JPH0226385B2 - - Google Patents
Info
- Publication number
- JPH0226385B2 JPH0226385B2 JP58197047A JP19704783A JPH0226385B2 JP H0226385 B2 JPH0226385 B2 JP H0226385B2 JP 58197047 A JP58197047 A JP 58197047A JP 19704783 A JP19704783 A JP 19704783A JP H0226385 B2 JPH0226385 B2 JP H0226385B2
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- photoresist layer
- forming
- layer
- photoresist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920002120 photoresistant polymer Polymers 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 4
- 125000001153 fluoro group Chemical group F* 0.000 claims description 3
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000009832 plasma treatment Methods 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
【発明の詳細な説明】
本発明は、半導体装置における立体配線の形成
方法に関し、さらに詳しくは空気絶縁された立体
配線の形成方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a three-dimensional wiring in a semiconductor device, and more particularly to a method for forming an air-insulated three-dimensional wiring.
半導体素子、特に化合物半導体であるGaAsを
用いた接合ゲート型電界効果トランジスタ(以下
GaAsMESFETと称する)はSiバイポラトランジ
スタの特性限界を打破するマイクロ波トランジス
トとして実用化されている。このようなマイクロ
波でのGaAsMESFETの出力電力は全ゲート幅
を増やすことによつて増加させることができる。
そのため通常、電力用のGaAsMESFETは第1
図aの平面図に示すように櫛型のドレイン電極1
1およびソース電極12を交互に配置し、その間
にゲート電極13を配置する構造がとられてい
る。このような構成にするには必然的にソース電
極12への配線121とゲート電極13への給電
用配線131とは点14のような位置で立体配線
(クロスオーバー)されなければならない。通常
これらクロスオーバーは第1図bに第1図aのA
−A′部の断面を示すようにSiO2膜15により両
配線電極間を絶縁する構造がとられている。 Semiconductor elements, especially junction gate field effect transistors (hereinafter referred to as
GaAsMESFET) has been put into practical use as a microwave transistor that overcomes the characteristic limits of Si bipolar transistors. The output power of such microwave GaAs MESFETs can be increased by increasing the total gate width.
Therefore, GaAs MESFETs for power use are usually
As shown in the plan view of figure a, a comb-shaped drain electrode 1
1 and source electrodes 12 are arranged alternately, and a gate electrode 13 is arranged between them. In order to achieve such a configuration, the wiring 121 to the source electrode 12 and the power supply wiring 131 to the gate electrode 13 must necessarily be three-dimensionally wired (crossover) at a position such as point 14. Usually these crossovers are shown in Figure 1b and A in Figure 1a.
As shown in the cross section of the -A' section, a structure is adopted in which the two wiring electrodes are insulated by the SiO 2 film 15.
しかしながらX帯以上の超高周波になると、こ
れら立体配線部に生じる寄生容量はFET自身が
もつゲート・ソース間空乏層容量CGSに比べて無
視できなくなり、誘電体損と相俟つて利得あるい
は帯域特性低下の一因となる。立体交差する電極
幅を小さくすればある程度寄生容量を低減できる
が、配線抵抗の増加しいては配線電極のエレクト
ロマイグレーシヨンをきたすので好ましくない。
寄生抵抗の増加なしに寄生容量を大幅に低減する
方法としては、誘電体を介さずに立体交差部を空
気絶縁する(エアークロスオーバー構造)のが最
も有効である。 However, at ultra-high frequencies above the X band, the parasitic capacitance generated in these three-dimensional interconnections cannot be ignored compared to the gate-source depletion layer capacitance CGS of the FET itself, and together with dielectric loss, the gain or band characteristics This contributes to the decline. Although the parasitic capacitance can be reduced to some extent by reducing the width of the three-dimensionally intersecting electrodes, an increase in wiring resistance is not preferable because it causes electromigration of the wiring electrodes.
The most effective way to significantly reduce parasitic capacitance without increasing parasitic resistance is to insulate the intersection with air without using a dielectric (air crossover structure).
これまでにエアークロスオーバー構造をもつた
デバイスが幾つか報告されているが、それらの形
成方法はいずれもエツチングの選択性を主に利用
したものである。即ち、スペーサ材となる金属
(一般に銅が多用されている)を両配線電極間に
電解めつき等で形成した後、スペーサ材のみを選
択的にエツチング除去することによりエアークロ
スオーバー構造を得る方法である。 Several devices with air crossover structures have been reported so far, but all of their formation methods mainly utilize etching selectivity. In other words, an air crossover structure is obtained by forming a spacer material (copper is commonly used) between both wiring electrodes by electrolytic plating, etc., and then selectively etching away only the spacer material. It is.
このような従来の方法を用いて
GaAsMESFETのエアークロスオーバー化を図
ろうとした場合、以下に述べるような問題点を生
じる。即ち、(1)酸あるいはアルカリ溶液に弱い
GaAsあるいはAlから成るゲート電極等を全く侵
さずスペーサ材のみを選択的に除去できるエツチ
ング液が得難い。(2)数μmの厚さに形成されたス
ペーサ材をウエー内で均一性よく加工することが
困難等である。 Using traditional methods like this
When trying to make a GaAs MESFET into an air crossover, the following problems arise. (1) Sensitive to acid or alkaline solutions
It is difficult to obtain an etching solution that can selectively remove only the spacer material without attacking gate electrodes made of GaAs or Al. (2) It is difficult to process spacer material formed to a thickness of several μm with good uniformity within the wafer.
本発明の目的は、空気絶縁された新規な立体配
線の形成方法を提供するものである。 An object of the present invention is to provide a novel method for forming air-insulated three-dimensional wiring.
本発明によれば、基板上の第1の配線となる帯
状の電極上に厚膜から成る第1のホトレジスト層
を形成し、CF4プラズ中にさらすことにより表面
に弗素原子を多く含む変質層を形成する工程、該
第1のホトレジスト層をマスクとして電解めつき
を施すことにより該第1のホトレジスト層と同程
度の厚さの厚膜配線を形成する工程、全面に給電
用の金属膜を被着した後、前記第1の配線との交
差部が開口した第2のホトレジスト層を形成し、
再度電解めつきを施すことにより前記第1の配線
と立体交差した第2の配線を形成する工程、前記
第2のホトレジスト層を除去した後、前記第2の
配線をマスクとして前記給電用の金属膜をイオン
エツチングあるいは化学エツチングで除去し、さ
らに露出した前記第1のホトレジスト層をO2プ
ラズマ処理して変質層を除去し、しかる後有機溶
剤で除去する工程を含むことを特徴とする空気絶
縁された立体配線の形成方法が得られる。 According to the present invention, a first photoresist layer consisting of a thick film is formed on a band-shaped electrode serving as a first wiring on a substrate, and by exposing it to CF 4 plasma, a modified layer containing many fluorine atoms is formed on the surface. a step of forming a thick film wiring having a thickness similar to that of the first photoresist layer by performing electrolytic plating using the first photoresist layer as a mask, and a step of forming a metal film for power supply on the entire surface. After depositing, forming a second photoresist layer having an opening at the intersection with the first wiring,
forming a second wiring that intersects the first wiring by performing electrolytic plating again; and after removing the second photoresist layer, using the second wiring as a mask, forming a second wiring that intersects the first wiring; Air insulation characterized by comprising the steps of removing the film by ion etching or chemical etching, further treating the exposed first photoresist layer with O 2 plasma to remove the altered layer, and then removing it with an organic solvent. A method for forming three-dimensional wiring can be obtained.
前記本発明によれば、通常のホトリソグラフイ
工程で簡単に処理できるホトレジスト自体をスペ
ーサ材として使用するため、立体配線形成に要す
る工程が従来法に比べ大幅に簡略化される。 According to the present invention, since the photoresist itself, which can be easily processed in a normal photolithography process, is used as a spacer material, the steps required to form three-dimensional wiring are greatly simplified compared to conventional methods.
以下、本発明の一実施例として
GaAsMESFETのエアークロスオーバー化を例
にとり詳しく説明する。 Below, as an example of the present invention
This will be explained in detail using the air crossover of GaAs MESFET as an example.
第2図、第3図は本発明の一実施例を説明する
ための図で、第2図a〜fは製作工程の要部平面
図、第3図a〜fは各々第2図におけるA−A′,
B−B′,C−C′,D−D′,E−E′,F−F′の要部
断面図を示す。まず最初に、半絶縁性GaAs基板
20上にエピタキシヤル成長された動作層21を
形成し、この上にシヨツトキーバリア形成用の
Alから成るゲート電極22、およびAuGeNiから
成るオーム性のソース電極23、ドレイン電極2
4を通常の光学露光によりリフトオフ法で形成す
る(第2図a)。次にAlゲート電極22の保護膜
となるSiO2膜25をCVD法により3000Å程度ウ
エーハ全面に被着させ、ソースおよびドレイン電
極取り出し部231,241およびゲート電極取
り出し部221に窓をあける。次にAlから成る
ゲートパツド部222とそこから引き出される
Auから成るボンデイング線との反応を防止する
ために、例えばTi/Pt等の反応防止用電極22
3を選択的にゲートパツド部222に形成した
後、電解めつきのための給電用金属膜26とし
て、例えばTi/Auを各々約500Å蒸着する(第
3図b)。ウエーハ全面にAZ1375(商品名)等の
ポジ型ホトレジスト27を4〜6μmの厚さに塗
布後、ゲート電極22への給電用配線224を選
択的に被覆するようにパターニングを行う(第2
図cで斜線を施した領域)。次に120℃、60分程度
ベーキングを施した後、CF4ガス圧0.3Torr、RF
電力200Wの条件下でCF4プラズマ処理を2分程
度行つて表面に約200Åの弗素原子を多く含む変
質層28を形成する。この変質層28はAZ系レ
ジストの溶剤であるn−ブチルアセテート等の有
機溶媒やAZ系レジストの現像液に不溶であるが、
O2プラズマ処理で容易に除去できる。このCF4プ
ラズマ処理はこの後のホトプロセス工程において
レジストパターン27が変形するのを防止する効
果をもつものである。次に第2図dの斜線部に
Auめつきを施すことにより、ホトレジスト層2
7と同程度の厚さの厚膜配線29を形成する。後
に形成されるクロスオーバー電極の完成後の変形
を防ぐ目的から、厚膜配線29の厚みはホトレジ
スト層27と同等かあるいは若干厚めに形成する
ことが望ましい。次に全面に前述したと同様の給
電用金属膜30を再度蒸着によつて形成した後、
AZ1350J等のホトレジスト31を塗布し、第2図
eの斜線部が選択的に覆われるようにパターニン
グを行う。第1層目のホトレジスト27にCF4プ
ラズマ処理を施さない従来法では、段差部の形状
が複雑なために被覆性が劣るのが原因で段切れを
起しやすく、この2層目のホトレジスト31のパ
ターニングの際、第1層目のレジストを溶解して
給電用金属膜30が変形あるいはリフトオフされ
てしまい、後のクロスオーバー電極の形成が困難
であつた。次にホトレジスト層31をマスクに再
度Auめつきを施して例えば2〜3μm厚のクロス
オーバー電極32を形成する(第3図e)。次に
アセトン等の有機溶剤でホトレジスト31を除去
した後、クロスオーバー電極32をマスクとし
て、ArイオンビームエツチングあるいはI2:
KI:H2O系およびH2SO4系のエツチング液を用
いてクロスオーバー電極32部以外の不要な給電
用金属膜32を除去する。次にO2ガス圧
0.5Torr、RF電力200Wの条件下でO2プラズマ処
理を2分間程度行つて露出したホトレジスト層2
7表面の変質層28を除去した後、レジスト剥離
剤(J−100)を用いて完全にホトレジスト27
を除去し、最後に、前記同様のエツチング液を用
いて選択的に不要な給電用金属膜26を除去する
ことにより、第3図fに示すようなゲート給電用
配線224とクロスオーバー電極32とが空気絶
縁されたエアークロスオーバー構造が完成する。 Figures 2 and 3 are diagrams for explaining one embodiment of the present invention, Figures 2 a to f are plan views of main parts of the manufacturing process, and Figures 3 a to f are A in Figure 2, respectively. −A′,
Main part sectional views taken along B-B', CC', D-D', E-E', and F-F' are shown. First, an active layer 21 is epitaxially grown on a semi-insulating GaAs substrate 20, and a layer for forming a shot key barrier is formed on this layer.
Gate electrode 22 made of Al, ohmic source electrode 23 and drain electrode 2 made of AuGeNi
4 is formed by a lift-off method using normal optical exposure (FIG. 2a). Next, a SiO 2 film 25 serving as a protective film for the Al gate electrode 22 is deposited on the entire surface of the wafer to a thickness of about 3000 Å by CVD, and windows are opened in the source and drain electrode extraction portions 231 and 241 and the gate electrode extraction portion 221. Next, the gate pad section 222 made of Al and the gate pad section 222 are drawn out from there.
In order to prevent reaction with the bonding wire made of Au, the reaction prevention electrode 22 is made of, for example, Ti/Pt.
3 is selectively formed on the gate pad portion 222, for example, Ti/Au is deposited to a thickness of about 500 Å each as a power supply metal film 26 for electrolytic plating (FIG. 3b). After applying a positive photoresist 27 such as AZ1375 (trade name) to a thickness of 4 to 6 μm over the entire surface of the wafer, patterning is performed to selectively cover the power supply wiring 224 to the gate electrode 22 (second photoresist 27).
(shaded area in figure c). Next, after baking at 120℃ for about 60 minutes, CF 4 gas pressure 0.3 Torr, RF
A CF 4 plasma treatment is performed for about 2 minutes under the condition of a power of 200 W to form an altered layer 28 of about 200 Å containing many fluorine atoms on the surface. This altered layer 28 is insoluble in organic solvents such as n-butyl acetate, which is a solvent for AZ-based resists, and in developing solutions for AZ-based resists.
Easily removed by O 2 plasma treatment. This CF 4 plasma treatment has the effect of preventing the resist pattern 27 from being deformed in the subsequent photoprocessing step. Next, in the shaded area in Figure 2 d.
By applying Au plating, the photoresist layer 2
A thick film wiring 29 having a thickness similar to that of 7 is formed. For the purpose of preventing deformation after completion of the cross-over electrode that will be formed later, it is desirable that the thickness of the thick film wiring 29 be equal to or slightly thicker than the photoresist layer 27. Next, after forming the same power supply metal film 30 as described above again by vapor deposition on the entire surface,
A photoresist 31 such as AZ1350J is applied and patterned so that the shaded area in FIG. 2e is selectively covered. In the conventional method in which the first layer of photoresist 27 is not subjected to CF 4 plasma treatment, step breakage tends to occur due to poor coverage due to the complicated shape of the step portion, and this second layer of photoresist 31 During patterning, the first layer of resist was dissolved and the power supply metal film 30 was deformed or lifted off, making it difficult to form a crossover electrode later. Next, using the photoresist layer 31 as a mask, gold plating is applied again to form a crossover electrode 32 having a thickness of, for example, 2 to 3 μm (FIG. 3e). Next, after removing the photoresist 31 with an organic solvent such as acetone, using the crossover electrode 32 as a mask, Ar ion beam etching or I 2 :
KI: Using a H 2 O-based and H 2 SO 4 -based etching solution, unnecessary power supply metal film 32 other than the crossover electrode 32 portion is removed. Then O2 gas pressure
Photoresist layer 2 exposed by O 2 plasma treatment for about 2 minutes under conditions of 0.5 Torr and RF power of 200 W.
After removing the deteriorated layer 28 on the surface of 7, completely remove the photoresist 27 using a resist remover (J-100).
Finally, by selectively removing unnecessary power supply metal film 26 using the same etching solution as described above, gate power supply wiring 224 and crossover electrode 32 as shown in FIG. 3F are formed. The air-insulated air crossover structure is completed.
以上述べてきたように、本発明による形成方法
を用いれば、従来のような複雑な工程を必要とす
るスペーサ材の形成を通常のホトプロセスで簡単
に行なえるため、生産性、歩留り及び信頼度の大
幅な向上が可能となつた。 As described above, if the forming method of the present invention is used, the spacer material, which conventionally requires a complicated process, can be easily formed using a normal photo process, resulting in improved productivity, yield, and reliability. It has become possible to significantly improve the
第1図a,bはそれぞれ一般の電力用
GaAsMESFETの構造を示す平面図および要部
断面図で、11,12,13はそれぞれドレイ
ン、ソース、ゲート電極、15はSiO2膜、12
1はソース配線、131はゲート配線14はソー
ス配線121とゲート配線131の立体配線部を
示す。第2図a〜f、第3図a〜fは本発明の一
実施例を説明するための図で、第2図a〜fは製
作工程の要部平面図、第3図a〜fは第2図の要
部断面図である。
各図において、20……半絶縁性GaAs基板、
21……動作層、22,23,24……それぞれ
ゲート、ソース、ドレイン電極、25……SiO2
膜、26,30……給電用金属膜、27,31…
…ポジ型ホトレジスト、28……変質層、29…
…厚膜配線、32……クロスオーバー電極、22
1,231,241……それぞれSiO2膜25に
開けられたゲート、ソース、ドレイン電極用の
窓、222……ゲートパツド、223……反応防
止用金属膜、224……ゲート給電用配線を示
す。
Figure 1 a and b are for general electric power, respectively.
11, 12, and 13 are the drain, source, and gate electrodes, respectively; 15 is the SiO 2 film;
Reference numeral 1 indicates a source wiring, and reference numeral 131 indicates a gate wiring 14, which indicates a three-dimensional wiring portion of the source wiring 121 and the gate wiring 131. Figures 2 a to f and 3 a to f are diagrams for explaining one embodiment of the present invention. Figures 2 a to f are plan views of main parts of the manufacturing process, and Figures 3 a to f are FIG. 3 is a sectional view of the main part of FIG. 2; In each figure, 20...semi-insulating GaAs substrate,
21... Operating layer, 22, 23, 24... Gate, source, drain electrode, respectively, 25... SiO 2
Membrane, 26, 30... Metal membrane for power supply, 27, 31...
...Positive photoresist, 28...Altered layer, 29...
... Thick film wiring, 32 ... Crossover electrode, 22
1, 231, 241... windows for gate, source, and drain electrodes opened in the SiO 2 film 25, 222... gate pad, 223... metal film for reaction prevention, 224... wiring for gate power supply.
Claims (1)
のホトレジスト層を選択的に形成する工程と、該
第1のホトレジスト層の表面を弗素原子を多く含
む変質層とする工程と、前記第1のホトレジスト
層をマスクとしてこれと同程度の厚さの厚膜配線
を選択的に形成する工程と、前記第1の配線との
交差部が開口した第2のホトレジスト層を選択的
に形成する工程と、前記第2のホトレジスト層を
マスクとして前記第1の配線と立体交差した第2
の配線を選択的に形成する工程と、前記第2のホ
トレジスト層を除去する工程と、その後前記第1
のホトレジスト層を除去する工程とを含むことを
特徴とする空気絶縁された立体配線の形成方法。 2 前記第1および第2のホトレジスト層がポジ
型のレジストである特許請求の範囲第1項に記載
の立体配線の形成方法。[Claims] 1. A first wire that covers a first wiring provided on a substrate.
a step of selectively forming a photoresist layer, a step of making the surface of the first photoresist layer a modified layer containing a large amount of fluorine atoms, and a step of forming a photoresist layer with a similar thickness using the first photoresist layer as a mask. a step of selectively forming a thick film wiring; a step of selectively forming a second photoresist layer having openings at intersections with the first wiring; The second line that intersects with the wiring of
a step of selectively forming the wiring of the first photoresist layer, a step of removing the second photoresist layer, and a step of removing the second photoresist layer;
1. A method for forming an air-insulated three-dimensional wiring, comprising the step of removing a photoresist layer. 2. The method for forming three-dimensional wiring according to claim 1, wherein the first and second photoresist layers are positive resists.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19704783A JPS6088444A (en) | 1983-10-21 | 1983-10-21 | Formation of three-dimensional wiring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19704783A JPS6088444A (en) | 1983-10-21 | 1983-10-21 | Formation of three-dimensional wiring |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6088444A JPS6088444A (en) | 1985-05-18 |
JPH0226385B2 true JPH0226385B2 (en) | 1990-06-08 |
Family
ID=16367825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19704783A Granted JPS6088444A (en) | 1983-10-21 | 1983-10-21 | Formation of three-dimensional wiring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6088444A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240744A (en) * | 1985-08-19 | 1987-02-21 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of integrated circuit wirings |
JP4736014B2 (en) * | 2004-04-07 | 2011-07-27 | 大日本印刷株式会社 | LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54115065A (en) * | 1978-02-28 | 1979-09-07 | Mitsubishi Electric Corp | Semiconductor device |
-
1983
- 1983-10-21 JP JP19704783A patent/JPS6088444A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54115065A (en) * | 1978-02-28 | 1979-09-07 | Mitsubishi Electric Corp | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPS6088444A (en) | 1985-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2637937B2 (en) | Method for manufacturing field effect transistor | |
JPH0334547A (en) | Manufacture of semiconductor device | |
GB2222308A (en) | A method of producing a semiconductor device | |
JPH05275373A (en) | Manufacture of compound semiconductor device | |
JPH0226385B2 (en) | ||
JP2712340B2 (en) | Method for manufacturing semiconductor device | |
JPH0226386B2 (en) | ||
JPS6088445A (en) | Formation of three-dimensional wiring | |
JPH0845962A (en) | Manufacture of semiconductor device | |
KR100364710B1 (en) | Method for manufacturing semiconductor device | |
JPH0684950A (en) | Manufacture of field effect transistor | |
JP2557432B2 (en) | Field effect transistor | |
JPH07107906B2 (en) | Method for manufacturing semiconductor device | |
JPS58197883A (en) | Manufacture of semiconductor device | |
JPS5833714B2 (en) | Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor | |
JPS58135678A (en) | Manufacture of field effect transistor | |
JPH05267350A (en) | Manufacture of semiconductor device | |
JPS616870A (en) | Manufacture of field-effect transistor | |
JP2002043317A (en) | Method for manufacturing semiconductor device | |
JPH0260213B2 (en) | ||
JPH09186189A (en) | Manufacture of compound semiconductor device | |
JPH0330438A (en) | Manufacture of semiconductor device | |
JPH05190486A (en) | Method of forming ohmic electrode | |
JPS6050967A (en) | Manufacture of field effect transistor | |
JPH07335669A (en) | Manufacture of semiconductor device |