JPH0226386B2 - - Google Patents

Info

Publication number
JPH0226386B2
JPH0226386B2 JP58198594A JP19859483A JPH0226386B2 JP H0226386 B2 JPH0226386 B2 JP H0226386B2 JP 58198594 A JP58198594 A JP 58198594A JP 19859483 A JP19859483 A JP 19859483A JP H0226386 B2 JPH0226386 B2 JP H0226386B2
Authority
JP
Japan
Prior art keywords
wiring
photoresist layer
electrode
forming
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58198594A
Other languages
Japanese (ja)
Other versions
JPS6089944A (en
Inventor
Yoichi Aono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP19859483A priority Critical patent/JPS6089944A/en
Publication of JPS6089944A publication Critical patent/JPS6089944A/en
Publication of JPH0226386B2 publication Critical patent/JPH0226386B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は、半導体装置における立体配線の形成
方法に関し、さらに詳しくは空気絶縁された立体
配線の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a three-dimensional wiring in a semiconductor device, and more particularly to a method for forming an air-insulated three-dimensional wiring.

半導体素子、特に化合物半導体であるGaAsを
用いた接合ゲート型電界効果トランジスタ(以下
GaAsMESFETと称する)はSiバイポラトランジ
スタの特性限界を打破するマイクロ波トランジス
タとして実用化されている。このようなマイクロ
波でのGaAsMESFETの出力電力は全ゲード幅
を増やすことによつて増加させることができる。
そのため通常、電力用のGaAsMESFETは第1
図aの平面図に示すように櫛型のドレイン電極1
1およびソース電極12を交互に配置し、その間
にゲート電極13を配置する構造がとられてい
る。このような構成にするには必然的にソース電
極12への配線121とゲート電極13への給電
用配線131とは点14のような位置で立体配線
(クロスオーバー)されなければならない。通常
これらクロスオーバーは第1図bに第1図aのA
−A′部の断面を示すようにSiO2膜15により両
配線電極間を絶縁する構造がとられている。
Semiconductor elements, especially junction gate field effect transistors (hereinafter referred to as
GaAs MESFET) has been put into practical use as a microwave transistor that overcomes the characteristic limits of Si bipolar transistors. The output power of such a GaAs MESFET in the microwave can be increased by increasing the total gate width.
Therefore, GaAs MESFETs for power use are usually
As shown in the plan view of figure a, a comb-shaped drain electrode 1
1 and source electrodes 12 are arranged alternately, and a gate electrode 13 is arranged between them. In order to achieve such a configuration, the wiring 121 to the source electrode 12 and the power supply wiring 131 to the gate electrode 13 must necessarily be three-dimensionally wired (crossover) at a position such as point 14. Usually these crossovers are shown in Figure 1b and A in Figure 1a.
As shown in the cross section of the -A' section, a structure is adopted in which the two wiring electrodes are insulated by the SiO 2 film 15.

しかしながらX帯以上の超高周波になると、こ
れら立体配線部に生じる寄生容量はFET自身が
もつゲート・ソース間空乏層容量CGSに比べて
無視できなくなり、誘電体損と相俟つて利得ある
いは帯域特性低下の一因となる。立体交差する電
極幅を小さくすればある程度寄生容量を低減でき
るが、配線抵抗の増加しいては配線電極のエレク
トロマイグレーシヨンをきたすので好ましくな
い。寄生抵抗の増加なしに寄生容量を大幅に低減
する方法としては、誘電体を介さずに立体交差部
を空気絶縁する(エアークロスオーバ構造)のが
最も有効である。
However, at ultra-high frequencies above the X band, the parasitic capacitance generated in these three-dimensional wiring sections cannot be ignored compared to the gate-source depletion layer capacitance CGS of the FET itself, and together with dielectric loss, the gain or band characteristics deteriorate. This is a contributing factor. Although the parasitic capacitance can be reduced to some extent by reducing the width of the three-dimensionally intersecting electrodes, an increase in wiring resistance is not preferable because it causes electromigration of the wiring electrodes. The most effective way to significantly reduce parasitic capacitance without increasing parasitic resistance is to insulate the intersection with air without using a dielectric (air crossover structure).

これまでにエアークロスオーバー構造をもつた
デバイスが幾つか報告されているが、それらの形
成方法はいずれもエツチングの選択性を主に利用
したものである。即ち、スペーサ材となる金属
(一般に銅が多用されている)を両配線電極間に
電解めつき等で形成した後、スペーサ材のみを選
択的にエツチング除去することによりエアークロ
スオーバー構造を得る方法である。
Several devices with air crossover structures have been reported so far, but all of their formation methods mainly utilize etching selectivity. In other words, an air crossover structure is obtained by forming a spacer material (copper is commonly used) between both wiring electrodes by electrolytic plating, etc., and then selectively etching away only the spacer material. It is.

このような従来の方法を用いて
GaAsMESFETのエアークロスオーバー化を図
ろうとした場合、以下に述べるような問題点を生
じる。即ち、(1)酸あるいはアルカリ溶液に弱い
GaAsあるいはAlから成るゲート電極等を全く侵
さずスペーサ材のみを選択的に除去できるエツチ
ング液が得難い。(2)数μmの厚さに形成されたス
ペーサ材をウエーハ内で均一性よく加工すること
が困難等である。
Using traditional methods like this
When trying to make a GaAs MESFET into an air crossover, the following problems arise. (1) Sensitive to acid or alkaline solutions
It is difficult to obtain an etching solution that can selectively remove only the spacer material without attacking gate electrodes made of GaAs or Al. (2) It is difficult to process spacer materials formed to a thickness of several μm with good uniformity within a wafer.

本発明の目的は、これら従来の問題点を取り除
いた新しい空気絶縁された立体配線の形成方法を
提供するものである。
An object of the present invention is to provide a new method for forming air-insulated three-dimensional interconnections that eliminates these conventional problems.

本発明によれば基板上の第1の配線となる帯状
の電極上に厚膜から成る第1のホトレジスト層を
形成し、該ホトレジスト層をマスクとして電解め
つきを施すことにより選択的に厚膜電極を形成す
る工程、粘度の大きいホトレジストを形成して表
面を平坦化した後、全面にO2イオンビームをシ
ヤワー状に照射して前記第1の配線部に前記厚膜
電極の厚さに略等しい膜厚の第1のホトレジスト
層を選択的に残す工程、全面に給電用の金属膜を
被着した後、前記第1の配線との交差部が開口し
た第3のホトレジスト層を形成し、再度電解めつ
きを施すことにより前記第1の配線と立体交差し
た第2の配線を形成する工程、前記第3のホトレ
ジスト層を除去した後、前記第2の配線をマスク
として前記給電用の金属膜を選択的にエツチング
で除去し、しかる後第2のホトレジスト層を除去
する工程を含むことを特徴とする空気絶縁された
立体配線の形成方法が得られる。
According to the present invention, a first photoresist layer consisting of a thick film is formed on a strip-shaped electrode serving as a first wiring on a substrate, and electrolytic plating is performed using the photoresist layer as a mask to selectively form a thick film. In the step of forming the electrode, a photoresist with high viscosity is formed to flatten the surface, and then the entire surface is irradiated with an O 2 ion beam in a shower shape to form a layer on the first wiring part approximately to the thickness of the thick film electrode. a step of selectively leaving a first photoresist layer of equal thickness, after depositing a metal film for power supply on the entire surface, forming a third photoresist layer with an opening at the intersection with the first wiring; forming a second wiring that intersects the first wiring by performing electrolytic plating again; and after removing the third photoresist layer, using the second wiring as a mask, forming a second wiring that intersects the first wiring; A method for forming an air-insulated three-dimensional wiring is obtained, which comprises the steps of selectively etching away the film and then removing the second photoresist layer.

前記本発明によれば、通常のホトリソグラフイ
工程で簡単に処理できるホトレジスト自体をスペ
ーサ材として使用するため、立体配線形成に要す
る工程が従来法に比べ大幅に簡略化される。
According to the present invention, since the photoresist itself, which can be easily processed in a normal photolithography process, is used as a spacer material, the steps required to form three-dimensional wiring are greatly simplified compared to conventional methods.

以下、本発明の一実施例として
GaAsMESFETのエアークロスオーバー化を例
にとり詳しく説明する。
Below, as an example of the present invention
This will be explained in detail using the air crossover of GaAs MESFET as an example.

第2図、第3図は本発明の一実施例を説明する
ための図で、第2図a〜gは製作工程の要部平面
図、第3図a〜gは各々第2図におけるA−A′,
B−B′,C−C′,D−D′,E−E′,F−F′,G−
G′の要部断面図を示す。まず最初に半絶縁性
GaAs基板20上にエピタキシヤル成長された動
作層21上にシヨツトキーバリア形成用のAlか
ら成るゲート電極22、およびAuGeNiから成る
オーム性のソース電極23、ドレイン電極24を
通常の光学露光によりリフトオフ法で形成する
(第2図a)。次にAlゲート電極22の保護膜と
なるSiO2膜25をCVD法により3000Å程度ウエ
ーハ全面に被着させ、ソースおよびドレイン電極
取り出し部231,241およびゲート電極取り
出し部221に窓をあける。次にAlから成るゲ
ートパツド部222とそこから引き出されるAu
から成るボンデイング線との反応を防止するため
に、例えばTi/Pt等の反応防止用電極223を
選択的にゲートパツド部222に形成した後、電
解めつきのための給電用金属膜26として、例え
ばTi/Auをそれぞれ約500Å蒸着する(第3図
b)。次にAZ1350J(商品名)等のホトレジスト2
7を重ね塗りすることにより例えば4〜6μmの
厚さに形成した後、ゲート電極22への給電用配
線224上を選択的に被覆するようにパターニン
グを行う(第2図cで斜視を施した領域)。次に
第3図cに示すように、第2図dの斜線部にA窒
めつきを施すことにより、厚み約5μm程度の厚
膜配線28を形成する。次にホトレジスト層27
を除去した後、比較的粘度の大きいホトレジスト
(AZ1375)をスピンコート法で重ね塗りすること
により、第3図dに示すように表面が殆んど平坦
なホトレジスト層29を形成する。次に全面を加
速電圧500V、酸素イオン電流密度0.8mA/cm2
条件下で6分程度イオンエツチングし、第3図e
に示すように厚膜配線28を露出させる。このと
き、給電用配線224部には厚膜配線28の厚さ
に相当した厚みのホトレジスト層29が選択的に
残る。次に全面に前述したと同様の給電用金属膜
30を再度蒸着によつて形成した後、AZ1350J等
のホトレジストを塗布し、給電用配線224との
交差部が開口するように、即ち、第2図fの斜線
部が選択的に覆われるようにパターニングを行
う。厚膜配線28とホトレジスト層27との間に
段差がある場合には、段差部で給電用金属膜30
が段切れを起し易く、その結果、この2層目のホ
トレジスト層31のパターニングの際、1層目の
ホトレジスト層27も溶解して給電用金属膜30
が変形あるいはリフトオフされてしまい、後のク
ロスオーバー電極の形成が困難である。次にホト
レジスト層31をマスクに再度Auめつきを施し
て例えば2〜3μm厚のクロスオーバー電極32
を形成する(第3図f)。次にアセトン等の有機
溶剤でホトレジスト31を除去した後、クロスオ
ーバー電極32をマスクとして、Arイオンビー
ムエツチングあるいはI2:KI:H2O系および
H2SO4系のエツチング液を用いてクロスオーバ
ー電極32部以外の不要な給電用金属膜32を除
去し、さらに露出したホトレジスト層29をレジ
スト剥離剤(J−100)を用いて完全に除去する。
最後に、前記同様のエツチング液を用いて選択的
に不要な給電用金属膜26を除去することによ
り、第3図gに示すようなゲート給電用配線22
4とクロスオーバー電極32が空気絶縁されたエ
アークロスオーバー構造が完成する。
Figures 2 and 3 are diagrams for explaining one embodiment of the present invention, Figures 2a to 3g are plan views of main parts of the manufacturing process, and Figures 3a to 3g are A in Figure 2. −A′,
B-B', C-C', D-D', E-E', F-F', G-
A sectional view of the main part of G′ is shown. First of all, semi-insulating
On the active layer 21 epitaxially grown on the GaAs substrate 20, a gate electrode 22 made of Al for forming a shot key barrier, and an ohmic source electrode 23 and drain electrode 24 made of AuGeNi are lifted off by normal optical exposure. (Figure 2a). Next, a SiO 2 film 25 serving as a protective film for the Al gate electrode 22 is deposited on the entire surface of the wafer to a thickness of about 3000 Å by CVD, and windows are opened in the source and drain electrode extraction portions 231 and 241 and the gate electrode extraction portion 221. Next, the gate pad part 222 made of Al and the Au drawn out from there.
After selectively forming a reaction prevention electrode 223 made of, for example, Ti/Pt on the gate pad portion 222 in order to prevent reaction with the bonding line made of Ti/Pt, a /Au to a thickness of about 500 Å each (FIG. 3b). Next, photoresist 2 such as AZ1350J (product name)
7 to a thickness of 4 to 6 μm, for example, and then patterned so as to selectively cover the power supply wiring 224 to the gate electrode 22 (see FIG. 2 c). region). Next, as shown in FIG. 3c, thick-film wiring 28 having a thickness of about 5 μm is formed by applying A-nitrification to the shaded area in FIG. 2d. Next, the photoresist layer 27
After removing the photoresist, a relatively high viscosity photoresist (AZ1375) is overcoated by spin coating to form a photoresist layer 29 with an almost flat surface as shown in FIG. 3d. Next, the entire surface was ion-etched for about 6 minutes under the conditions of an accelerating voltage of 500 V and an oxygen ion current density of 0.8 mA/cm 2 , as shown in Figure 3e.
The thick film wiring 28 is exposed as shown in FIG. At this time, a photoresist layer 29 having a thickness corresponding to the thickness of the thick film wiring 28 selectively remains on the power supply wiring 224 portion. Next, a power supply metal film 30 similar to that described above is formed again by vapor deposition over the entire surface, and then a photoresist such as AZ1350J is applied so that the intersection with the power supply wiring 224 is opened, that is, the second Patterning is performed so that the shaded area in FIG. f is selectively covered. If there is a step between the thick film wiring 28 and the photoresist layer 27, the power supply metal film 30 may be removed at the step.
As a result, during patterning of the second photoresist layer 31, the first photoresist layer 27 is also dissolved and the power supply metal film 30
is deformed or lifted off, making it difficult to form a crossover electrode later. Next, using the photoresist layer 31 as a mask, Au plating is applied again to form a crossover electrode 32 with a thickness of, for example, 2 to 3 μm.
(Fig. 3 f). Next, after removing the photoresist 31 with an organic solvent such as acetone, using the crossover electrode 32 as a mask, Ar ion beam etching or I2 :KI: H2O -based and
Remove the unnecessary power supply metal film 32 other than the crossover electrode 32 using an H 2 SO 4 based etching solution, and then completely remove the exposed photoresist layer 29 using a resist remover (J-100). do.
Finally, by selectively removing the unnecessary metal film 26 for power supply using the same etching solution as described above, the gate power supply wiring 22 as shown in FIG.
4 and the crossover electrode 32 are air-insulated, thereby completing an air crossover structure.

以上述べてきたように、本発明による形成方法
を用いれば、従来のような複雑な工程を必要とす
るスペーサ材の形成を通常のホトプロセスで簡単
に行なえるため、生産性、歩留り及び信頼度の大
幅な向上が可能となつた。
As described above, by using the forming method according to the present invention, it is possible to easily form a spacer material using a conventional photo process, which requires a complicated process, thereby improving productivity, yield, and reliability. It has become possible to significantly improve

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bはそれぞれ一般の電力用
GaAsMESFETの構造を示す平面図、および要
部断面図で、11,12,13はそれぞれドレイ
ン、ソース、ゲート電極、15はSiO2膜、12
1はソース配線、131はゲート配線14はソー
ス配線121とゲート配線131の立体配線部を
示す。第2図a〜g、第3図a〜gは本発明の一
実施例を説明するための図で、第2図a〜gは製
作工程の要部平面図、第3図a〜gは第2図の要
部断面図である。 各図において、20……半絶縁性GaAs基板、
21……動作層、22,23,24……それぞれ
ゲート、ソース、ドレイン電極、25……SiO2
膜、26,30……給電用金属膜、27,29,
31……ホトレジスト、28……厚膜配線、32
……クロスオーバー電極、221,231,24
1……それぞれSiO2膜25に開けられたゲート、
ソース、ドレイン電極用の窓、222……ゲート
パツド、223は反応防止用金属膜、224……
ゲート給電用配線を示す。
Figure 1 a and b are for general electric power, respectively.
11, 12, and 13 are the drain, source, and gate electrodes, respectively; 15 is the SiO 2 film; and 12
Reference numeral 1 indicates a source wiring, and reference numeral 131 indicates a gate wiring 14, which indicates a three-dimensional wiring portion of the source wiring 121 and the gate wiring 131. Figures 2a-g and 3a-g are diagrams for explaining one embodiment of the present invention, and Figures 2a-g are plan views of main parts of the manufacturing process, and Figures 3a-g are FIG. 3 is a sectional view of the main part of FIG. 2; In each figure, 20...semi-insulating GaAs substrate,
21... Operating layer, 22, 23, 24... Gate, source, drain electrode, respectively, 25... SiO 2
Membrane, 26, 30... Metal membrane for power feeding, 27, 29,
31...Photoresist, 28...Thick film wiring, 32
...Crossover electrode, 221, 231, 24
1...gates opened in the SiO 2 film 25,
Windows for source and drain electrodes, 222... gate pad, 223 metal film for reaction prevention, 224...
The wiring for gate power supply is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に設けられた第1の配線を覆つて第1
のホトレジスト層を選択的に形成する工程と、該
第1のホトレジスト層をマスクとして選択的に厚
膜電極を形成する工程と、前記第1のホトレジス
ト層を除去する工程と、粘度の大きい第2のホト
レジスト層を全面に形成して表面を平坦化する工
程と、全面をイオンエツチングすることにより前
記厚膜電極間に前記厚膜電極の厚さに略等しい膜
厚の前記第2のホトレジスト層を選択的に残す工
程と、その後前記第1の配線と立体交差した第2
の配線を前記厚膜電極及び前記残存せる第2のホ
トレジスト層上に形成する工程と、しかる後前記
第2のホトレジスト層を除去する工程とを含むこ
とを特徴とする空気絶縁された立体配線の形成方
法。
1 Covering the first wiring provided on the board,
selectively forming a thick film electrode using the first photoresist layer as a mask; removing the first photoresist layer; The second photoresist layer having a thickness approximately equal to the thickness of the thick film electrode is formed between the thick film electrodes by forming a photoresist layer on the entire surface and flattening the surface, and ion etching the entire surface. a step of selectively leaving a second wiring, and then a second wiring that intersects with the first wiring;
An air-insulated three-dimensional wiring comprising the steps of: forming a wiring on the thick film electrode and the remaining second photoresist layer; and then removing the second photoresist layer. Formation method.
JP19859483A 1983-10-24 1983-10-24 Method of forming three-dimensional wirings Granted JPS6089944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19859483A JPS6089944A (en) 1983-10-24 1983-10-24 Method of forming three-dimensional wirings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19859483A JPS6089944A (en) 1983-10-24 1983-10-24 Method of forming three-dimensional wirings

Publications (2)

Publication Number Publication Date
JPS6089944A JPS6089944A (en) 1985-05-20
JPH0226386B2 true JPH0226386B2 (en) 1990-06-08

Family

ID=16393780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19859483A Granted JPS6089944A (en) 1983-10-24 1983-10-24 Method of forming three-dimensional wirings

Country Status (1)

Country Link
JP (1) JPS6089944A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115065A (en) * 1978-02-28 1979-09-07 Mitsubishi Electric Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115065A (en) * 1978-02-28 1979-09-07 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JPS6089944A (en) 1985-05-20

Similar Documents

Publication Publication Date Title
JP2637937B2 (en) Method for manufacturing field effect transistor
EP0104094B1 (en) Method of producing a semiconductor device, using a radiation-sensitive resist
JPH05275373A (en) Manufacture of compound semiconductor device
JPH0226386B2 (en)
JPH0472381B2 (en)
US5483089A (en) Electrically isolated MESFET
JP2852679B2 (en) Semiconductor device and manufacturing method thereof
JPH0226385B2 (en)
JP2712340B2 (en) Method for manufacturing semiconductor device
JP2792421B2 (en) Method for manufacturing semiconductor device
JP2553573B2 (en) Method for manufacturing semiconductor device
JPH0845962A (en) Manufacture of semiconductor device
JPS6252957B2 (en)
JPS6239834B2 (en)
JP2630304B2 (en) Method for forming gate electrode of field effect transistor
JPH07107906B2 (en) Method for manufacturing semiconductor device
JP2825284B2 (en) Method for manufacturing semiconductor device
JP2558766B2 (en) Method for manufacturing semiconductor device
JPS6088445A (en) Formation of three-dimensional wiring
JP2516994B2 (en) Method for manufacturing semiconductor device
JPH05267350A (en) Manufacture of semiconductor device
JP2734185B2 (en) Method for manufacturing field effect transistor
JPH029451B2 (en)
JPH0491441A (en) Manufacture of field-effect transistor
JPS59189678A (en) Semiconductor device and manufacture thereof