JPS6088445A - Formation of three-dimensional wiring - Google Patents

Formation of three-dimensional wiring

Info

Publication number
JPS6088445A
JPS6088445A JP19704883A JP19704883A JPS6088445A JP S6088445 A JPS6088445 A JP S6088445A JP 19704883 A JP19704883 A JP 19704883A JP 19704883 A JP19704883 A JP 19704883A JP S6088445 A JPS6088445 A JP S6088445A
Authority
JP
Japan
Prior art keywords
wiring
air
forming
gate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19704883A
Other languages
Japanese (ja)
Inventor
Yoichi Aono
青野 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19704883A priority Critical patent/JPS6088445A/en
Publication of JPS6088445A publication Critical patent/JPS6088445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To greatly simplify the process required to form the titled wiring being air-insulated by a method wherein a photo resist itself which can be easily treated by the process of photolithography is used as a spacer member. CONSTITUTION:A gate electrode 22, source electrodes 23, and a drain electrode 24 are formed on a GaAs substrate 20, and the negative type photo resist 27 is so provided as to cover a gate supply wiring 224. A thick film wiring 28 is formed by Au plating, a supply metallic film 29 being formed by evaporation, and a cross-over electrodes 31 being then formed by Au plating. The unnecessary part of the metallic film 29 is removed, and the photo resist layer 27 is removed with a release agent. resulting in the completion of an air cross-over structure wherein the wiring 224 and a cross-over electrode 32 are air-insulated.

Description

【発明の詳細な説明】 本発明は、半導体装置における立体配線の形成方法に関
し、さらに拝しくけ空気絶縁された立体配線の形成方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming a three-dimensional wiring in a semiconductor device, and more particularly to a method of forming a three-dimensional wiring that is air-insulated.

半導体素子、特に化合物半導体であるGaAsを用いた
接合ゲート型電界効果トランジスタ(以下GaAsMF
38FFiTと称する)は3iバイポーラトランジスタ
の特性限界を打破するマイクロ波トランジスタとして実
用化されている。このようなマイクロ波でのGaA8M
E8FETの出力電力は全ゲート幅を増やすことによっ
て増加させることができる。
Semiconductor elements, especially junction gate field effect transistors (hereinafter referred to as GaAsMF) using GaAs, which is a compound semiconductor
38FFiT) has been put into practical use as a microwave transistor that overcomes the characteristic limits of the 3i bipolar transistor. GaA8M in microwave like this
The output power of the E8FET can be increased by increasing the total gate width.

そのため通常、電力用のGaAs犯8FETは第1図(
a)の平面図に示すように櫛型のドレイン電極11およ
びソース電極12を交互に配置し、その間にゲート電極
1゛3を配置する構造がとられている。
Therefore, the GaAs 8FET for power use is usually shown in Figure 1 (
As shown in the plan view of a), a structure is adopted in which comb-shaped drain electrodes 11 and source electrodes 12 are alternately arranged, and gate electrodes 1 and 3 are arranged between them.

このような構成にするには必然的にソース電極12への
配線121とゲート電極13への給電用配線131とは
点14のような位置で立体配線(クロスオーバー)され
なければならない。通常これらクロスオーバーは第1図
Φ)に第1図(a)のA−A’部の断面を示すように5
io2膜15によシ両配線電極間を絶縁する構造がとら
れている。
In order to achieve such a configuration, the wiring 121 to the source electrode 12 and the power supply wiring 131 to the gate electrode 13 must necessarily be three-dimensionally wired (crossover) at a position such as point 14. Usually, these crossovers are arranged at 5.
A structure is adopted in which the io2 film 15 insulates both wiring electrodes.

しかしながらX帯以上の超高周波になると、これら立体
配線部に生じる寄生容量はに″ffT自身がもつゲート
・ソース間空乏層容量CGSK比べて熱湿できなくなり
、透電体損と相供って利得あるいは帯域特性低下の一因
となる。立体交差する電極幅を小さくすればある撫度寄
生容量を低減でかるが、配線抵抗の増加しいては配線電
極のエレクトロマイクレージョンをきたすので好tL<
ない。
However, at ultra-high frequencies above the X band, the parasitic capacitance generated in these three-dimensional interconnections cannot be heated and moistened compared to the gate-source depletion layer capacitance CGSK of the ffT itself, and together with the conductor loss, the gain Alternatively, it may be a cause of deterioration of band characteristics.If the width of the intersecting electrodes is made smaller, some parasitic capacitance can be reduced, but if the wiring resistance increases, this will cause electromicration of the wiring electrodes, so it is preferable that tL<
do not have.

寄生抵抗の増加なしにを主客1kt−大幅に低減する方
法としては、透電体を介さずに立体交差部を空気絶縁す
る(エアークロスオーバ構造)のが最も有効である。
The most effective way to significantly reduce the main passenger load by 1 kt without increasing parasitic resistance is to insulate the grade crossing with air without using a conductive material (air crossover structure).

これまでにエアークロスオーバー構造をもつたデバイが
機つか報告されているが、それらの形成方法はいずれも
エツチングの選択性を主に利用したものでるる。願ら、
スペーサ材となる金属(一般に銅が多用されている)を
両配騙′鉱極間に電解めっき等で形成した後、スペーサ
羽のみを選択的にエツチング除去するととによシェアー
クロスオーバー構造を得る方法である。
Debye devices with air crossover structures have been reported so far, but all of their formation methods primarily utilize etching selectivity. I wish,
After forming a spacer material (copper is commonly used) between both metal electrodes by electrolytic plating, etc., a shear crossover structure can be obtained by selectively etching away only the spacer wings. It's a method.

このような従来の方法を用いてGaAsMESFETの
エアークロスオーバー化を図ろうとした場合、以下に述
べるような問題点を生じる。即ち、1)散あるいはアル
カリ溶液に弱いGaAsあるいは1から成るゲートia
他等を全く侵さずスペーサ材のみを選択的に除去できる
エツチング液が得難い。
If an attempt is made to make a GaAs MESFET into an air crossover using such a conventional method, the following problems arise. Namely, 1) the gate ia made of GaAs or 1, which is sensitive to alkali solutions;
It is difficult to obtain an etching solution that can selectively remove only the spacer material without attacking other materials.

2)数μmの厚さに形成されたスペーサ材をウェーハ内
で均一性よく加工することが国難等である。
2) It is a national problem to process spacer materials formed to a thickness of several μm with good uniformity within a wafer.

2F、発明の目的は、これら従来のr#!J題点を取シ
除いた新しいを気絶縁された立体配線の形成方法を提供
するものである。
2F, the purpose of the invention is to solve these conventional r#! This invention provides a new method for forming gas-insulated three-dimensional interconnections that eliminates the problem.

本発明によれば、基板上の帯状の第1の配線上に給電用
の第1の金属膜を形成し、該第1の配線部をスペーサと
なる厚膜のネガ型のホトレジストノーで被覆した後、電
解めっきを施すことにより該ホトレジスト層と同程度の
Nさの厚膜配線を形成する工程、全面に給電用の第2の
金属膜を被着した後、前記g1の配線との交叉部が開口
し九ポジ型のホトレジスト層を形成し、再度電解めっき
を施すことによシ前記第1の配線と立体交叉した第2の
配線を形成する工程、前記ポジ型のホトレジスト層を除
去した後、前記第2の配線をマスクとしてイオンあるい
は化学エツチングを施すことによシ前記第2の配線部を
除く前記給電用の第2の金属膜を除去する工程、前記ネ
ガ型のホトレジスト層を除去後、さらに前記給電用の第
1の金属膜を前記厚膜配線をマスクとして選択的に除去
する工程を含むことを特徴とする空気絶縁された立体配
線の形成方法が得られる。
According to the present invention, a first metal film for power supply is formed on a strip-shaped first wiring on a substrate, and the first wiring portion is coated with a thick film negative type photoresist layer serving as a spacer. After that, a step of forming a thick film wiring with a thickness of N similar to that of the photoresist layer by applying electrolytic plating, and after depositing a second metal film for power supply on the entire surface, the intersection with the wiring of g1 is formed. forming a positive type photoresist layer with openings, and forming a second wiring that three-dimensionally intersects the first wiring by performing electrolytic plating again, after removing the positive type photoresist layer; , a step of removing the second metal film for power supply except for the second wiring portion by performing ion or chemical etching using the second wiring as a mask; after removing the negative photoresist layer; There is obtained a method for forming an air-insulated three-dimensional wiring, further comprising the step of selectively removing the first metal film for power supply using the thick film wiring as a mask.

前記本発明によれば、通常のホトリソグラフィ工程で簡
単に処理できるホトレジスト自体ヲスペーサ材として使
用するため、立体配線形成に要する工程が従来法に比べ
大幅に簡略化される。
According to the present invention, since the photoresist itself, which can be easily processed in a normal photolithography process, is used as a spacer material, the steps required for forming three-dimensional wiring are greatly simplified compared to conventional methods.

以下、本発明の一実施例としてGaAsMESFB’l
”のエアークロスオーバー化を例にとシ詳しく説明する
Hereinafter, as an embodiment of the present invention, GaAsMESFB'l
This will be explained in detail using the example of air crossover.

第2図、第3図は本発明の一実施例を説明するための図
で、第2図(a)〜(f)は製作工程の要部平面図、第
3図(a)〜(f)は各々第2図におけるA−A’B−
B’ 、 C−C’ 、 D−D/ 、 E−Eイ、F
−F’の要部断面図を示す。まず最初に、半絶縁性Qa
As基板20上にエピタキシャル成長された動作層21
上にショットキバリア形成用のAJから成るゲート電極
22、およびAu Qe N iがら成るオムー性のソ
ース電極23、ドレイン電極24を通常の光学露光によ
シリ7トオ7法で形成する(第2図(a))。次にへ!
ゲート電極22の保護膜となルSiO,膜25ヲcvI
)法1cヨ、? 3 o OoX程度ウェーハ全面に被
着させ、ソースおよびドレイン電極数シ出し部231,
241およびゲート電極数シ出し部221に窓をあける
。次にA/がら成るゲートパッド部222とそこから引
き出されるAuから成るポンディング線との反応を防止
するために、例えばT i /P t 等の反応防止用
電極223を選択的にゲートパッド部222に形成した
後、電解めっきのための給電用金属膜26として、例え
ばT i 、 Au をそれぞれ約500X該順序に蒸
着する( 第3図(b)) 。次K ウーr−−ハ全面
KOMR83(商品名)等のネガ型のホトレジスト27
を約5μmの厚さに塗布後、ゲート電極22への給電用
配線224上を選択的に被覆するようにパターニングを
行う(第2図(C)で斜線を施した領域)。次に130
℃で60分程度ベーキングを施した後、給電用金属膜2
6を導電パスとして、第2図(d)の斜線部にAuめっ
きを施すことによシ、ホトレジスト層27と同程度の厚
さの厚膜配線28を形成する。次に全面に前述したと同
様の給電用金属膜29を再度蒸着によって形成した後、
AZ1350J等のポジ型のホトレジスト30を塗布し
、給電用配#!224との交叉部が開口するように、即
ち、第2図(e)の斜線で示した領域が選択的にホトレ
ジスト層30で憶われるようにパターニングを行う。
2 and 3 are diagrams for explaining one embodiment of the present invention, and FIGS. 2(a) to 3(f) are plan views of main parts of the manufacturing process, and FIGS. 3(a) to (f) ) are respectively A-A'B- in Figure 2.
B', C-C', D-D/, E-Ei, F
- shows a sectional view of the main part of F'. First of all, semi-insulating Qa
Active layer 21 epitaxially grown on As substrate 20
A gate electrode 22 made of AJ for forming a Schottky barrier, and a source electrode 23 and a drain electrode 24 made of AuQeNi are formed on the silicon wafer by a conventional optical exposure method (see FIG. 2). (a)). Next!
The protective film of the gate electrode 22 is SiO, film 25cvI.
) Law 1c Yo,? 3 o Oo
241 and the gate electrode number projection portion 221 are provided with windows. Next, in order to prevent a reaction between the gate pad portion 222 made of A/A and the bonding wire made of Au drawn out from there, a reaction prevention electrode 223 such as T i /P t is selectively attached to the gate pad portion. 222, for example, Ti and Au are deposited in this order at about 500× each as a power supply metal film 26 for electrolytic plating (FIG. 3(b)). Next K Woo r--ha Full surface Negative photoresist 27 such as KOMR83 (product name)
After coating it to a thickness of about 5 μm, patterning is performed to selectively cover the power supply wiring 224 to the gate electrode 22 (shaded area in FIG. 2(C)). Next 130
After baking at ℃ for about 60 minutes, the power supply metal film 2
By using 6 as a conductive path, Au plating is applied to the hatched portion in FIG. Next, a power supply metal film 29 similar to that described above is formed again by vapor deposition on the entire surface, and then
Apply a positive type photoresist 30 such as AZ1350J, and connect the power supply wiring #! Patterning is performed so that the intersection with 224 is opened, that is, the area indicated by diagonal lines in FIG. 2(e) is selectively covered with the photoresist layer 30.

1層目のホトレジスト27と2#目のホトレジスト30
とが同じポジ芸あるいはネガ型のホトレジストの場合、
あるいはまた11##目ぶポジ型で21曽目がネガ型の
場合には、第3図(d)に示すようにホトレジスト層2
7と厚膜配線28との境界が複雑な形状をしているため
、この境界部で給電用金属膜28が段切れを起し易く、
その給米、この2層目のホトレジスト層30の塗布、現
尿処理の過程で1層目のホトレジスト層27が浴解し、
給電用金属膜29が変形あるいはリフトオフされてしま
い、後のクロスオーバー電極の形成が困難である。
First layer photoresist 27 and second #2 photoresist 30
In the case of positive or negative type photoresist,
Alternatively, if the 11th ## mark is a positive type and the 21st mark is a negative type, as shown in Fig. 3(d), the photoresist layer 2 is
Since the boundary between 7 and the thick film wiring 28 has a complicated shape, the power feeding metal film 28 is likely to break off at this boundary.
In the process of feeding the rice, coating the second photoresist layer 30, and treating the urine, the first photoresist layer 27 is dissolved,
The power feeding metal film 29 is deformed or lifted off, making it difficult to form a crossover electrode later.

次にホトレジストN30をマスクにして再度Auめっき
を施すことによシ、例えば2〜3μm厚のクロスオーバ
ー電極31を形成する(第3図(e) )。
Next, by applying Au plating again using the photoresist N30 as a mask, a crossover electrode 31 having a thickness of, for example, 2 to 3 μm is formed (FIG. 3(e)).

次にアセトン等の有徳溶剤でホトレジスト層30を除去
した後、クロスオーバー電極31をマスクとしてArイ
オンビームエツチングあるいは■2:KI:H,O系お
よび)l、804系のエツチング液を用いてクロスオー
バー電極31以外の不要な給電用金属膜29を除去し、
さらに露出したホトレジストJm27をレジスト剥離剤
(J−100)を用いて完全に除去する。最後に、厚膜
配M28をマスクとして前記同様のエツチング液を用い
て厚膜配線28部以外の不快な給電用金属膜26を除去
することにより、第3図(f)に示すようなゲート給電
用配線224とクロスオーバー電極32とが空気絶縁さ
れたエアークロスオーバー構造が完成する。
Next, after removing the photoresist layer 30 with a virtuous solvent such as acetone, using the crossover electrode 31 as a mask, Ar ion beam etching or Remove unnecessary power supply metal film 29 other than over electrode 31,
Furthermore, the exposed photoresist Jm27 is completely removed using a resist remover (J-100). Finally, by using the thick film wiring M28 as a mask and using the same etching solution as described above to remove the unpleasant power supply metal film 26 other than the thick film wiring 28, the gate power supply as shown in FIG. 3(f) is removed. An air crossover structure in which the wiring 224 and the crossover electrode 32 are air-insulated is completed.

以上述べてきたように、本発明による形成方法を用いれ
ば、従来のような複雑な工程を必要とするスペーサ材の
集専を通常のホトプロセスで簡単に行なえるため、生産
性、歩留り及び信頼度の大幅な向上が可能となった。
As described above, by using the forming method according to the present invention, it is possible to easily concentrate the spacer material using a normal photo process, which requires a complicated process as in the past, thereby improving productivity, yield, and reliability. It has become possible to significantly improve the degree of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)はそれぞれ一般の′成力用Ga
As −MESFETの構造を示す平面図および要部断
面図で、11.12.13はそれぞれドレイン、ソース
。 ゲート電極、15はsio、膜、121はソース配線。 131はゲート配線、14はソース配線121とゲート
配線131の立体配線部を示す。 第2図(a)〜(f)、第3図(a)〜(f)は本発明
ノー実施例を説明するための図で、第2図(a)〜(f
)は製作工程の/4要部平面図、第3図(a)〜<0は
第2図の谷安部断面図である。 各図において、2o・・・・・・半絶縁性GaAs基板
、21°°・・・・動作層、22,23.24・・団・
それぞれゲート、ソース、ドレイン電極、25・・・・
・・SiU。 膜、26.29・・・・・・給電用金属膜、27・・・
・・・ネガ型のホトレジスト、28・・・・・・厚膜配
線、30・・・・・・ポジ型のホトレジスト、31・−
・・−・クロスオーバー電極、221,231,241
・・・・・・それぞれSiQ。 膜25に開けられたゲート、ソース、ドレイン電極用の
窓、222・・・・・・ゲートパッド、223・・・・
・・反応防止用金属膜、224・・・・・・ゲート給電
用配線を示す。 名 / 1ス Ctl) (b) 篤 2 図 (dン (e) tc) <f)
Figures 1 (a) and (b) are general Ga for
11, 12, and 13 are a drain and a source, respectively. A gate electrode, 15 an SIO film, and 121 a source wiring. 131 is a gate wiring, and 14 is a three-dimensional wiring section of the source wiring 121 and the gate wiring 131. Figures 2(a) to (f) and Figures 3(a) to (f) are diagrams for explaining non-embodiments of the present invention.
) is a /4 main part plan view of the manufacturing process, and FIGS. 3(a) to <0 are sectional views of the valley part in FIG. 2. In each figure, 2o... semi-insulating GaAs substrate, 21°°... active layer, 22, 23. 24... group...
Gate, source, drain electrodes, 25...
...SiU. Membrane, 26.29... Metal membrane for power supply, 27...
...Negative photoresist, 28...Thick film wiring, 30...Positive photoresist, 31.-
...-Crossover electrode, 221, 231, 241
・・・・・・SiQ respectively. Windows for gate, source and drain electrodes opened in the film 25, 222...Gate pad, 223...
. . . Metal film for reaction prevention, 224 . . . Indicates wiring for gate power supply. Name / 1st Ctl) (b) Atsushi 2 Figure (dn (e) tc) <f)

Claims (1)

【特許請求の範囲】[Claims] 基板上の第1の配線部の少なくとも一部をおおうような
ネガ型のホトレジスト層を被榎する工程と、該ホトレジ
スト層と同程度の厚さの厚膜配線を形成する工程と、前
記第1の配線との交叉部が開口したポジ型のホトレジス
ト層を形成し、前記第1の配線と立体交叉した第2の配
線を形成する工程と、前記ポジ型のホトレジスト層を除
去した後、前記ネガ型のホトレジスト7?tを除去し、
これによって前記@1の金属膜を前記厚膜配線をマスク
として選択的に除去する工程とを含むことを特徴とする
空気絶縁された立体配線の形成方法。
forming a negative photoresist layer covering at least a portion of the first wiring section on the substrate; forming a thick film wiring having a thickness similar to that of the photoresist layer; forming a positive photoresist layer with an opening at the intersection with the first wiring, and forming a second wiring that three-dimensionally intersects with the first wiring; and after removing the positive photoresist layer, Type photoresist 7? remove t,
A method for forming an air-insulated three-dimensional wiring, comprising the step of selectively removing the metal film of @1 using the thick film wiring as a mask.
JP19704883A 1983-10-21 1983-10-21 Formation of three-dimensional wiring Pending JPS6088445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19704883A JPS6088445A (en) 1983-10-21 1983-10-21 Formation of three-dimensional wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19704883A JPS6088445A (en) 1983-10-21 1983-10-21 Formation of three-dimensional wiring

Publications (1)

Publication Number Publication Date
JPS6088445A true JPS6088445A (en) 1985-05-18

Family

ID=16367841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19704883A Pending JPS6088445A (en) 1983-10-21 1983-10-21 Formation of three-dimensional wiring

Country Status (1)

Country Link
JP (1) JPS6088445A (en)

Similar Documents

Publication Publication Date Title
CA1092254A (en) High power gallium arsenide schottky barrier field effect transistor made by electron lithography
JP2637937B2 (en) Method for manufacturing field effect transistor
JPH05275373A (en) Manufacture of compound semiconductor device
JPS6088445A (en) Formation of three-dimensional wiring
JPS6271256A (en) Compound semiconductor integrated circuit
JPH0226385B2 (en)
JP3409057B2 (en) Field effect transistor
JP2712340B2 (en) Method for manufacturing semiconductor device
JPH03165526A (en) Manufacture of field effect transistor
JPH0226386B2 (en)
JP2825284B2 (en) Method for manufacturing semiconductor device
JPS58135678A (en) Manufacture of field effect transistor
JPH07107906B2 (en) Method for manufacturing semiconductor device
JPS58197883A (en) Manufacture of semiconductor device
JPH04206842A (en) Formation of pad
JPH0341739A (en) Manufacture of semiconductor device
JPS6239071A (en) Manufacture of semiconductor device
JPS6025277A (en) Manufacture of semiconductor device
JPS58170035A (en) Manufacture of semiconductor device
JPH07335669A (en) Manufacture of semiconductor device
JPS6354776A (en) Manufacture of semiconductor device
JPS58194374A (en) Manufacture of semiconductor device
JPS6281768A (en) Manufacture of gaas semiconductor substrate
JPS59189678A (en) Semiconductor device and manufacture thereof
JPS58112373A (en) Manufacture of gaas ic