JPS61105863A - Semiconductor image memory element - Google Patents

Semiconductor image memory element

Info

Publication number
JPS61105863A
JPS61105863A JP59227505A JP22750584A JPS61105863A JP S61105863 A JPS61105863 A JP S61105863A JP 59227505 A JP59227505 A JP 59227505A JP 22750584 A JP22750584 A JP 22750584A JP S61105863 A JPS61105863 A JP S61105863A
Authority
JP
Japan
Prior art keywords
amorphous silicon
nonvolatile memory
semiconductor
intensity
image storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59227505A
Other languages
Japanese (ja)
Inventor
Shuichi Matsuo
修一 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP59227505A priority Critical patent/JPS61105863A/en
Publication of JPS61105863A publication Critical patent/JPS61105863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To make it feasible to process a picture image with high concentration, large space and no time-slip by a method wherein photoconductive amorphous silicon is utilized for a channel part of nonvolatile memory of picture element part. CONSTITUTION:An I type amorphous silicon 15 to be a channel part of MNOS type nonvolatile memory composed of two layered film with charge arresting level of an amorphous silicon nitride 13 and an amorphous silicon oxide 14 as a gate insulating film contains 0-100ppm of boron. The resistance between source and drain fluctuates corresponding to the entering photo-intensity. The element between a gate 21 and a source 22 is impressed with voltage during photo-data writing process while when light enters into a channel pat to produce photocarrier corresponding to the photo-intensity, the voltage on gate insulating film fluctuates making electrons from the silicon 15 pass through the filter 14 by the charge corresponding to said voltage to be arrested at the level of interface between films 13, 14 as well as film 13 for storing data corresponding to the photo-intensity. Through these procedures, a picture image with high concentration, large space and less picture element space may be processed since the memory element utilizes the I type amorphous silicon only.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体画像記憶素子の構造に関す2゜[従来
の技術〕 従来の半導体撮像素子として、MO8型撮像訃子がある
。2次元型MO8撮像素子の構成を第5図に示す。51
は水平シフトレジスタであり、MOSスイッチ53の一
つのゲートをオンしデータ線を選択し、52は垂直シフ
トレジスタであり、ワード線の一つを選択し、画素部の
MOSスイッチ56の一つを選択する。57はフォトダ
イオードで、光信号を電気信号に変換する受光素子であ
る。また、5日はデータ読み出し線である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a semiconductor image storage device. [Prior Art] As a conventional semiconductor imaging device, there is an MO8 type imaging device. FIG. 5 shows the configuration of a two-dimensional MO8 image sensor. 51
52 is a horizontal shift register that turns on one gate of the MOS switch 53 to select a data line, and 52 is a vertical shift register that selects one of the word lines and turns on one of the MOS switches 56 in the pixel section. select. 57 is a photodiode, which is a light receiving element that converts an optical signal into an electrical signal. Also, the 5th is a data read line.

フォトダイオード57の原理は、まずフォトダイオード
を電源電圧まで充電する。ここで、光信号の強度に応じ
て発生した電荷がフォトダイオードの充電電圧を放電さ
せる。次にMOSスイッチ56がオン状態になれば、選
択されたフォトダイオードは再び電源電圧まで充電され
る。この充放電電流を共通のデータ読み出し線58を通
して、負荷抵抗59により、マトリックス状に配置され
た画素部の光情報を次々に出力信号として取り出し、画
像処理を行なう。
The principle of the photodiode 57 is to first charge the photodiode to the power supply voltage. Here, the charge generated according to the intensity of the optical signal discharges the charging voltage of the photodiode. Next, when the MOS switch 56 is turned on, the selected photodiode is charged again to the power supply voltage. This charging/discharging current is passed through a common data readout line 58, and optical information of the pixel portions arranged in a matrix is successively extracted as an output signal by a load resistor 59, and image processing is performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように前述の従来技術では2次元型MO8撮像素子
は、順次走査により、光情報を画素単位で次々と読み出
していくため、−画像において画素ごとに時間的なずれ
が生じる。一方、−画像情報の時間的なずれをなくすた
めにシフトレジスタの動作速度を速くすると、階調が取
りにくく雑音等の問題がでてくる。特に、画素密度が大
きくなったり、大面積化する場合、画像処理が大変むず
かしくなるという問題点があった。
As described above, in the conventional technique described above, the two-dimensional MO8 image sensor sequentially reads out optical information pixel by pixel by sequential scanning, so that a temporal shift occurs from pixel to pixel in the image. On the other hand, if the operating speed of the shift register is increased in order to eliminate the time lag in image information, problems such as noise and the like will occur because it will be difficult to obtain gradations. In particular, when the pixel density increases or the area increases, there is a problem in that image processing becomes extremely difficult.

また、一画素につき、MOSスイッチ56とフォトダイ
オード57を必要とするため、フォトダイオードの占め
る面積を必要とする。
Furthermore, since each pixel requires a MOS switch 56 and a photodiode 57, the area occupied by the photodiode is required.

また、MO8撮像素子自身で画素情報を記憶できないと
いう問題点もあった。
Another problem was that the MO8 image sensor itself could not store pixel information.

そこで、本発明はこの様な問題点を解決するもので、そ
の目的とするところは、MO8撮像素子の画素部のMO
Sスイッチの代わりに不揮発性メモリを用い、かつ、不
揮発性メモリのチャンネル部に光導電性の非晶質珪素を
用いることによって画像情報を読みこみ、直接不揮発性
メモリに記憶保持ができ、また、画像情報をすべての画
素に同時に読むことができ、時間的にずれのない高密度
大面積の画像処理を可能にする半導体画像記憶素子を提
供することにある。
Therefore, the present invention is intended to solve such problems, and its purpose is to improve the MO of the pixel part of the MO8 image sensor.
By using a non-volatile memory instead of the S switch and using photoconductive amorphous silicon for the channel portion of the non-volatile memory, image information can be read and stored directly in the non-volatile memory, and An object of the present invention is to provide a semiconductor image storage element that can read image information to all pixels simultaneously and enables high-density, large-area image processing without temporal lag.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体画像記憶素子は、不揮発性メモリを用い
、かつ該不揮発性メモリのチャンネル部に導電性を有す
る非晶質半導体を用いたことを特徴とする。
The semiconductor image storage device of the present invention is characterized in that it uses a nonvolatile memory and uses an amorphous semiconductor having conductivity in a channel portion of the nonvolatile memory.

〔作用〕[Effect]

本発明の上記の素子構成によれば、チャンネル部に入射
する光信号によりチャンネル部に光キャリアが発生し、
チャンネル部の抵抗が下がるため、ゲート・ソース間に
印加したある一定の書き込み電圧より、ゲート絶縁膜に
かかる電圧が光信号の強度に応じて変化するため、光信
号の強度に応じた電荷が半導体不揮発性メモリに記憶保
持されるため画像記憶ができる。
According to the above element configuration of the present invention, optical carriers are generated in the channel portion by an optical signal incident on the channel portion,
Since the resistance of the channel part decreases, the voltage applied to the gate insulating film changes according to the intensity of the optical signal, rather than a certain writing voltage applied between the gate and source, so that the charge according to the intensity of the optical signal is transferred to the semiconductor. Images can be stored because they are stored in non-volatile memory.

また、上記の素子を用いて2次元型マ) IJソックス
半導体画像装置に用いた場合、一画面の光情報をすべて
の画素に同時に記憶保持することができる。
Further, when the above-mentioned element is used in a two-dimensional type IJ sock semiconductor image device, optical information of one screen can be stored and held in all pixels simultaneously.

〔実施例〕〔Example〕

第1図は、本発明の半導体画像記憶素子の一実施例であ
る。
FIG. 1 shows an embodiment of the semiconductor image storage element of the present invention.

第1図において、ゲート絶縁膜として膜厚が400^の
非晶質窒化珪素13と膜厚が20Hの非晶質酸化珪素1
4の電荷捕獲準位を有する二層膜から成るMNOS(金
属−窒化膜一酸化膜一半導体)型不揮発性メモリであり
、12はゲート電極、15はMNOS型不揮発性メモリ
のチャンネル部となる光導電性のノンドープ又は極微量
のボロンドープi型(真性)非晶質珪素、16はソース
・ドレイン部となるリンドープn型非晶質珪素、17は
ソース俸ドレイン配線である。
In FIG. 1, amorphous silicon nitride 13 with a film thickness of 400^ and amorphous silicon oxide 1 with a film thickness of 20H are used as gate insulating films.
This is an MNOS (metal-nitride-monoxide-semiconductor) type non-volatile memory consisting of a two-layer film having a charge trapping level of 4, where 12 is a gate electrode and 15 is a light beam which becomes the channel part of the MNOS type non-volatile memory. Conductive non-doped or extremely small amount of boron doped i-type (intrinsic) amorphous silicon, 16 is phosphorus-doped n-type amorphous silicon that becomes the source/drain portion, and 17 is source/drain wiring.

ここで、チャンネル部となるi型非晶質珪+i15は、
光導電子素子として用いるため、非晶質酸化珪素15と
ソース・ドレイン16間の抵抗が、そこに入射する光強
度に応じて変化する。11キ2図に、第1図の等何回路
を示す。
Here, the i-type amorphous silicon + i15 that becomes the channel part is
Since it is used as a photoconductive element, the resistance between the amorphous silicon oxide 15 and the source/drain 16 changes depending on the intensity of light incident thereon. Figure 11-2 shows the equivalent circuit of Figure 1.

第2図を用いて、光情報の書き込み動作を説明する。ま
ず、ゲート21.ソース22間に、電子が、薄い酸化膜
をトンネルするのに適当な電圧(例えば+30v)を印
加する。ここで、チャンネル部に光が入射することによ
り、光強度に応じた元キャリアが発生し、ゲート絶縁膜
にかかる電圧が変化し、L型非晶質珪素15から電子が
、ゲート絶縁膜の電圧に応じた電荷量だけ、非晶質酸化
珪素膜14をトンネルし、非晶質窒化珪素膜13と非晶
質酸化珪素膜14の界面や、非晶質窒化珪素膜15の捕
獲準位に捕獲される。つまり、光強度に応じた情報を記
憶保持する。
The optical information writing operation will be explained with reference to FIG. First, Gate 21. A suitable voltage (for example, +30V) is applied between the sources 22 to cause electrons to tunnel through the thin oxide film. Here, when light enters the channel part, original carriers are generated according to the light intensity, and the voltage applied to the gate insulating film changes, and electrons are transferred from the L-type amorphous silicon 15 to the voltage of the gate insulating film. The amount of charge corresponding to the amount of charge tunnels through the amorphous silicon oxide film 14 and is captured at the interface between the amorphous silicon nitride film 13 and the amorphous silicon oxide film 14 or at the trap level of the amorphous silicon nitride film 15. be done. In other words, information corresponding to the light intensity is stored and held.

第3図は、上記の半導体画像記憶素子を2次元の画像記
憶装置に応用した構成図である。31は、Xドライバー
であり、データ線64を選択し、32はXドライバーで
あり、ワード線55を選択する。36.37は上記のチ
ャンネル部に光導電性素子となるt型非晶質珪素を用い
たMNOS型不揮発性メモリである。63は読み出し専
用のMOSスイッチであり、68は読み出し線である。
FIG. 3 is a configuration diagram in which the above semiconductor image storage element is applied to a two-dimensional image storage device. 31 is an X driver that selects the data line 64; 32 is an X driver that selects the word line 55; 36 and 37 are MNOS type nonvolatile memories using T-type amorphous silicon, which serves as a photoconductive element, in the channel portion. 63 is a read-only MOS switch, and 68 is a read line.

この半導体画像記憶装置は、2次元の光情報を同時にす
べての画素に記憶することができる。これは、データ線
34をすべて開放し、ワード線35をすべて同時にオン
状態にしてすべての不揮発性メモリ36のゲートに書き
込み電圧を印加することによって行なわれる。これによ
り、チャンネル部の光導電素子37に入射する光信号の
強度に応じて36のゲート絶縁膜にかかる電圧が変化し
、光信号の強度に応じた電荷が非晶質酸化珪素膜をトン
ネルし、絶縁膜中に記憶保持される。
This semiconductor image storage device can simultaneously store two-dimensional optical information in all pixels. This is done by opening all the data lines 34, turning on all the word lines 35 at the same time, and applying a write voltage to the gates of all the nonvolatile memories 36. As a result, the voltage applied to the gate insulating film 36 changes depending on the intensity of the optical signal incident on the photoconductive element 37 in the channel portion, and the charge corresponding to the intensity of the optical signal tunnels through the amorphous silicon oxide film. , is stored and retained in the insulating film.

読み出しは、チャンネル部への入射光を一定にして、従
来の2次元型MO8撮像素子と同じようにマトリックス
状に配置された画像の一つをワード線35とビット線3
4の組み合わせにより、MOSスイッチ33を通して読
み出し録から出力信号を読み出し、ことにより行なわれ
、画像処理される。
For readout, the incident light to the channel section is kept constant, and one of the images arranged in a matrix is connected to the word line 35 and the bit line 3 in the same way as in the conventional two-dimensional MO8 image sensor.
4, the output signal is read out from the readout record through the MOS switch 33, and image processing is performed.

ここで、35のMOSスイッチは、MNOS型不揮発性
メモリであり、このMNOS型不揮発性メモリのしきい
値を適当に調節してMOSスイッチとして代用している
Here, the MOS switch 35 is an MNOS type nonvolatile memory, and the threshold value of this MNOS type nonvolatile memory is adjusted appropriately to be used as a MOS switch.

次に第4図に、本発明の半導体画像記憶素子の製造工程
を示す。まず絶縁物基板11の上にゲート電極12とし
てアルミ又は工To(酸化インジウムスズ)を形成し、
プラズマ気相成長法を用いて非晶質窒化珪素膜13(4
00X)、非晶質酸化珪素膜14(20X)、ボロンを
0〜1100pp 含むt型非晶質珪i1s、(1oo
ooX)、リンを100 ppm  〜5%含むリンド
ープN型非晶質珪素15(3000X)を連続積層する
((α))。読いて、チャンネル部となる龜型非晶質珪
素15をリンドープ外型非晶質珪素16と共にエツチン
グし、その上にht又は工T017を成膜する((b)
)。最後に、At又は工TOをエツチングし、ソース・
ドレイン配線17を形成し、このht又は工Toをマス
クとして、ソース・ドレイン部を分離するために、リン
ドープn型非晶質珪素18をエツチングする((C))
Next, FIG. 4 shows the manufacturing process of the semiconductor image storage element of the present invention. First, aluminum or To (indium tin oxide) is formed as a gate electrode 12 on an insulating substrate 11,
Amorphous silicon nitride film 13 (4
00
ooX), phosphorus-doped N-type amorphous silicon 15 (3000X) containing 100 ppm to 5% phosphorus is continuously laminated ((α)). After reading, the ferrule-shaped amorphous silicon 15 that will become the channel part is etched together with the phosphorus-doped outer-type amorphous silicon 16, and a film of HT or T017 is formed thereon ((b)
). Finally, etching At or TO, the source
A drain wiring 17 is formed, and the phosphorus-doped n-type amorphous silicon 18 is etched using this ht or etching TO as a mask to separate the source and drain parts ((C)).
.

〔効果〕 以上述べた様に本発明によれば、半導体不揮発性メモリ
のチャンネル部にi型非晶質珪素を用いたため、そのt
型非晶質珪素が光導電性を示すことから、この半導体不
揮発性メモリだけで、半導体画像記憶素子としての機能
を有するという効果を有する。すなわち、半導体不揮発
性メモリのチャンネル部に元情報が入射すると、光キャ
リアが発生し、チャンネル部の抵抗が光信号の強度に応
じて変化するため、半導体不揮発性メモリのゲーt・ソ
ース間に印加される適当な書き込み電圧により、ゲート
絶縁膜にかかる電圧が光信号の強度に応じて変化する。
[Effect] As described above, according to the present invention, since i-type amorphous silicon is used in the channel portion of the semiconductor nonvolatile memory, its t
Since amorphous silicon exhibits photoconductivity, this semiconductor nonvolatile memory alone has the effect of functioning as a semiconductor image storage element. In other words, when original information enters the channel section of a semiconductor nonvolatile memory, optical carriers are generated and the resistance of the channel section changes depending on the intensity of the optical signal. The voltage applied to the gate insulating film varies depending on the intensity of the optical signal by applying an appropriate write voltage.

従って、元情報に応じた電荷が非晶質酸化膜をトンネル
して、非晶質酸化珪素膜と非晶質窒化珪素膜の界面又は
非晶質窒化珪素膜中の捕獲準位に捕獲され、光情報を記
憶保持するという特徴を有する。この記憶された光情報
は、不揮発性メモリを用いているため、電源が切れても
牛永久的に記憶されるという効果もある。
Therefore, charges according to the original information tunnel through the amorphous oxide film and are captured at the interface between the amorphous silicon oxide film and the amorphous silicon nitride film or at the trap level in the amorphous silicon nitride film. It has the characteristic of storing and retaining optical information. Since this stored optical information uses non-volatile memory, it has the advantage that it is permanently stored even if the power is turned off.

また、本発明の半導体画像記憶素子は、半導体不揮発性
メモリのチャンネル部に光導電性を示すt型非晶質珪素
のみを用いただけなので、特別に光導電素子としての領
域を要しないため、単に電気信号のみを記憶する半導体
不揮発性メモリと楠本的には何も変わらず同等の面積で
よく、画素面積の小さい高精細度の半導体画像記憶装置
を作、5ことができる。また、プラズマ気相成長法を用
いているため、絶縁物基板としてガラス基板を用いれば
、安価で大面積の半導体画像記憶装置も作ることができ
るという効果も有する。
Further, since the semiconductor image storage device of the present invention uses only T-type amorphous silicon exhibiting photoconductivity in the channel portion of the semiconductor nonvolatile memory, it does not require a special area as a photoconductive device. Kusumoto's method is no different from a semiconductor non-volatile memory that stores only electrical signals, and requires the same area, making it possible to create a high-definition semiconductor image storage device with a small pixel area. Furthermore, since a plasma vapor phase epitaxy method is used, an inexpensive, large-area semiconductor image storage device can be manufactured by using a glass substrate as an insulating substrate.

一方、第1図のように2次元型マトリックス状の画像記
憶装置は、−画像情報を同時にすべての画素に記憶でき
るため、走査して画像情報を記憶する必要がなく、画素
ごとによる時間的なずれが生じないという効果を有する
On the other hand, a two-dimensional matrix image storage device as shown in Figure 1 can store image information in all pixels at the same time, so there is no need to scan and store image information, and there is no need to store image information by scanning. This has the effect that no misalignment occurs.

また、MOSスイッチ等をしきい値を制御したMNOS
型不揮発性メモリで代用すれば、フォト工程が第4図に
示すように6エ程でよく、製造工程が非常にPM単にな
り安価な半導体画像記憶装置を製造することができると
いう効果も有する。
In addition, MNOS with controlled threshold values for MOS switches, etc.
If a type non-volatile memory is used instead, the photo process only needs to be about 6 steps as shown in FIG. 4, and the manufacturing process becomes very simple PM, which also has the effect of making it possible to manufacture an inexpensive semiconductor image storage device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体画像記憶素子の一実施例を示す
構造図であり、第2図は第1図の等価回路図である。第
3図は、本発明の半導体画像記憶素子を用いた2次元型
半導体画像記憶装置を示す図である。第4図(α)〜(
C)は本発明の半導体画像記憶素子の製造工程を示す図
。第5図は従来の2次元型MO3撮像素子の構成を示す
図。 11・・・・・・絶縁物基板 12・・・・・・ゲート電極 13・・・・・・非晶質窒化珪素 14・・・・・・非晶質酸化珪素 15・・・・・・非晶質珪素 16・・・・・・n型非晶質珪素 17・・・・・・p、L又は工TO配線21・・・・・
・ゲート 22・・・・・・ソース 23・・・・・・ドレイン 31・・・・・・Xドライバー 32・・・・・・Xドライバー 63・・・・・・MOSスイッチ 34・・・・・・データ線 35・・・・・・ワード線 36・・・・・・MNOS型不揮発性メモリ37・・・
・・・光導電素子 38・・・・・・読み出し線 51・・・・・・水平シフトレジスタ 52・・・・・・垂直シフトレジスタ 56・・・・・・MOSスイッチ 54・・・・・・データ線 55・・・・・・ワード線 56・・・・・・MOSスイッチ 57・・・・・・フォトダイオード 58・・・・・・読み出し線 59・・・・・・負荷抵抗 以  上
FIG. 1 is a structural diagram showing an embodiment of the semiconductor image storage element of the present invention, and FIG. 2 is an equivalent circuit diagram of FIG. 1. FIG. 3 is a diagram showing a two-dimensional semiconductor image storage device using the semiconductor image storage element of the present invention. Figure 4 (α) - (
C) is a diagram showing the manufacturing process of the semiconductor image storage element of the present invention. FIG. 5 is a diagram showing the configuration of a conventional two-dimensional MO3 image sensor. 11...Insulator substrate 12...Gate electrode 13...Amorphous silicon nitride 14...Amorphous silicon oxide 15... Amorphous silicon 16...N-type amorphous silicon 17...P, L or engineering TO wiring 21...
・Gate 22...Source 23...Drain 31...X driver 32...X driver 63...MOS switch 34... ...Data line 35...Word line 36...MNOS type nonvolatile memory 37...
... Photoconductive element 38 ... Readout line 51 ... Horizontal shift register 52 ... Vertical shift register 56 ... MOS switch 54 ...・Data line 55...Word line 56...MOS switch 57...Photodiode 58...Readout line 59...Load resistance or more

Claims (5)

【特許請求の範囲】[Claims] (1)半導体不揮発性メモリに於いて、該半導体不揮発
性メモリのチャンネル部に光導電性を有する非晶質珪素
を用いたことを特徴とする半導体画像記憶素子。
(1) A semiconductor image storage element in a semiconductor nonvolatile memory, characterized in that amorphous silicon having photoconductivity is used in a channel portion of the semiconductor nonvolatile memory.
(2)前記非晶質珪素として、ボロンを0〜100pp
m含む該非晶質珪素を用いたことを特徴とする特許請求
の範囲第1項記載の半導体画像記憶素子。
(2) 0 to 100 pp of boron as the amorphous silicon
The semiconductor image storage device according to claim 1, characterized in that the amorphous silicon containing m is used.
(3)前記半導体不揮発性メモリとして、ゲート絶縁膜
を電荷捕獲準位を有する酸化珪素膜と窒化珪素膜の二層
膜とするMNOS(金属−窒化珪素−酸化珪素−半導体
)型不揮発性メモリを用いたことを特徴とする特許請求
の範囲第1項記載の半導体画像記憶素子。
(3) The semiconductor nonvolatile memory is an MNOS (metal-silicon nitride-silicon oxide-semiconductor) type nonvolatile memory in which the gate insulating film is a two-layer film of a silicon oxide film and a silicon nitride film having a charge trapping level. A semiconductor image storage device according to claim 1, wherein the semiconductor image storage device is used.
(4)前記MNOS型不揮発性メモリの酸化珪素膜とし
て、該酸化珪素膜の厚さが75Å〜80Åである非晶質
酸化珪素膜であることを特徴とする特許請求の範囲第1
項記載の半導体画像記憶素子。
(4) The silicon oxide film of the MNOS type nonvolatile memory is an amorphous silicon oxide film having a thickness of 75 Å to 80 Å.
2. The semiconductor image storage device described in 2.
(5)前記MNOS型不揮発性メモリの窒化珪素膜とし
て、該窒化珪素膜の厚さが100Å〜800Åである非
晶質窒化珪素膜であることを特徴とする特許請求の範囲
第1項記載の半導体画像記憶素子。
(5) The silicon nitride film of the MNOS type nonvolatile memory is an amorphous silicon nitride film having a thickness of 100 Å to 800 Å. Semiconductor image storage element.
JP59227505A 1984-10-29 1984-10-29 Semiconductor image memory element Pending JPS61105863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59227505A JPS61105863A (en) 1984-10-29 1984-10-29 Semiconductor image memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59227505A JPS61105863A (en) 1984-10-29 1984-10-29 Semiconductor image memory element

Publications (1)

Publication Number Publication Date
JPS61105863A true JPS61105863A (en) 1986-05-23

Family

ID=16861945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59227505A Pending JPS61105863A (en) 1984-10-29 1984-10-29 Semiconductor image memory element

Country Status (1)

Country Link
JP (1) JPS61105863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270567A (en) * 1989-09-06 1993-12-14 Casio Computer Co., Ltd. Thin film transistors without capacitances between electrodes thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325635A (en) * 1976-08-21 1978-03-09 Sumitomo Metal Ind Apparatus for fly prevention of slag particles
JPS58147070A (en) * 1982-02-25 1983-09-01 Mitsubishi Electric Corp Field effect transistor and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325635A (en) * 1976-08-21 1978-03-09 Sumitomo Metal Ind Apparatus for fly prevention of slag particles
JPS58147070A (en) * 1982-02-25 1983-09-01 Mitsubishi Electric Corp Field effect transistor and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270567A (en) * 1989-09-06 1993-12-14 Casio Computer Co., Ltd. Thin film transistors without capacitances between electrodes thereof

Similar Documents

Publication Publication Date Title
US6969662B2 (en) Semiconductor device
US7465602B2 (en) Anti-blooming storage pixel
US4972243A (en) Photoelectric conversion apparatus with shielded cell
JP2844733B2 (en) Photosensitive device with photosensitive dot signal amplification
US3935446A (en) Apparatus for sensing radiation and providing electrical readout
US4500924A (en) Solid state imaging apparatus
JPS5966277A (en) Solid-state image sensor
JPH06164826A (en) Solid-state image pickup device and its drive method
US4340909A (en) Solid state area imaging apparatus
EP0222434B1 (en) Control method for an integrated circuit formed with a common switching electrode for at least two oppositely switchable transistors, and device suitable therefor
CN103227184B (en) Based on imaging array and the exposing operation method thereof of composite dielectric gate structure-pixel unit
JPS61105863A (en) Semiconductor image memory element
US4789888A (en) Solid-state image sensor
US4862275A (en) Readout of charge packets from area imager CCD using an inverter-chain shift register
JPH05335544A (en) Solid state image sensor
JP2741703B2 (en) Photoelectric conversion device
US4402014A (en) Circuit arrangement for discharging a capacity
JP2556885B2 (en) Semiconductor device
JPH05244513A (en) Photoelectric converter and its drive method
CN111554700B (en) Imaging array based on composite dielectric gate structure and exposure and reading methods thereof
JP2533876B2 (en) Photoelectric conversion device
JPS6239545B2 (en)
CN114843295A (en) Photoelectric integrated device, array and method based on composite dielectric gate structure
JPH0746839B2 (en) Photoelectric conversion device
JPH084128B2 (en) Image reader