voltage of about 5 to 20 V is applied to the gate 2, an electric field is applied to the interface of the amorphous silicon layer 4 through the gate insulating film 3, opening a channel and establishing conduction between the drain 5b and the source 5a. current begins to flow. At this time, in the conventional FET, since the gate insulating film 3 is a nitride film, a large number of levels are formed at the interface with the amorphous silicon layer 4, and carriers are trapped and released in response to this, which affects the electrical characteristics of the FET. There are problems with reproducibility and there are many practical problems such as drift over a long period of time. Furthermore, when an amorphous silicon layer is polycrystallized using energy beams such as a laser to increase carrier mobility, the above-mentioned problems regarding electrical characteristics become even more pronounced.

またシリコン酸化膜(SiO2)がシリコン(Si)
とのよい界面特性を与え、ゲート絶縁膜としてシ
リコン窒化膜より優れていることは経験的事実と
して知られていたが、スパツタやCVD法を用い
窒化膜上に酸化膜を形成する方法ではあまりよい
界面特性を得ることではできなかつた。
Also, silicon oxide film (SiO 2 ) is silicon (Si).
It has been empirically known that silicon nitride is superior to silicon nitride as a gate insulating film because it provides good interfacial properties with silicon nitride, but methods of forming an oxide film on a nitride film using sputtering or CVD methods are not so good. This could not be achieved by obtaining interfacial properties.

本発明は以上のような点に鑑みてなされたもの
で、基板上に窒化シリコン膜を形成した後、該窒
化シリコン膜の表面を酸素プラズマにさらしてあ
るいは酸素雰囲気中で該窒化シリコン膜表面にレ
ーザ光を照射して該窒化膜表面を酸化しその後形
成された酸化膜上にアモルフアスシリコンまたは
多結晶シリコンからなる活性領域を形成するよう
にすることにより、窒化膜の緻密さ、誘電率の大
きさという特性を失うことなく、活性領域と絶縁
層との界面特性をより向上できるとともに低温酸
化が可能となり、特性の安定した信頼性の高い
FETを再現性よく製造できるFETの製造方法を
提供することを目的としている。
The present invention has been made in view of the above points, and after forming a silicon nitride film on a substrate, the surface of the silicon nitride film is exposed to oxygen plasma or in an oxygen atmosphere. By irradiating the nitride film with laser light to oxidize the surface of the nitride film and then forming an active region made of amorphous silicon or polycrystalline silicon on the oxide film, the density and dielectric constant of the nitride film can be improved. The interface characteristics between the active region and the insulating layer can be further improved without losing the characteristics of size, and low-temperature oxidation is possible, resulting in stable characteristics and high reliability.
The purpose is to provide a method for manufacturing FETs that can manufacture FETs with good reproducibility.

第2図a〜eは本発明の一実施例になるFET
の製造過程を示すためのその主要段階での断面図
で、まず、第2図aに示すようにガラス基板1の
両面にプラズマCVDによつて窒化膜7を形成し、
ガラス基板1からナトリウムなどの可動イオンが
放出されるのを防ぐ。次に、第2図bに示すよう
にCrによるゲート電極2が写真製版工程を用い
て形成され、さらに、3000Åの厚さのシリコン窒
化膜によるゲート絶縁層3をCVD法で形成する。
つづいて、これを酸素プラズマにさらして、第2
図Cに示すようにゲート絶縁層3の表面約100Å
を酸化して酸化シリコン(SiO2)層8を形成す
る。これに第2図dに示すように、アモルフアス
シリコン層4並びにCr蒸着によるソース電極5
aおよびドレイン電極5bをそれぞれ写真製版を
経て形成した後に第2図dに示すように全上面に
表面保護膜6を形成して、この実施例のFETは
完成する。
Figures 2a to 2e are FETs that are an embodiment of the present invention.
First, as shown in FIG. 2a, a nitride film 7 is formed on both sides of the glass substrate 1 by plasma CVD,
To prevent mobile ions such as sodium from being released from the glass substrate 1. Next, as shown in FIG. 2b, a gate electrode 2 made of Cr is formed using a photolithography process, and a gate insulating layer 3 made of a silicon nitride film with a thickness of 3000 Å is further formed by a CVD method.
Next, this was exposed to oxygen plasma and a second
As shown in Figure C, the surface of the gate insulating layer 3 is about 100 Å.
A silicon oxide (SiO 2 ) layer 8 is formed by oxidizing the silicon oxide (SiO 2 ). In addition, as shown in FIG. 2d, an amorphous silicon layer 4 and a source electrode 5 formed by Cr vapor deposition are added.
After forming the FET a and the drain electrode 5b by photolithography, a surface protective film 6 is formed on the entire upper surface as shown in FIG. 2d, thereby completing the FET of this embodiment.

このように、窒化膜からなるゲート絶縁層3の
表面を酸素プラズマにさらして酸化してSiO2
8を形成したので、アモルフアスシリコン層4と
の界面に従来出現していた多くの準位はほとんど
が消滅し、キヤリアのトラツプ、放出現象は無視
してよい程度になる。従つて、シリコン窒化膜の
酸化にスパツタやCVD法を用いた場合に比し、
FETの特性は非常に安定し、再現性もよくなり、
長期のドリフトなどは問題なくなる。特に、レー
ザーなどのエネルギー線でアモルフアスシリコン
層4を再結晶化し多結晶層とした場合には特性向
上の度合は顕著で、非常に安定した良好な特性の
FETが得られる。
In this way, since the surface of the gate insulating layer 3 made of a nitride film was exposed to oxygen plasma and oxidized to form the SiO 2 layer 8, many levels that conventionally appeared at the interface with the amorphous silicon layer 4 were removed. Most of them disappear, and carrier trap and release phenomena become negligible. Therefore, compared to using sputtering or CVD methods to oxidize a silicon nitride film,
FET characteristics are very stable and reproducible,
Long-term drift will no longer be a problem. In particular, when the amorphous silicon layer 4 is recrystallized using energy beams such as a laser to form a polycrystalline layer, the degree of improvement in characteristics is remarkable, and very stable and good characteristics can be obtained.
FET is obtained.

第3図は本発明の他の実施例になる方法により
得られたFETを示す断面図で、ガラス基板1の
上にシリコン窒化膜9を形成し、その表面を酸素
プラズマにさらして酸化シリコン酸化膜10を形
成し、この2層絶縁膜の上にフイールド酸化膜1
1で囲まれた領域にレーザー等で再結晶させたポ
リシリコンからなる活性領域12とその両側にソ
ース領域13およびドレイン領域14とを形成
し、その上にゲート酸化膜15で包まれたポリシ
リコンからなるゲート電極16を形成し、更にそ
の上にフイールド酸化膜11の上で含めて層間絶
縁膜17を形成した後、その上に層間絶縁膜17
およびゲート酸化膜15のソース領域13および
ドレイン領域14の直上部分を貫通して、それぞ
れソース領域13およびドレイン領域4に接続す
るソースアルミニウム配線18およびドレインア
ルミニウム配線19を形成したものである。この
実施例では上記実施例の効果に加えて、ガラス基
板1の上にシリコン窒化膜9とシリコン酸化膜1
0との二重層を形成したため、窒化膜9とシリコ
ン酸化膜10との二重層を形成したため、窒化膜
のみを用いた場合に比して、いわゆるバツクチヤ
ネル(back channel)での電流が著しく減少し、
FETの特性の向上が達成できる。
FIG. 3 is a cross-sectional view showing an FET obtained by a method according to another embodiment of the present invention, in which a silicon nitride film 9 is formed on a glass substrate 1, and its surface is exposed to oxygen plasma to oxidize silicon oxide. A film 10 is formed, and a field oxide film 1 is formed on this two-layer insulating film.
An active region 12 made of polysilicon recrystallized by a laser or the like is formed in the region surrounded by 1, and a source region 13 and a drain region 14 are formed on both sides of the active region 12, and a polysilicon region surrounded by a gate oxide film 15 is formed on the active region 12. After forming a gate electrode 16 made of
A source aluminum wiring 18 and a drain aluminum wiring 19 are formed through the gate oxide film 15 directly above the source region 13 and drain region 14 to connect to the source region 13 and drain region 4, respectively. In addition to the effects of the above embodiments, this embodiment has a silicon nitride film 9 and a silicon oxide film 1 on the glass substrate 1.
Since a double layer of nitride film 9 and silicon oxide film 10 is formed, the current in the so-called back channel is significantly reduced compared to when only nitride film is used. ,
Improvements in FET characteristics can be achieved.

なお、上記各実施例ではシリコン窒化膜の表面
の酸化に酸素プラズマにさらす方法を示したが、
これは酸素雰囲気中で、シリコン窒化膜の表面に
紫外線、電子線、レーザ光などのエネルギー線を
照射する方法を用いてもよい。
In addition, in each of the above examples, a method of exposing the surface of the silicon nitride film to oxygen plasma was shown, but
This may be accomplished by irradiating the surface of the silicon nitride film with energy beams such as ultraviolet rays, electron beams, and laser beams in an oxygen atmosphere.

また、この発明の原理はキヤパシタの絶縁膜を
形成する場合にも適用することができ、この場合
も窒化膜のピンホールなとが酸化によつて埋まる
ので不良の発生が減少する等の効果がある。
Furthermore, the principle of the present invention can be applied to the formation of an insulating film for a capacitor, and in this case as well, pinholes in the nitride film are filled by oxidation, resulting in effects such as a reduction in the occurrence of defects. be.

以上説明したように、本発明によれば、基板上
に窒化シリコン膜を形成した後、該窒化シリコン
膜の表面を酸素プラズマにさらしてあるいは酸素
雰囲気中で該窒化シリコン膜表面にレーザ光を照
射して該窒化膜表面を酸化しその後形成された酸
化膜上にアモルフアスシリコンまたは多結晶シリ
コンからなる活性領域を形成するようにしたの
で、窒化膜の優れた特性を失うことなく活性領域
と絶縁層との界面特性をより向上できるとともも
に低温酸化が可能となり、特性の位定した信頼性
の高いFETを再現性よく製造できるという効果
がある。
As explained above, according to the present invention, after forming a silicon nitride film on a substrate, the surface of the silicon nitride film is exposed to oxygen plasma or the surface of the silicon nitride film is irradiated with laser light in an oxygen atmosphere. The surface of the nitride film is then oxidized, and then an active region made of amorphous silicon or polycrystalline silicon is formed on the oxide film, so that it can be insulated from the active region without losing the excellent properties of the nitride film. This has the effect that it is possible to further improve the interfacial characteristics with the layer, and also to enable low-temperature oxidation, making it possible to manufacture highly reliable FETs with well-defined characteristics with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来の薄膜構造のFETの構成を示
す縦断面図、第1図bはその平面図、第2図a〜
eは、本発明の一実施例になるFETの製造過程
を示すためのその主要段階での断面図、第3図は
本発明の他の実施例になる方法により得られた
FETを示す断面図である。 図において、1はガラス基板、2はゲート電
極、3は窒化シリコン膜、4はアモルフアスシリ
コン層、5aはソース電極、5bはドレイン電
極、8は窒化シリコン膜3の表面を酸化した酸化
シリコン層、9は窒化シリコン膜、10は窒化シ
リコン膜9の表面を酸化した酸化シリコン層、1
2は多結晶シリコン層(活性領域)、13はソー
ス領域、14はドレイン領域、15はゲート絶縁
膜、16はゲート電極である。なお、図中同一符
号は同一または相当部分を示す。
Figure 1a is a vertical cross-sectional view showing the configuration of a conventional thin film FET, Figure 1b is a plan view thereof, and Figures 2a--
e is a cross-sectional view at the main stages to show the manufacturing process of an FET that is an embodiment of the present invention, and Figure 3 is a cross-sectional view obtained by a method that is another embodiment of the present invention.
FIG. 3 is a cross-sectional view showing an FET. In the figure, 1 is a glass substrate, 2 is a gate electrode, 3 is a silicon nitride film, 4 is an amorphous silicon layer, 5a is a source electrode, 5b is a drain electrode, and 8 is a silicon oxide layer obtained by oxidizing the surface of the silicon nitride film 3. , 9 is a silicon nitride film, 10 is a silicon oxide layer obtained by oxidizing the surface of the silicon nitride film 9, 1
2 is a polycrystalline silicon layer (active region), 13 is a source region, 14 is a drain region, 15 is a gate insulating film, and 16 is a gate electrode. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 基板上に化学的気相成長法で窒化シリコン膜
を形成する工程、 上記窒化シリコン膜の表面を酸素プラズマにさ
らして、あるいは該窒化シリコン膜の表面に酸素
雰囲気中でエネルギー線を照射して酸化する工
程、 この表面を酸化して窒化シリコン膜上に活性領
域を構成するアモルフアスまたは多結晶シリコン
を形成する工程を備えたことを特徴とする電界効
果トランジスタの製造方法。
[Claims] 1. A step of forming a silicon nitride film on a substrate by chemical vapor deposition, by exposing the surface of the silicon nitride film to oxygen plasma, or by exposing the surface of the silicon nitride film to an oxygen atmosphere. 1. A method for manufacturing a field effect transistor, comprising: oxidizing the surface by irradiating energy rays; and oxidizing the surface to form amorphous or polycrystalline silicon constituting an active region on a silicon nitride film.
JP3077282A 1982-02-25 1982-02-25 Field effect transistor and manufacture thereof Granted JPS58147070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3077282A JPS58147070A (en) 1982-02-25 1982-02-25 Field effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3077282A JPS58147070A (en) 1982-02-25 1982-02-25 Field effect transistor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58147070A JPS58147070A (en) 1983-09-01
JPH023308B2 true JPH023308B2 (en) 1990-01-23

Family

ID=12312966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3077282A Granted JPS58147070A (en) 1982-02-25 1982-02-25 Field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58147070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086805A (en) * 2001-09-07 2003-03-20 Ricoh Co Ltd Thin film transistor and electrical insulation film and method of manufacturing these

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170972A (en) * 1984-02-15 1985-09-04 Sony Corp Thin film semiconductor device
JPS61105863A (en) * 1984-10-29 1986-05-23 Seiko Epson Corp Semiconductor image memory element
JPS6240773A (en) * 1985-08-17 1987-02-21 Sanyo Electric Co Ltd Thin film transistor and manufacture thereof
JPS6319876A (en) * 1986-07-11 1988-01-27 Fuji Xerox Co Ltd Thin film transistor device
JPS644070A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Thin film transistor and manufacture thereof
JPH03237790A (en) * 1990-02-15 1991-10-23 Shibaura Eng Works Co Ltd Mounting method of electronic circuit parts
JPH0637317A (en) * 1990-04-11 1994-02-10 General Motors Corp <Gm> Thin-film transistor and its manufacture
JPH07118527B2 (en) * 1990-10-18 1995-12-18 富士ゼロックス株式会社 Image sensor manufacturing method
US8344378B2 (en) * 2009-06-26 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567480A (en) * 1979-06-29 1981-01-26 Mitsubishi Electric Corp Film transistor
JPS56111258A (en) * 1980-01-07 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Thin film semiconductor device
JPS577972A (en) * 1980-06-19 1982-01-16 Nec Corp Insulated gate type thin film transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567480A (en) * 1979-06-29 1981-01-26 Mitsubishi Electric Corp Film transistor
JPS56111258A (en) * 1980-01-07 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Thin film semiconductor device
JPS577972A (en) * 1980-06-19 1982-01-16 Nec Corp Insulated gate type thin film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086805A (en) * 2001-09-07 2003-03-20 Ricoh Co Ltd Thin film transistor and electrical insulation film and method of manufacturing these

Also Published As

Publication number Publication date
JPS58147070A (en) 1983-09-01

Similar Documents

Publication Publication Date Title
US5736750A (en) MIS semiconductor device and method of fabricating the same
US4633284A (en) Thin film transistor having an annealed gate oxide and method of making same
JPH0465548B2 (en)
JPH0451071B2 (en)
JPH023308B2 (en)
KR940008227B1 (en) Manufacturing method of thin film transistor
JPH0637317A (en) Thin-film transistor and its manufacture
JP3352744B2 (en) Method for manufacturing MIS type semiconductor device
JPS60142566A (en) Insulated gate thin film transistor and manufacture thereof
JPS60177676A (en) Thin film transistor device and manufacture thereof
JP3431653B2 (en) Method for manufacturing MIS type semiconductor device
JPH07211921A (en) Manufacture of semiconductor element
JPH04240733A (en) Manufacture of thin film transistor
JPH0740607B2 (en) Method of manufacturing thin film transistor
JPS59189676A (en) Semiconductor device
JP2587570B2 (en) Polycrystalline silicon thin film transistor and method of manufacturing the same
JPS63140580A (en) Thin film transistor
JPH0142147B2 (en)
JPH05291294A (en) Manufacture of thin film transistor
JPH03233938A (en) Manufacture of thin-film transistor
JPS61268068A (en) Thin-film transistor and manufacture thereof
JPH05299656A (en) Manufacture of semiconductor device
KR930004347B1 (en) Method of fabricating nonvolatile semiconductor memory device
JPH05326954A (en) Thin-film transistor and its production
KR940003093A (en) Method of manufacturing thin film transistor of semiconductor device