JPS6271256A - Compound semiconductor integrated circuit - Google Patents

Compound semiconductor integrated circuit

Info

Publication number
JPS6271256A
JPS6271256A JP21016785A JP21016785A JPS6271256A JP S6271256 A JPS6271256 A JP S6271256A JP 21016785 A JP21016785 A JP 21016785A JP 21016785 A JP21016785 A JP 21016785A JP S6271256 A JPS6271256 A JP S6271256A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
insulating film
capacitor
air bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21016785A
Other languages
Japanese (ja)
Inventor
Kazuhiro Arai
一弘 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21016785A priority Critical patent/JPS6271256A/en
Publication of JPS6271256A publication Critical patent/JPS6271256A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV

Abstract

PURPOSE:To obtain an MMIC in high yield with good reproducibility without short-circuiting between electrodes even if air bridge electrodes are deformed in an assembling process by extending part of an insulating film which forms a capacitor of a passive element on gate and drain electrodes under space wirings. CONSTITUTION:In a compound semiconductor integrated circuit having a plurality of sets of electrodes of FETs are provided, and FET n which air bridge electrodes 123s, 123s,... are connected between source electrodes 103s, 103s,..., and a passive element having an insulating film which forms a capacitor on the same substrate as the FETs, parts of the insulating film 11 for forming the capacitor of the passive element are extended on gate electrodes 113g, 113g,.., drain electrodes 113d, 113d,.. under the air bridge electrode. Thus, even if the air bridge electrodes are deformed, a shortchicuit with the other electrode does not occur, the electrodes can be formed in good reproducibility without complicating the steps.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は化合物半導体によるモノリシックマイクロ波
集積回路(MM I Cと略称する)の構造の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in the structure of a monolithic microwave integrated circuit (abbreviated as MMIC) using a compound semiconductor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

砒化ガリウム(GaAs)を用いたMMICl特に能動
素子に電界効果トランジスタ(FETと略称する)を使
用した電力増幅用MMICについて以下に説明する。こ
の電力増幅用MMICは、FETとインピーダンス整合
をとるための整合回路部および電源回路部より成り、チ
ップサイズは大きなものとなる。チップサイズが大きく
なるにつれて、ウェーハ当りのチップ総数は減少するた
め、 MMICの歩留りを向上させることは重要である
。上記MMICの歩留りを向上させる要因として、能動
素子のFETの歩留りの向上が必要なのは言うまでもな
い。
An MMIC using gallium arsenide (GaAs), particularly an MMIC for power amplification using a field effect transistor (abbreviated as FET) as an active element, will be described below. This power amplification MMIC consists of an FET, a matching circuit section for impedance matching, and a power supply circuit section, and has a large chip size. Improving MMIC yield is important because as chip size increases, the total number of chips per wafer decreases. Needless to say, as a factor for improving the yield of the MMIC, it is necessary to improve the yield of FETs as active elements.

第3図に示す従来の一例のFETは複数のソース電極の
接地にバイアホールを用いたものの断面図である。図中
、100はGaAs半絶縁性基板、101は動作層(N
M)、102はオーム性接触層(N+層)、103sは
ソース電極、103gはゲート電極、103dはドレイ
ン電極、104はバイアホールである。このようなFE
Tは各電極が密に配列されているため、複数のソース電
極103s、 103g・・・を接地するバイアホール
加工が非常に困難であり、歩留りが著しく低下する。ま
た、バイアホール加工を容易にするために動作層領域内
の複数のソース電極の幅を広くすることも考えられるが
、チップ面積が大きくなり集積密度の向上に障害となる
FIG. 3 is a cross-sectional view of an example of a conventional FET in which via holes are used to ground a plurality of source electrodes. In the figure, 100 is a GaAs semi-insulating substrate, 101 is an active layer (N
M), 102 is an ohmic contact layer (N+ layer), 103s is a source electrode, 103g is a gate electrode, 103d is a drain electrode, and 104 is a via hole. FE like this
Since the electrodes of T are closely arranged, it is very difficult to process via holes for grounding the plurality of source electrodes 103s, 103g, etc., resulting in a significant decrease in yield. It is also conceivable to widen the widths of the plurality of source electrodes in the active layer region in order to facilitate via hole processing, but this increases the chip area and becomes an obstacle to improving the integration density.

次に、第4図に示すMMICは集積密度を向上させるの
に有利な空間配線(エヤブリッジ)方式で複数のソース
電極間を金属層で架橋した特徴を有する。第4図におい
て、110はGaAs半絶縁性基板、111は動作層(
N層)、112はオーム性接触層(N層層)、113s
はソース電極、113gはゲート電極、113dはドレ
イン電極、114は絶縁膜で例えばSiO□。
Next, the MMIC shown in FIG. 4 has a feature in which a plurality of source electrodes are bridged by a metal layer using a space wiring (air bridge) method which is advantageous for improving integration density. In FIG. 4, 110 is a GaAs semi-insulating substrate, 111 is an active layer (
N layer), 112 is an ohmic contact layer (N layer), 113s
113g is a gate electrode, 113d is a drain electrode, and 114 is an insulating film made of, for example, SiO□.

5L3N4.123sはソース電極間を架橋接続する空
間電極(エヤブリッジ電@)、115aはキャパシタ下
地電極、115bは上記キャパシタ下地電極と絶縁層を
介して対向するキャパシタ上面電極である。このように
形成された各電極は周辺に設けられたパッド電極に金属
層で形成された配線パターン(いずれも図示されない)
によって導出されて成る。
5L3N4.123s is a space electrode (air bridge electrode) that bridges the source electrodes, 115a is a capacitor base electrode, and 115b is a capacitor top electrode that faces the capacitor base electrode via an insulating layer. Each electrode formed in this way has a wiring pattern formed of a metal layer on a pad electrode provided at the periphery (none of these are shown).
It is derived by

取上のFET部は次のように形成される。まず、ゲート
電極113gを形成したのちウェーハ全面に絶縁膜11
4を被着し、この絶縁膜の所定領域に写真蝕刻で開孔部
を設ける。次に、電極用金属を蒸着し、開孔部において
夫々オーミック接続したソース電極113s、ドレイン
電極113dを形成する。また、上記金属蒸着にあたり
、絶縁膜に上記開孔部形成のため設けた図示のないホト
レジスト膜を介して蒸着された金属層は、ホトレジスト
膜溶除により同時に除去(いわゆるリフトオフ)される
、なお、ドレイン電極113dはくし型に、ソース電極
113sは島型に夫々形成する。さらに、ソース電極1
13g。
The FET section to be taken up is formed as follows. First, after forming a gate electrode 113g, an insulating film 11 is formed on the entire surface of the wafer.
4 is deposited, and openings are formed in predetermined areas of this insulating film by photolithography. Next, electrode metal is deposited to form a source electrode 113s and a drain electrode 113d, which are ohmically connected in the openings. Further, during the metal vapor deposition, the metal layer deposited through a photoresist film (not shown) provided in the insulating film for forming the openings is simultaneously removed by photoresist film dissolution (so-called lift-off). The drain electrode 113d is formed in a comb shape, and the source electrode 113s is formed in an island shape. Furthermore, source electrode 1
13g.

113s・・・に接続し夫々の間を飛躍して架橋するエ
ヤブリッジ電極123sをパターンめっき形成するもの
である。
The air bridge electrode 123s connecting to the electrodes 113s and bridging the air bridge electrodes 123s is formed by pattern plating.

取上によれば、ドレイン電極113d上には絶縁膜がな
いので、製造工程においてエヤブリッジ電極123sが
何かのチャンスで変形し第5図に示すようにソース、ド
レイン電極間に短絡を生ずるという重大な事故につなが
る。これに対する対策として第6図に示すように全面に
新たに第2の絶縁保護5124を積層被着させ、ソース
電極113s上のみ開孔部を設ける工程を設ければよい
が、工程が複雑であり、開孔内の保護膜の完全除去は困
難であり、これが不十分であるとエヤブリッジ電極の接
続が不良になるなどの問題もある。
According to the report, since there is no insulating film on the drain electrode 113d, the air bridge electrode 123s may be deformed by some chance during the manufacturing process, causing a short circuit between the source and drain electrodes as shown in FIG. This can lead to serious accidents. As a countermeasure against this, it is possible to add a new layer of second insulating protection 5124 to the entire surface as shown in FIG. 6, and to provide an opening only on the source electrode 113s, but the process is complicated. It is difficult to completely remove the protective film within the opening, and if this is insufficient, there are problems such as poor connection of the air bridge electrode.

〔発明の目的〕[Purpose of the invention]

この発明は上記従来の問題点を改良し、MMICのエヤ
ブリッジ電極に設けたFETの集積密度向上と歩留り向
上を目的とする。
The present invention aims to improve the above-mentioned conventional problems and improve the integration density and yield of FETs provided in the air bridge electrode of an MMIC.

〔発明の概要〕[Summary of the invention]

この発明にかかる化合物半導体集積回路は、FETの各
電極が複数組設けられソース電極(103g。
In the compound semiconductor integrated circuit according to the present invention, a plurality of sets of each electrode of the FET are provided, and a source electrode (103g) is provided.

103s・・・)間にエヤブリッジ電極(123s、 
123s・・・)による接続が施されたFET部とこれ
と同一基板にキャパシタを構成する絶縁膜を有する受動
素子を備えたものにおいて、受動素子のキャパシタを構
成する絶縁膜(11)の一部がエヤブリッジ電極下のゲ
ート電極(113g、 113g・・・)、ドレイン電
極(113d。
103s...) between air bridge electrodes (123s,
123s...) and a passive element having an insulating film forming a capacitor on the same substrate, a part of the insulating film (11) forming the capacitor of the passive element. are the gate electrode (113g, 113g...) under the air bridge electrode, and the drain electrode (113d).

113d・・・)上に延在されていることを特徴とする
113d...).

この発明によれば、エヤブリッジ電極に変形を生じても
他の電極との短絡を生ずることなく、高い歩留りで再現
性良く製造を達成できる上に製造工程を複雑化しないな
どの利点がある。
According to the present invention, even if the air bridge electrode is deformed, short circuits with other electrodes do not occur, and manufacturing can be achieved with high yield and good reproducibility, and the manufacturing process is not complicated.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例につき第1図を参照し、さら
にその製造工程の要部を示す第2図によって説明する。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. 1 and further with reference to FIG. 2 showing the main part of the manufacturing process.

なお、説明において従来と変わらない部分については図
面に同じ符号を付けて示し。
In addition, in the description, parts that are the same as before are indicated with the same reference numerals in the drawings.

説明を省略する。The explanation will be omitted.

第1図に示されるように、この発明にかかるMMICは
受動素子の一つのキャパシタにおける下地電極115a
と上面電極115bとの間の絶縁膜11が、抵抗層の電
極116a、 116b等の上を経てFETの空間配線
123sの下方に設けられているゲート電極113gt
  ドレイン電極113d上に延在されている構造上の
特徴を備えている。かかる構造により、エヤブリッジ電
極がその下方のドレイン電極に接触する事故は完全に防
止できる。
As shown in FIG. 1, the MMIC according to the present invention has a base electrode 115a in one capacitor of a passive element.
The insulating film 11 between the upper surface electrode 115b and the gate electrode 113gt is provided below the space wiring 123s of the FET via the resistive layer electrodes 116a, 116b, etc.
It has a structural feature extending over the drain electrode 113d. With this structure, it is possible to completely prevent the air bridge electrode from coming into contact with the drain electrode below it.

次に、上記構造の製造方法を第2図を参照して説明する
Next, a method of manufacturing the above structure will be explained with reference to FIG.

まず、 GaAs半絶縁性基板110の一方の主面に動
作層(N層)111および抵抗層121の形成予定域に
加速エネルギ140keV、  ドーズ量3XIO”c
m″″!のSiイオンを選択的に注入する6次に、オー
ム性接触層(N十層)112形成予定域に加速エネルギ
120keVと250keV、  ドーズ量2XIOi
3cm−”の81イオンを選択的に注入する。続いて8
50℃でアニールを施してSiイオンを活性化させて動
作層111.抵抗層121゜およびオーム性接触層11
2を形成する(図a)。
First, an acceleration energy of 140 keV and a dose of 3XIO"c were applied to the area where the active layer (N layer) 111 and the resistance layer 121 were to be formed on one main surface of the GaAs semi-insulating substrate 110.
m″″! Next, Si ions are selectively implanted into the area where the ohmic contact layer (N layer) 112 is to be formed at acceleration energies of 120 keV and 250 keV and a dose of 2XIOi.
Selectively implant 81 ions of 3 cm-” followed by 81 ions.
Annealing is performed at 50° C. to activate Si ions to form the active layer 111. Resistive layer 121° and ohmic contact layer 11
2 (Figure a).

次に、上記オーム性接触層112上および抵抗層121
上に写真蝕刻法でソース、ドレイン、抵抗層の各電極用
のパターニングを行ないAuGa層を蒸着する。続いて
リフトオフを施して各電極パターンに形成したのち、4
50℃に加熱し合金化する。さらに再度リフトオフ法に
よってTi/Pt/Auを夫々1000人/1000人
/7000人に形成してソース電極113g。
Next, on the ohmic contact layer 112 and the resistance layer 121
Patterning for each electrode of the source, drain, and resistance layer is performed by photolithography, and an AuGa layer is deposited thereon. Subsequently, after performing lift-off to form each electrode pattern, 4
Heat to 50°C to form an alloy. Furthermore, Ti/Pt/Au were formed to have a thickness of 1,000 layers, 1,000 layers, and 7,000 layers, respectively, by the lift-off method to form a source electrode 113g.

ドレイン電極L13d、抵抗層電極116a、 116
bを形成する6次に写真蝕刻法によりゲート電極および
キャパシタ下地電極のパターニングを行ないAQを蒸着
し、リフトオフによってゲート電極113g、キャパシ
タ下地電極115aを形成する(図b)。
Drain electrode L13d, resistance layer electrode 116a, 116
Next, the gate electrode and the capacitor base electrode are patterned by photolithography, AQ is deposited, and the gate electrode 113g and the capacitor base electrode 115a are formed by lift-off (FIG. 2B).

次に、ゲート、ドレイン、抵抗層の電極保護およびキャ
パシタ用として絶縁膜(S13N4)” をプラズマC
VD法により厚さ2000人堆積したのち、写真蝕刻法
およびフレオンガス(CF、 )を用いたプラズマエツ
チング法によってソース電極113s上の絶縁l111
1に開孔する(図c)。
Next, an insulating film (S13N4) was coated with plasma C to protect the electrodes of the gate, drain, and resistance layer, and for the capacitor.
After depositing the material to a thickness of 2,000 yen by the VD method, the insulation l111 on the source electrode 113s is formed by photolithography and plasma etching using Freon gas (CF).
Drill a hole in 1 (Figure c).

次に、写真蝕刻法によりソース電極接続用のエヤブリッ
ジ電極およびキャパシタ上面電極のパターニングを施し
、蒸着によりTiを厚さ2000人、さらにめっきによ
りAuを3μ−厚に形成してソース電極113g、 I
L3s・・・間接続用のエヤブリッジ電極123gとキ
ャパシタ上面電極115bが設けられて第1図に示され
るMMICとなる。
Next, an air bridge electrode for connecting the source electrode and an electrode on the top surface of the capacitor were patterned by photolithography, and Ti was deposited to a thickness of 2000 mm by vapor deposition, and Au was plated to a thickness of 3 μm to form a source electrode 113 g.
An air bridge electrode 123g for connection between L3s... and a capacitor upper surface electrode 115b are provided to form the MMIC shown in FIG.

取上の如くして絶縁膜11がドレイン電極113d上を
被覆しているので、エヤブリッジ電極が変形してもソー
ス、ドレイン電極間に短絡を生ずることがない、また、
1回の絶縁膜堆積でゲート電極。
Since the insulating film 11 covers the drain electrode 113d as shown above, even if the air bridge electrode is deformed, no short circuit will occur between the source and drain electrodes.
Gate electrode with one insulating film deposition.

ドレイン電極の保護膜、キャパシタの絶縁膜の形成が達
成されるので、工程が複雑にならない利点もある。
Since the protective film of the drain electrode and the insulating film of the capacitor are formed, there is an advantage that the process does not become complicated.

なお、上記実施例で述べた絶縁膜の厚さ2000人はこ
れに限られるものでなく、短絡を生じない程度、または
キャパシタの歩留りが低下しない程度堆積されていれば
よい。また、絶縁膜にはSi、 N層 を例示したがこ
れに限られずシリコン酸化膜(SiOz ) e リン
ドープ酸化膜(PSG)等を用いてもよい。
It should be noted that the thickness of the insulating film of 2,000 layers as described in the above embodiment is not limited to this, but may be deposited to such an extent that short circuits do not occur or the yield of capacitors does not decrease. Further, although Si and N layers are illustrated as examples of the insulating film, the present invention is not limited to these, and silicon oxide films (SiOz), phosphorus-doped oxide films (PSG), etc. may also be used.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、上に述べたようにドレイン電極が絶
縁膜によって被覆されてなるのでソース電極間接続用の
エヤブリッジ電極が組立工程にて変形しても両電極間が
短絡することなく、MMICを高歩留りで再現性良く製
造することができる。
According to this invention, as described above, since the drain electrode is covered with an insulating film, even if the air bridge electrode for connection between the source electrodes is deformed during the assembly process, there will be no short circuit between the two electrodes, and the MMIC can be manufactured with high yield and good reproducibility.

また、ドレイン電極の絶縁膜はキャパシタの絶縁膜、ゲ
ート電極の絶縁膜と同時に形成するので製造工程を複雑
にすることがないなどの顕著な利点がある。
Furthermore, since the insulating film of the drain electrode is formed simultaneously with the insulating film of the capacitor and the insulating film of the gate electrode, there is a remarkable advantage that the manufacturing process is not complicated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はいずれもこの発明にがかる一実施
例のMMTCにかかり、第1図は断面図、第2図a−c
は製造工程の要部を示す断面図、第3図ないし第6図は
従来例のMMICの要部を説明するためのいずれも断面
図である。 11−−−−−−一絶縁膜 110−−−−−− GaAs半絶縁性基板111−−
−−−一動作層(N層) 112−−−−−−オーム性接触層(N層層)113g
−−−−−−ソース電極 113d−−−−−−ドレイン電極 L13g−−−−−−ゲート電極 115a、 115b−−−−−−キャパシタ(下地、
上面)電極116a、 116b−−−−−一抵抗層の
電極121−−−−−一抵抗層
Both FIGS. 1 and 2 show an MMTC according to an embodiment of the present invention, FIG. 1 is a sectional view, and FIGS. 2 a-c.
1 is a cross-sectional view showing a main part of the manufacturing process, and FIGS. 3 to 6 are cross-sectional views for explaining the main part of a conventional MMIC. 11 --- Insulating film 110 --- GaAs semi-insulating substrate 111 --
---One action layer (N layer) 112 ---Ohmic contact layer (N layer) 113g
---------Source electrode 113d-----Drain electrode L13g-----Gate electrodes 115a, 115b----Capacitor (base,
Top surface) Electrodes 116a, 116b----One resistance layer electrode 121---One resistance layer

Claims (1)

【特許請求の範囲】[Claims] 電界効果トランジスタの各電極が複数組設けられ、ソー
ス電極に空間配線による接続が施された電界効果トラン
ジスタ部とこれと同一基板にキャパシタを構成する絶縁
膜を有する受動素子を備えて形成された化合物半導体集
積回路において、受動素子のキャパシタを構成する絶縁
膜の一部が空間配線下方のゲート、ドレイン電極上に延
在されていることを特徴とする化合物半導体集積回路。
A compound formed of a field effect transistor section in which a plurality of sets of each electrode of a field effect transistor are provided, a source electrode is connected by a space wiring, and a passive element having an insulating film constituting a capacitor on the same substrate. A compound semiconductor integrated circuit characterized in that a part of an insulating film constituting a capacitor of a passive element extends over a gate and drain electrode below a space wiring.
JP21016785A 1985-09-25 1985-09-25 Compound semiconductor integrated circuit Pending JPS6271256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21016785A JPS6271256A (en) 1985-09-25 1985-09-25 Compound semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21016785A JPS6271256A (en) 1985-09-25 1985-09-25 Compound semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6271256A true JPS6271256A (en) 1987-04-01

Family

ID=16584877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21016785A Pending JPS6271256A (en) 1985-09-25 1985-09-25 Compound semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6271256A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070376A (en) * 1990-01-05 1991-12-03 Sumitomo Electric Industries, Ltd. Semiconductor device
US5126812A (en) * 1990-02-14 1992-06-30 The Charles Stark Draper Laboratory, Inc. Monolithic micromechanical accelerometer
US5129983A (en) * 1991-02-25 1992-07-14 The Charles Stark Draper Laboratory, Inc. Method of fabrication of large area micromechanical devices
US5203208A (en) * 1991-04-29 1993-04-20 The Charles Stark Draper Laboratory Symmetrical micromechanical gyroscope
US5216490A (en) * 1988-01-13 1993-06-01 Charles Stark Draper Laboratory, Inc. Bridge electrodes for microelectromechanical devices
US5554865A (en) * 1995-06-07 1996-09-10 Hughes Aircraft Company Integrated transmit/receive switch/low noise amplifier with dissimilar semiconductor devices
EP0703614A3 (en) * 1994-08-31 1997-03-12 Texas Instruments Inc Flip-clip with heat-conducting layer
US10444829B2 (en) 2014-05-05 2019-10-15 Immersion Corporation Systems and methods for viewport-based augmented reality haptic effects

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216490A (en) * 1988-01-13 1993-06-01 Charles Stark Draper Laboratory, Inc. Bridge electrodes for microelectromechanical devices
US5070376A (en) * 1990-01-05 1991-12-03 Sumitomo Electric Industries, Ltd. Semiconductor device
US5126812A (en) * 1990-02-14 1992-06-30 The Charles Stark Draper Laboratory, Inc. Monolithic micromechanical accelerometer
US5129983A (en) * 1991-02-25 1992-07-14 The Charles Stark Draper Laboratory, Inc. Method of fabrication of large area micromechanical devices
US5203208A (en) * 1991-04-29 1993-04-20 The Charles Stark Draper Laboratory Symmetrical micromechanical gyroscope
EP0703614A3 (en) * 1994-08-31 1997-03-12 Texas Instruments Inc Flip-clip with heat-conducting layer
US5554865A (en) * 1995-06-07 1996-09-10 Hughes Aircraft Company Integrated transmit/receive switch/low noise amplifier with dissimilar semiconductor devices
US10444829B2 (en) 2014-05-05 2019-10-15 Immersion Corporation Systems and methods for viewport-based augmented reality haptic effects

Similar Documents

Publication Publication Date Title
US4466172A (en) Method for fabricating MOS device with self-aligned contacts
JPS592384B2 (en) High power microstructured gallium arsenide shot key barrier field effect transistor device and manufacturing method thereof
US4729969A (en) Method for forming silicide electrode in semiconductor device
JPH0756865B2 (en) Method of forming contact hole using etching barrier layer of semiconductor device
JPS6271256A (en) Compound semiconductor integrated circuit
JPH0640591B2 (en) Monolithic semiconductor structure and its manufacturing method.
CA1131796A (en) Method for fabricating mos device with self-aligned contacts
GB2180991A (en) Silicide electrode for semiconductor device
US5654576A (en) Post-titanium nitride mask ROM programming method and device manufactured thereby
JP3353764B2 (en) Method for manufacturing semiconductor device
JPH07123138B2 (en) Method for manufacturing semiconductor device
US5637526A (en) Method of making a capacitor in a semiconductor device
JPH0510827B2 (en)
JP3281204B2 (en) Wiring structure and method for forming via hole
JPH09102585A (en) Semiconductor device and manufacture thereof
JPH08111419A (en) Semiconductor device and fabrication thereof
JPS63204742A (en) Manufacture of semiconductor device
JP3013407B2 (en) Semiconductor memory device
JPH04111324A (en) Semiconductor device
JPH05343408A (en) Tab semiconductor chip
JP3280416B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPS6482559A (en) Semiconductor integrated circuit device
JPH0680733B2 (en) Wiring connection part of semiconductor device
JPS5868975A (en) Semiconductor device
JPS61141157A (en) Manufacture of semiconductor element