JPS63318145A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63318145A
JPS63318145A JP62154109A JP15410987A JPS63318145A JP S63318145 A JPS63318145 A JP S63318145A JP 62154109 A JP62154109 A JP 62154109A JP 15410987 A JP15410987 A JP 15410987A JP S63318145 A JPS63318145 A JP S63318145A
Authority
JP
Japan
Prior art keywords
layer
metal layer
thick
conductive metal
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62154109A
Other languages
Japanese (ja)
Inventor
Manabu Watase
渡瀬 学
Kanichiro Ikeda
池田 乾一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62154109A priority Critical patent/JPS63318145A/en
Publication of JPS63318145A publication Critical patent/JPS63318145A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Abstract

PURPOSE:To prevent the surface of thick plated layers from damaging in case conductive metallic layers are etched away by a method wherein, immediately after forming thick layers, the layers are coated with a metallic layer similar to a plated conductive metallic layer (if multilayered, the lower-most metallic layer) by evaporation. CONSTITUTION:A semiconductor layer 2, a source electrode 3, a gate electrode 4 and a drain electrode 5 are formed on a semiconductor substrate 1; the first resist layer 6 is formed leaving a part of the source electrode 3; and a conductive metallic layer 7 for electrolytic plating (Au layer laminated on Ti layer) is formed by evaporation. The second resist layer 8 is formed on the conductive metallic layer 7 and after forming a thick layer 9 by electrolytic plating process, a Ti metallic layer 11 similar to the metallic layer 7 is formed by evaporation. Finally, the second resist layer 8 and the material layer 10 are etched away by immersing in a release agent; likewise Au layer and Ti layer respectively in an etchant and another etchant; and finally the first resist layer 6 is etched away.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造方法に係り、特に厚メッ
キ電極の形成方法の改良に関するものである。以下、半
導体基板として砒化ガリウム(GaAs)を用いたンヨ
ットキ障壁ゲー1−構造G aA sN界効果トランノ
スタ(以下GaAsME S F E T’という)を
例にとって説明を行う、。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to an improvement in a method for forming thickly plated electrodes. Hereinafter, explanation will be given by taking as an example a Nyotoki barrier Ga1-structure GaA sN field effect transistor (hereinafter referred to as GaAsMESFET') using gallium arsenide (GaAs) as a semiconductor substrate.

〔従来の技術〕[Conventional technology]

7リツプチツプ構造のG aAsM E S F’ E
 Tは、X?1)以上の高周波領域においても高利得を
保持するのに有効であることは周知である。これはボン
ディングワイヤを介さず、F“ETチップがパッケージ
に倒置形で直接熱圧着されることにより寄生インダクタ
ンス(L8)および熱抵抗(rttJの低減効果による
ところが大である。
7-lip chip structure GaAsM E S F' E
T is for X? 1) It is well known that it is effective in maintaining high gain even in the above high frequency range. This is largely due to the effect of reducing parasitic inductance (L8) and thermal resistance (rttJ) by directly thermocompressing the FET chip upside down onto the package without using bonding wires.

ところで、この種のF E ’I’構造では、FE’r
チップ上のソース、ゲートおよびドレインの各電極の所
望の部分に、F E Tパッケージとの熱圧着のための
中間接着導体として厚メッキ電極層を選択的に形成する
ことが不可欠となる。
By the way, in this kind of FE 'I' structure, FE'r
It is essential to selectively form thick plated electrode layers on desired portions of the source, gate and drain electrodes on the chip as intermediate adhesive conductors for thermocompression bonding with the FET package.

この種の厚メッキ電極層の形成方法の一例として第2図
(a)〜(f)の主要工程における断面図に示すような
方法がある。
An example of a method for forming this type of thick plated electrode layer is the method shown in cross-sectional views of main steps in FIGS. 2(a) to 2(f).

ナオ、以下に述へる方法は、ソース電極上のみに着目し
た場合であるが、ゲ−1・電極およびドレイン電極上に
ついても同様であるため省略しである。
Nao, the method described below focuses only on the source electrode, but the same applies to the gate electrode and the drain electrode, so the explanation is omitted.

すなわち、この方法では、まず第2図(a)に示すよう
に、半絶縁性GaAs基板21上に生成されたn型Ga
As半導体層22の表面にソース電極23、ゲート電極
24およびドレイン電極25が所定の間隔で設けられた
試料ウェハを用意する。
That is, in this method, first, as shown in FIG. 2(a), n-type Ga
A sample wafer is prepared in which a source electrode 23, a gate electrode 24, and a drain electrode 25 are provided at predetermined intervals on the surface of an As semiconductor layer 22.

続いて第2図(b)に示すように、ソース電極23上の
一部を露出させ、他を被覆する第1のレジスト層26を
形成する。その後、第2図(C)に示すように、第1の
レジスト層26およびソース電極23上の開孔部にわた
り、T i −A uの2層構造からなる電解メッキ用
の第1の導通金属層27を周知の蒸着法により形成する
Subsequently, as shown in FIG. 2(b), a first resist layer 26 is formed to expose a part of the source electrode 23 and cover the rest. Thereafter, as shown in FIG. 2(C), a first conductive metal for electrolytic plating consisting of a two-layer structure of Ti-Au is applied over the first resist layer 26 and the opening on the source electrode 23. Layer 27 is formed by a well-known vapor deposition method.

その後、第2図(d)に示すように、ソース電極23上
の開孔部に相当する位置に一部の開孔部を残し、他を第
2のレジスト層28で被覆する。しかる後、第2図(e
)に示すように、第2のレレスl一層28をマスクとし
て第1の導通金属層27により電解メッキを行い、選択
的に金の厚メッキ層29を形成する。
Thereafter, as shown in FIG. 2(d), some openings are left at positions corresponding to the openings on the source electrode 23, and the rest are covered with a second resist layer 28. After that, Figure 2 (e
), electrolytic plating is performed using the first conductive metal layer 27 using the second layer 28 as a mask to selectively form a thick gold plating layer 29.

その後、第2のレジス)・層28.第1の導通金属層2
7.および第1のレジスト層26を順次除去し、第2図
(f)に示すような構造を得ろ。
Thereafter, a second resist) layer 28. First conductive metal layer 2
7. Then, remove the first resist layer 26 in order to obtain a structure as shown in FIG. 2(f).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この方法においては、’L’ i −A
 uの2層構造を有する第1の導通金属層27をつLッ
)・エツチングにより除去する場合、厚メッキ層29も
同時に蝕刻され、厚メッキ層29の表面に凹凸が生じる
ことによりボンディング強度の低下、ひいては素子の信
頼性を低下させる大きな要因となっていた。
However, in this method, 'L' i −A
When the first conductive metal layer 27 having a two-layer structure is removed by etching, the thick plating layer 29 is also etched at the same time, and the surface of the thick plating layer 29 becomes uneven, which reduces the bonding strength. This has been a major factor in reducing the reliability of the device.

この発明は、このような従来の決定を除去するためにな
さ噴またもので、ソース、ゲートおよびドレインの各電
極上の一部に電解メッキ法により厚メッキ層を形成する
方法において、メッキ形成後の処理法に工夫を加える乙
とによって、メッキ用導通金属層の除去時に厚メッキ層
表面が損傷を受けるのを防止することができる半導体装
置の製造方法を提供することを目的とする。
The present invention was made in order to eliminate such conventional decisions, and in a method for forming a thick plating layer on a portion of each source, gate, and drain electrode by electrolytic plating, It is an object of the present invention to provide a method for manufacturing a semiconductor device that can prevent the surface of a thick plating layer from being damaged during the removal of a conductive metal layer for plating by adding a device to the processing method.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体装置の製造方法は、電解メッキ法
により厚メッキ層を形成し、その後、電解メッキ用の一
層以上からなる導通金属層の最下層の金属層と同種の金
属層を蒸着法により厚メッキ層表面ならびに非メッキ領
域全体に形成した後、不要部分を除去するようにしたも
のである。
A method for manufacturing a semiconductor device according to the present invention includes forming a thick plating layer by electrolytic plating, and then applying a metal layer of the same type as the lowest metal layer of a conductive metal layer consisting of one or more layers for electrolytic plating by vapor deposition. After forming the thick plating layer on the surface and the entire non-plated area, unnecessary portions are removed.

〔作用〕[Effect]

この発明においては、厚メッキ層形成直後にメッキ導通
金属層と同種の金属層(多層の場合、最・ F層の金属
層)を蒸着法により被着させることにより、メッキ時の
導通金属層をウェットエツチングにより除去する場合に
厚メッキ層表面の損傷を防止でき、メッキ表面の凹凸の
発生を低減できろ。
In this invention, immediately after forming a thick plating layer, a metal layer of the same type as the plated conductive metal layer (in the case of multilayer, the first F layer metal layer) is deposited by vapor deposition, thereby making the conductive metal layer during plating. When removing by wet etching, damage to the surface of the thick plating layer can be prevented and the occurrence of unevenness on the plating surface can be reduced.

〔実施例〕〔Example〕

第1図(a)〜(j)はこの発明の一実施例の電界効果
トランジスタの製造方法の概略構成を示す断面図である
FIGS. 1(a) to 1(j) are cross-sectional views showing a schematic structure of a method for manufacturing a field effect transistor according to an embodiment of the present invention.

この方法では、まず第1図(a)に示すように、半絶縁
性GaAs基板1上に生成されたn型GaAs半導体層
2の表面に、ソース電極3.ゲ−1・電極4およびドレ
イン電極5が所定の間隔で設けられた試料ウェハを用意
する。続いて第1図(b)に示すように、ソース電極3
上の一部を露出させ、他を被覆する第1のレジス)・層
6を形成する3、その後、第1図(c)に示すように、
第1のレジスト層6およびソース電極3上の開孔部に対
し、電解メッキ用の導通金属層7を所定の厚さに周知の
蒸着法により形成する。上記の導通金属層7は多層構造
、例えば下層をTiffJ、上層をAuJi!とした2
層構造の金属層である。その後、第1図(d)に示すよ
うに、ソース電極3上の開孔部に相当する位置に一部の
開孔部を残し、他を第2のレレスト層8で被覆する。し
かる後、第1図(e)に示すように、第2のレジスト層
8をマスクとして導通金属層7により電解メッキを行い
選択的に厚メッキ層9を形成する。その後、第1図(f
)に示すように、この発明の意図する金属層10を蒸着
法により厚メッキ層9表曲から第2のレジ・スト層8上
にわたり被着する。この場合、金属層1oは、導通金属
層7の最下層金属層、ここではTi層と同種の金属層、
っま1)Tiの金属層か、または導通金属層7と同じ蝕
刻液で除去できる金属層、または厚メッキ層9表面を蝕
刻しないエツチング液で容易に除去可能な金属層とし、
最下層のTi層と同じ厚さの数百入の厚さとする。続い
て、第2のレジスト層8の剥#液中に浸すことにより、
金属層10の不連続箇所から浸入した剥離液により第2
のレジスト層8が除去され、第2の°レジスト層8上の
金属層10も同時に除去され、第1図(g)に示すよう
な構造が得られる。この場合、第2のレジスト層8上の
金属層10の除去には水スプレー等を併用するとより効
果的である。この後、第1図(h)に示すように、導通
金属層7の上層金属(A u層)を所定のエツチング液
で除去する。この場合、厚メッキ層9表面は金属層(T
i層)10で覆われているためエツチングされない1.
従来法では、この工程で厚メッキl19f 9表面が損
傷を受けてい1.=(、シかる後、この実施例でば導通
金属層7の下層金属層であるl′1層を所定のエツチン
グ液で除去ずろと同時に、厚メッキ層9上の金属J! 
10も除去し、第1図(i)に示すような構造を得ろ。
In this method, first, as shown in FIG. 1(a), a source electrode 3. A sample wafer in which a gate electrode 4 and a drain electrode 5 are provided at a predetermined interval is prepared. Next, as shown in FIG. 1(b), the source electrode 3
Form a layer 6 (first resist layer 6 exposing the top part and covering the other part), then as shown in FIG. 1(c),
A conductive metal layer 7 for electrolytic plating is formed to a predetermined thickness in the opening on the first resist layer 6 and the source electrode 3 by a well-known vapor deposition method. The conductive metal layer 7 has a multilayer structure, for example, the lower layer is TiffJ and the upper layer is AuJ! 2
It is a metal layer with a layered structure. Thereafter, as shown in FIG. 1(d), some openings are left at positions corresponding to the openings on the source electrode 3, and the rest are covered with the second resist layer 8. Thereafter, as shown in FIG. 1(e), electrolytic plating is performed using the conductive metal layer 7 using the second resist layer 8 as a mask to selectively form a thick plating layer 9. After that, Fig. 1 (f
), the metal layer 10 contemplated by the present invention is deposited from the thick plating layer 9 to the second resist layer 8 by vapor deposition. In this case, the metal layer 1o is the lowest metal layer of the conductive metal layer 7, here a metal layer of the same type as the Ti layer,
1) A metal layer of Ti, a metal layer that can be removed with the same etching solution as the conductive metal layer 7, or a metal layer that can be easily removed with an etching solution that does not etch the surface of the thick plating layer 9;
The thickness is several hundred, which is the same thickness as the bottom Ti layer. Subsequently, by immersing the second resist layer 8 in a stripping solution,
The stripping liquid that entered from the discontinuous parts of the metal layer 10 caused the second
The second resist layer 8 is removed, and the metal layer 10 on the second resist layer 8 is also removed at the same time, resulting in a structure as shown in FIG. 1(g). In this case, it is more effective to remove the metal layer 10 on the second resist layer 8 by using a water spray or the like in combination. Thereafter, as shown in FIG. 1(h), the upper metal layer (Au layer) of the conductive metal layer 7 is removed using a predetermined etching solution. In this case, the surface of the thick plating layer 9 is a metal layer (T
i layer) 1. which is not etched because it is covered with 10.
In the conventional method, the thick plating l19f9 surface was damaged in this process.1. =(, in this embodiment, the l'1 layer, which is the lower metal layer of the conductive metal layer 7, is removed using a predetermined etching solution, and at the same time, the metal J! on the thick plating layer 9 is removed).
10 is also removed to obtain a structure as shown in FIG. 1(i).

最後に、第1のレジスト層6を除去することにより、ソ
ー゛ス電極3上に選択的に厚メッキ+i 9が形成され
lコ第1図(j)に示すような構造を得る。
Finally, by removing the first resist layer 6, a thick plating layer 9 is selectively formed on the source electrode 3, resulting in a structure as shown in FIG. 1(j).

このように、上記実施例ではメッキ形成直後に厚メッキ
層9上に電解メッキ用の導通金属層7の最下層の金属層
と同種の金属層または厚メッキ層9を蝕刻しないエツチ
ング液で容易に除去可能な金属からなる金属層10を蒸
着法により被着するようにしたことから、導通金属層7
の除去時に厚メッキ層9表面が損傷することを防止でき
、厚メッキ層9表面の凹凸が緩和できることから、組立
時のボンディング強度の向上が計られ、歩留りの向上や
高信頼度化に有効となる。
In the above embodiment, immediately after plating is formed, a metal layer of the same type as the lowest metal layer of the conductive metal layer 7 for electrolytic plating or an etching solution that does not etch the thick plating layer 9 can be easily etched onto the thick plating layer 9. Since the metal layer 10 made of a removable metal is deposited by vapor deposition, the conductive metal layer 7
Since it is possible to prevent the surface of the thick plating layer 9 from being damaged during the removal of the thick plating layer 9, and the unevenness on the surface of the thick plating layer 9 can be alleviated, the bonding strength during assembly can be improved, which is effective in improving yield and increasing reliability. Become.

なお、上記実施例ではG a A s M ’E S 
f・′Iε°1′のソース電極3に厚メッキ層9を形成
する場合について述べたが、この発明はこれに限らず、
ゲート電極4およびドレイン電極5に対しても適用でき
るものである。また、フリップ方式のF E ’I’に
限らず、他の方式のFETにも適用できる。さらに、G
^AsFE’rに限らず、半導体材料からなる半導体装
置に対してもこの発明は広く適用できる。
In addition, in the above example, G a A s M 'E S
Although the case where the thick plating layer 9 is formed on the source electrode 3 of f·'Iε°1' has been described, the present invention is not limited to this.
It can also be applied to the gate electrode 4 and the drain electrode 5. Further, the present invention is not limited to the flip type FET, but can also be applied to other types of FETs. Furthermore, G
This invention is widely applicable not only to AsFE'r but also to semiconductor devices made of semiconductor materials.

し発明の効果〕 この発明は以上説明したとおり、厚メッキ層を有する半
導体装置の製造方法において、メッキ形成直後に厚メッ
キ層上に電解メッキ用の一層以上からなる導通金属層の
最下層の金属層と同種の金属層を蒸着により被着した後
、導通金属15の除去と同時に厚メッキ層上の金属層を
除去するようにし1.=ので、導通金属層の除去時に厚
、メッキ層の表111が損傷することを防止でき、厚メ
ッキ層表向の凹凸が緩和できることから、組立時のボン
ディング強度の向上が計られ、歩留り向上や高信頼度化
にイア効となる。
[Effects of the Invention] As explained above, the present invention provides a method for manufacturing a semiconductor device having a thick plating layer, in which the metal of the lowest layer of a conductive metal layer consisting of one or more layers for electrolytic plating is placed on the thick plating layer immediately after plating is formed. After a metal layer of the same type as the layer is deposited by vapor deposition, the metal layer on the thick plating layer is removed at the same time as the conductive metal 15 is removed.1. =, it is possible to prevent damage to the thick plated layer surface 111 when the conductive metal layer is removed, and the unevenness on the surface of the thick plated layer can be alleviated, which improves the bonding strength during assembly and improves yield. This is effective in increasing reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(j)はこの発明による厚メッキ層を有
するGaAsMESFE’l’の主要工程における状態
を示す断面図、第2図(a)〜(f)は従来法の主要工
程における状態を示す断面図である。 図において、1は半絶縁性GaAs基板、2はn型Ga
As半導体層、3は・ノース電極、4はゲート電極、5
はドレイン電極、6ば第1のレジスト層、7は゛導通金
属層、8は第2のレジスト層、9;よ厚メッキIN、1
0は金属層である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄   (外2名)第1図 /導迷金、極層 矛  1 凹 9厚メッキ眉 ]0金MOW 第2図 第2図 手続補正書(自発)
FIGS. 1(a) to (j) are cross-sectional views showing the main steps of GaAsMESFE'l' having a thick plating layer according to the present invention, and FIGS. 2(a) to (f) are sectional views showing the main steps of the conventional method. It is a sectional view showing a state. In the figure, 1 is a semi-insulating GaAs substrate, 2 is an n-type GaAs substrate, and 2 is an n-type GaAs substrate.
As semiconductor layer, 3 is a north electrode, 4 is a gate electrode, 5
1 is a drain electrode, 6 is a first resist layer, 7 is a conductive metal layer, 8 is a second resist layer, 9 is a thick plating IN, 1
0 is a metal layer. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Masuo Oiwa (2 others) Figure 1/Doumagin, Gokuseiho 1 Concave 9 thick plated eyebrows] 0 gold MOW Figure 2 Figure 2 Procedural amendment (self-motivated)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成された電解メッキ用の一層以上の金
属層からなる導通金属層、この導通金属層上に所望の開
孔部を有する第1の被覆層を形成し、前記導通金属層に
通電することにより、前記第1の被覆層の開孔部に厚メ
ッキ層を施し、その後、不要な前記第1の被覆層、およ
び導通金属層を順次除去し、前記半導体基板上に選択的
に厚メッキ層を形成する半導体装置の製造方法において
、前記厚メッキ層形成後、この厚メッキ層表面から前記
第1の被覆層表面にわたり、前記導通金属層の最下層と
同種の金属層を被着し、前記導通金属層を除去すると同
時に前記厚メッキ層上の金属層を除去する工程を含むこ
とを特徴とする半導体装置の製造方法。
A conductive metal layer consisting of one or more metal layers for electrolytic plating formed on a semiconductor substrate, a first coating layer having a desired opening portion formed on the conductive metal layer, and energizing the conductive metal layer. By applying a thick plating layer to the opening of the first coating layer, the unnecessary first coating layer and the conductive metal layer are sequentially removed, and a thick plating layer is selectively formed on the semiconductor substrate. In the method for manufacturing a semiconductor device in which a plating layer is formed, after the thick plating layer is formed, a metal layer of the same type as the bottom layer of the conductive metal layer is deposited from the surface of the thick plating layer to the surface of the first coating layer. . A method of manufacturing a semiconductor device, comprising the steps of removing a metal layer on the thick plating layer at the same time as removing the conductive metal layer.
JP62154109A 1987-06-19 1987-06-19 Manufacture of semiconductor device Pending JPS63318145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154109A JPS63318145A (en) 1987-06-19 1987-06-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154109A JPS63318145A (en) 1987-06-19 1987-06-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63318145A true JPS63318145A (en) 1988-12-27

Family

ID=15577122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154109A Pending JPS63318145A (en) 1987-06-19 1987-06-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63318145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480313A2 (en) * 1990-10-12 1992-04-15 Daimler-Benz Aktiengesellschaft Method of fabrication a T-gate-electrode
US5272111A (en) * 1991-02-05 1993-12-21 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing semiconductor device contact
US6649507B1 (en) * 2001-06-18 2003-11-18 Taiwan Semiconductor Manufacturing Company Dual layer photoresist method for fabricating a mushroom bumping plating structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480313A2 (en) * 1990-10-12 1992-04-15 Daimler-Benz Aktiengesellschaft Method of fabrication a T-gate-electrode
EP0480313A3 (en) * 1990-10-12 1993-11-18 Daimler Benz Ag Method of fabrication a t-gate-electrode
US5272111A (en) * 1991-02-05 1993-12-21 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing semiconductor device contact
US6649507B1 (en) * 2001-06-18 2003-11-18 Taiwan Semiconductor Manufacturing Company Dual layer photoresist method for fabricating a mushroom bumping plating structure

Similar Documents

Publication Publication Date Title
JPH07273118A (en) Formation of wiring and electrode
US5614762A (en) Field effect transistors having comb-shaped electrode assemblies
JPS63318145A (en) Manufacture of semiconductor device
JPH05275373A (en) Manufacture of compound semiconductor device
JPH02253628A (en) Manufacture of semiconductor device
JPS63122248A (en) Manufacture of semiconductor device
JP2703908B2 (en) Compound semiconductor device
JPS60153149A (en) Formation of multilayer interconnection
JPH0394451A (en) Wiring structure of semiconductor device
JPH05299420A (en) Semiconductor device
JP2792421B2 (en) Method for manufacturing semiconductor device
JPH01108730A (en) Semiconductor device
JPS63226947A (en) Manufacture of field-effect transistor
JPH0290623A (en) Manufacture of semiconductor device
JPS61268060A (en) Semiconductor device
JPH04278542A (en) Semiconductor device and manufacture thereof
JPS58134428A (en) Manufacture of semiconductor device
JPH0410431A (en) Manufacture of semiconductor device
JPH02189936A (en) Manufacture of semiconductor device
JPS62229955A (en) Semiconductor device
JPS5966113A (en) Manufacture of semiconductor device
JPS641050B2 (en)
JPS61214581A (en) Manufacture of high frequency and high output power field effect transistor
JPH02244722A (en) Forming method for bump electrode of semiconductor element
JPH0715909B2 (en) Method for manufacturing semiconductor device