JPS6050967A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS6050967A
JPS6050967A JP15778683A JP15778683A JPS6050967A JP S6050967 A JPS6050967 A JP S6050967A JP 15778683 A JP15778683 A JP 15778683A JP 15778683 A JP15778683 A JP 15778683A JP S6050967 A JPS6050967 A JP S6050967A
Authority
JP
Japan
Prior art keywords
layer
film
electrode
hole
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15778683A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishimura
石村 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15778683A priority Critical patent/JPS6050967A/en
Publication of JPS6050967A publication Critical patent/JPS6050967A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28581Deposition of Schottky electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce the series resistance of sources and to shorten the manufacturing steps of a high frequency Schottky barrier gate type FET by forming source, drain and gate electrodes in a self-alignment and using the same material for the metal for the electrode. CONSTITUTION:Si<+> ion implanted layer 12' is formed on the surface layer of a semi-insulating GaAs substrate 11, and a Ge layer 18 and an SiO2 film 19 are laminated and covered thereon. Then, a photoresist film 10 having a hole 10a is formed on the film 19, a hole 19a perpendicular to the film 19 is opened by reactive ion etching, and an overetched hole 18a is opened by plasma etching at the layer 18. Subsequently, the film 10 is altered to the film 10 for blocking the hole, the exposed portion of the film 19 is removed by etching, As<+> ions are implanted to the layer 12' to activate it, and an operation layer 12 is formed in the layer 12'. Then, a source electrode 6, a drain electrode 17 and a gate electrode 15 made of a Ti layer 21 and an aluminum layer 22 are attached on the layer 18 and the layer 12 interposed therebetween.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は電界効果トランジスタに係り、特に高周波動
作に適するショットキバリアゲート型電界効果トランジ
スタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to field effect transistors, and particularly to a method for manufacturing a Schottky barrier gate type field effect transistor suitable for high frequency operation.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

砒化ガリウム(GaAp )半導体赤子はシリコン半導
体素子に比して高速性に優i1ムので近年その研究、開
発が急速に進められている。特にGuAs ショットキ
バリアゲート型電界効果トランジスタ(GaA@MES
 FET )はマイクロ波素子として実用化が進んでお
り、寸た、GaAsICの主構成要素としても最も重要
な素子の一つである。
Research and development of gallium arsenide (GaAp) semiconductors has been rapidly progressing in recent years because they have superior high speed performance compared to silicon semiconductor devices. In particular, GuAs Schottky barrier gate field effect transistor (GaA@MES)
FET) is being put into practical use as a microwave device, and is one of the most important devices as a main component of GaAs IC.

上記GaAs MES FETの性能を改善するために
は、寄生的な抵抗、容量を極力低減させる必要がある。
In order to improve the performance of the GaAs MES FET, it is necessary to reduce parasitic resistance and capacitance as much as possible.

とりわけ、ソース・ゲート電極間のチャネル直列抵抗を
小さく抑えることが肝要である。
In particular, it is important to keep the channel series resistance between the source and gate electrodes low.

しかるに、従来GaAs R4ES FETは例えば第
1図に示すように、半絶縁性QaAs基板(1)上にイ
オン注入法によってn型半導体層(2)を形成し、つい
でソース領域のn+注入層(3)とドレイン領域のn+
注入層(4)とを設け、ゲート電極(5)を周領域に挾
まれているn型半導体層(2)上に設けた構造になって
(へる。前記周領域には夫々ソース電極(6)、ドレイ
ン電極(7)が設けられている。斜上の構造では各フォ
トエツチング工程におけるマスク合わせのための誤差分
を見込まねばならないことや、フォトエツチング技術の
限界のため、ソース・ゲート間の間隔をある程度大きく
とる必要がある。従って上述のように、n型動作層(2
)による直列抵抗の低減75すICシく、ゲート長のサ
ブミクロン化を図っても性能は期待する稚内上しない。
However, in a conventional GaAs R4ES FET, for example, as shown in FIG. ) and n+ in the drain region
An injection layer (4) is provided on the n-type semiconductor layer (2), and a gate electrode (5) is provided on the n-type semiconductor layer (2) sandwiched between the peripheral regions. 6), a drain electrode (7) is provided.In the diagonal structure, it is necessary to allow for errors for mask alignment in each photoetching process, and due to the limitations of photoetching technology, there is a gap between the source and gate. Therefore, as mentioned above, the n-type active layer (2
) to reduce the series resistance of the IC, and even if the gate length is made submicron, the performance will not improve as expected.

また、ソース電極(C3)、ドレイン電極(7)は通常
、金−ゲルマニウム(Au−Ge)合金系電極が用いら
れるが、この1!極の形成には必ずアロイと称される、
電極金属とQaAs結晶との合金化の過程を必要と干る
。とのアロイの過程で往々にして電極金属が不均一に反
応して島状の凝集(ボール′アツツ゛)を起し表面が平
滑な電極とはなりにくかったため、このMIDS FE
Tをいくつも用いる集積回路(IC)形成の一つの妨げ
になっていた。
Furthermore, gold-germanium (Au-Ge) alloy-based electrodes are usually used for the source electrode (C3) and drain electrode (7), but this 1! The formation of poles is always called alloy,
This requires an alloying process between the electrode metal and the QaAs crystal. This MIDS FE
This has been one of the hindrances to the formation of integrated circuits (ICs) that use a number of T's.

〔発明の目的〕[Purpose of the invention]

この発明は上記の欠点を除去するもので、新規なショッ
トキバリアゲート型電界効果トランジスタの製造方法を
提供することを目的とする。この発明によれば自己整合
(セルフアライメント)でソース、ドレイン、ゲート電
鞭を形成でき、かつソース直列抵抗も低減できるととも
に、ゲート狸。
The present invention eliminates the above-mentioned drawbacks and aims to provide a novel method for manufacturing a Schottky barrier gate field effect transistor. According to this invention, the source, drain, and gate electrodes can be formed by self-alignment, and the source series resistance can also be reduced.

極用金目と、ソース、ドレイン′区極用金ス惰に同一の
金属を用いることができ、しかも同時に形成できるので
?!!造工程を大幅に短縮で縫る。
The same metal can be used for the electrode metal and the source and drain electrode electrodes, and they can be formed at the same time. ! ! The sewing process is greatly shortened.

〔発明の概要〕[Summary of the invention]

この発明の電界効果トランジスタの製造方法は、高比抵
抗半導体基板の主面に能動層を形成する工程と、前記能
動層の表面にゲルマニウム薄膜を被着する工程と、前記
ゲルマニウム薄膜に積層させとの素子の電極金へ層より
も厚く少くとも17Mでなる絶縁膜を形成する工程と、
前記絶縁膜に対しそのゲート形成予定域に第1の開孔を
設けたのちとの絶縁膜をエツチングマスクとしてゲルマ
ニウム薄膜に前記開孔よシも広域にエツチングを施す工
程と、前記絶縁膜に第1の開孔を挾んで相対する第2の
開孔を設ける工程と、ゲルマニウムに対してド丈−とな
る不純物をイオン注入する工程と、前記半導体基板をゲ
ルマニウム薄膜とともに熱処理する工程と、TIL極金
属層を被着しパターニングを施して第1の開孔にゲート
電極を第2の開孔にソースN極およびドレイン電極を夫
々形成する工程を具備したものである。また、−F記熱
処理を施す工程の雰囲気は、例えばひ素を含む雰囲気で
あることを特徴とする。
The method for manufacturing a field effect transistor of the present invention includes the steps of forming an active layer on the main surface of a high resistivity semiconductor substrate, depositing a germanium thin film on the surface of the active layer, and laminating the germanium thin film. forming an insulating film thicker than the electrode gold layer of the device and having a thickness of at least 17M;
forming a first hole in the insulating film in the region where the gate is to be formed, and then etching the germanium thin film over a wide area including the hole using the insulating film as an etching mask; a step of forming a second aperture that faces the first aperture; a step of ion-implanting an impurity that is extremely high with respect to germanium; a step of heat-treating the semiconductor substrate together with the germanium thin film; This method includes the steps of depositing a metal layer and performing patterning to form a gate electrode in the first hole and a source N-electrode and a drain electrode in the second hole, respectively. Further, the atmosphere in the step of performing the -F heat treatment is characterized in that it is an atmosphere containing, for example, arsenic.

〔発明の実施例〕[Embodiments of the invention]

次にこの発明の製造方法の1実施例を第2図ないし第7
図によって工程順に説明する。
Next, one embodiment of the manufacturing method of the present invention is shown in FIGS. 2 to 7.
The steps will be explained in the order of steps using figures.

半絶縁性GaA s基板(11)にStイオ′ン(S 
i” ) を加速エネルギ120 keVでドーズ量3
.5X1012c*t−2に11□iES FET形成
領域に這択的に注入し、注入IM(t2勺を形成する。
St ions (S) are applied to the semi-insulating GaAs substrate (11).
i”) at an acceleration energy of 120 keV and a dose of 3
.. 5×1012c*t-2 is selectively implanted into the 11□iES FET formation region to form an implantation IM (t2).

さらに、この注入層を含む基板−に面全面にGe薄膜(
鴫を約700^)1に被着し、ついでCVI)手段によ
りCVD5iO1膜(un約700OA厚に被着する。
Furthermore, a Ge thin film (
A film of approximately 700 OA thick is then deposited by CVI (CVI) to a thickness of approximately 700 OA.

次にフォトレジスト膜(l[Ilを被着しフメトエッチ
ングにより長さ05μmの開化(10a)をフォトレジ
スト膜に形成する(第2図)。
Next, a photoresist film (Il) is deposited and an opening (10a) with a length of 05 μm is formed on the photoresist film by fumetetching (FIG. 2).

次に前記窓を辿してCVD SIO,膜(1!1をH,
ガスとCF4ガスを用いたりアクティブイオンエツチン
グ(RIE)によりエツチングする。これにより[雪面
がほぼ垂直な開孔(19a)がCVD5iO,膜(In
に形成される。次に、前記開孔を通してa@fj膜をO
lとCF4ガスを用いたプラズマエツチンクによりエツ
チングする。これによりGe薄膜はオーバーエツチング
されてその上層のCVD S I O*膜a]の前記開
孔よりも広く、かつ、断面がほぼ垂直な、開化(IF3
a)に形成さiする(第3図)。
Next, trace the window to CVD SIO, film (1!1 to H,
Etching is performed using gas and CF4 gas or by active ion etching (RIE). As a result, [openings (19a) where the snow surface is almost vertical are made of CVD5iO, film (In
is formed. Next, the a@fj film is O through the opening.
Etching is performed by plasma etching using 1 and CF4 gas. As a result, the Ge thin film is over-etched to form an open pore (IF3
a) is formed (Fig. 3).

次に第4図に示すように再度フォトエツナングを施し、
ソース、ドレイン領域に対応する窓をフォトレジスト膜
(10勺に形成し、との開孔を通してCVD S10.
膜OIをエツチングしテトれをCVD sio。
Next, as shown in Figure 4, photo etching is performed again.
Windows corresponding to the source and drain regions are formed in a photoresist film (10mm thick) and CVD S10.
Etch the film OI and perform CVD sio.

llI40旧てするとともにGe膜賭をソース、 ドレ
イン領域形成予定域に露出させる。
At the same time, the Ge film layer is exposed in the area where the source and drain regions are to be formed.

次に、フォトレジスト膜(10勺をイオン遮蔽マスクと
してAs+イオン(A++)を加速エネルギ1201c
eVでドーズ量I X 10I′cm ’の条件でGe
薄膜(119に注入する(第5図)。なお、この際イオ
ン種1jAIIに限定されるものではないが、イオン飛
程がGe4膜内にあるように留意する必要がある。
Next, using a photoresist film (10 mm) as an ion shielding mask, As+ ions (A++) were accelerated with an energy of 1201 c.
Ge at a dose of I x 10 I'cm' at eV
The ion is implanted into the thin film (119) (FIG. 5). At this time, although the ion species is not limited to 1jAII, care must be taken to ensure that the ion range is within the Ge4 film.

次に、フォトレジスト膜(10’)を除去し、ハを含ん
だアルゴンガス雰囲気中で850℃、15分間のアニー
ルを施し、注入層(12’)を活性化して動作層0りを
形成する。なお、このアニールは特許請求の範囲におけ
るGe薄膜形成後に行なう熱処理を兼ねてオリ、これに
よってGeとQaAs とが反応し、オたGe薄膜中に
注入されたAsも活性化されてGe ?η戸も101g
□4以上の高濃度にドープされる( m 6 F=71
 )。
Next, the photoresist film (10') is removed, and annealing is performed at 850° C. for 15 minutes in an argon gas atmosphere containing hydrogen to activate the injection layer (12') and form an active layer. . Note that this annealing also serves as the heat treatment performed after forming the Ge thin film in the claims, whereby the Ge and QaAs react, and the As implanted into the Ge thin film is also activated, resulting in Ge? η door is also 101g
□Doped at a high concentration of 4 or more (m 6 F=71
).

次K、fタン金fi#(Tl>を約1000 ’にとア
ルミニウム金属層(AZ)を約4000 X順次被着さ
せてグーl−電極層0鴎、ソース電極層Q[9,ドレイ
ン電極層07)がスは−ザのCVD 5ill膜(11
によってリフトオフ形成される。なお各電極層について
、(21g)はゲート電極層のチタン金属層部、(22
g)はゲート電極層のアルミニウム金属層部、(21+
) Idソース電電極極層チタン金属層部、(22g)
はソース電極層のアルミニウム金属層部、(21d)は
ドレイン電極層のチタン金属層部、(22d)はドレイ
ン電極層のアルミニウム金属層部である。なお、上記各
電極は同時に形成できる。また、最下層で動作層(12
1またはGe層鵠に直接に接続する電極金属層は上記チ
タンに限定されるものでなく、例えばW、 Ta等の高
融点金属でよいが、その厚さはスは−ザ用SIO,膜の
膜厚との兼ね合いで決定されるべきものであり、ソース
−ゲート間、タート−ドレイン間各部において、金属層
が段切れを生ずるような厚さであることが必要である。
Next, sequentially deposit K, f tan gold fi # (Tl> to about 1000' and aluminum metal layer (AZ) to about 4000 x to form electrode layer 0, source electrode layer Q [9, and drain electrode layer). 07) The CVD 5ill film (11)
It is formed by lift-off. Regarding each electrode layer, (21g) is the titanium metal layer part of the gate electrode layer, (22g) is the titanium metal layer part of the gate electrode layer, and (22g) is the titanium metal layer part of the gate electrode layer.
g) is the aluminum metal layer part of the gate electrode layer, (21+
) Id source electrode electrode layer titanium metal layer part, (22g)
(21d) is the titanium metal layer portion of the drain electrode layer; (22d) is the aluminum metal layer portion of the drain electrode layer. Note that each of the above electrodes can be formed at the same time. In addition, the operating layer (12
The electrode metal layer directly connected to the Ge layer 1 or the Ge layer is not limited to the above-mentioned titanium, and may be made of a high melting point metal such as W or Ta, but the thickness of the electrode metal layer is determined by the thickness of the film. The thickness should be determined in consideration of the film thickness, and the thickness must be such that the metal layer is broken at each portion between the source and the gate and between the top and the drain.

斜上の実施例ではスペーサ用絶縁膜としてCVD5in
、膜1mのみの場合を示したが、スは−サ用絶縁膜をよ
り厚く形成し、所望しない金属と電極部の段切れをより
確実に行なうため、二層以上のスは−ザ用絶縁膜を用い
てもよい。
In the example above, CVD5in is used as the insulating film for the spacer.
, the case where the film is only 1 m is shown, but in order to form the insulating film for the -sa thicker and more reliably cut off the undesired metal and electrode parts, the insulating film for the -sa with two or more layers is required. A membrane may also be used.

以下にスは−サ用絶縁膜としてCVD S10.膜にS
 i HN4膜を積層させて用いた場合の実施例を上述
の実施例との相違点につき製造工程を示す第8図ないし
第11図によって説明する。なお、−上述の実施例と変
わらない部分けついては図面に同じ番号をもって示し説
明を省略する。
Below, CVD S10. S on the membrane
An embodiment in which i HN4 films are used in a stacked manner will be explained with reference to FIGS. 8 to 11 showing the manufacturing process regarding the differences from the above-mentioned embodiment. It should be noted that - parts that are the same as those in the above-described embodiments are indicated by the same numbers in the drawings, and explanations thereof will be omitted.

まず、形成さ1またGe薄股α〜にCVD 5i02膜
(19’)全被着し、さらに積層させて7化シリコンI
!R(S Is N4膜)(21を、被着し、のちの電
・囲周リフトオフ形成する際のスは−サ層とする。この
ため、−例の膜厚を夫々約5000λ、約4000 H
に形成する(第8図)。
First, a CVD 5i02 film (19') was completely deposited on the formed layer 1 and the Ge thin layer α~, and further laminated with silicon heptaide I
! R (S Is N4 film) (21) is deposited, and the layer used in the subsequent electric and circumferential lift-off formation is made into a -sa layer.For this reason, the film thickness of the -sa layer is set to about 5000λ and about 4000H, respectively.
(Figure 8).

次にフォトレジスト膜(1句を被着し、その−例の05
μmの開孔(10a)からSt、N4膜(イ)を例えば
02 ガスとCF、 e用いたプラズマエツチングによ
り開化(10b)を形成−する(第9図)。
Next, a photoresist film (1 layer) is deposited, and the photoresist film (example 05
An opening (10b) is formed from the micrometer opening (10a) by plasma etching the St, N4 film (a) using, for example, 02 gas and CF, e (FIG. 9).

さらに、前記513N、Pノ開孔(1,Ob)を通して
CVD5+otR1へ(19’)にオーバーエツチング
を施し、前記開孔(10b)よりも広い面積の開孔(1
0c)を設ける。
Furthermore, over-etching is performed on CVD5+otR1 (19') through the 513N, P opening (1, Ob), and the opening (1, Ob) has a wider area than the opening (10b).
0c).

つづいて開孔(10c)によってGe薄膜(lF!jを
エツチングする。このエツチングは第1の実施例におい
てCVD5iOt膜に施したエツチングはどのオーバー
エツチングは必要でない(第10図)。
Next, the Ge thin film (lF!j) is etched through the opening (10c).This etching is different from the etching applied to the CVD5iOt film in the first embodiment, but no overetching is necessary (FIG. 10).

以下の工程は第1の実施例の工程において第6図以降に
よって説明したところとほぼ同じであり、最終的には第
11図によって示した状態でも第7図に示し説明したと
ころと同様にしてMES FETが形成される。
The following steps are almost the same as those explained in FIGS. 6 and after in the steps of the first embodiment, and the final state shown in FIG. 11 is also the same as that shown and explained in FIG. 7. A MES FET is formed.

との実施例のスは−サ用絶縁膜を2層用いた場合には、
スは−サ膜厚を厚くできるだけでなく、各膜のエツチン
グ特性を生かして開孔断面を工夫できるので、電極金属
被着工程の際に金属が開孔部側面に回り込むようなとき
でも電極間短絡を防止できる。ここでけCVD5IOt
膜と5ISN435%の2層の場合について説明したが
、とれらの組合せに限定されるものでなく、例えば、P
SG膜とSin、膜等の組合せでもよく、さらには3層
の絶縁膜を設けてもよい。3層の場合には中間層をこれ
にPi接する両層の夫々に対し上層(St、N、膜)、
または下層(CVD S loy層)の関係において実
施すればよい。
When two layers of insulating films are used,
Not only can the film thickness be increased, but the cross-section of the opening can be modified by taking advantage of the etching characteristics of each film, so even when metal wraps around the side of the opening during the electrode metal deposition process, the gap between the electrodes can be improved. Can prevent short circuits. Here CVD5IOt
Although the case of two layers of film and 5ISN 435% has been described, the combination is not limited to these, for example, P
A combination of an SG film, a Sin film, etc. may be used, or a three-layer insulating film may be provided. In the case of three layers, the upper layer (St, N, film),
Alternatively, it may be implemented in relation to the lower layer (CVD Sloy layer).

なお、上記いずれの実施例でも動作層(l力を形成する
手段としてイオン注入法によるものを説明したが、他の
方法、例えば気相成長法如よるエピタキシャル層でもよ
い。この場合もGeO熱処理には上記二つの実施例と同
じ条件で行なえばよい。また、イオン注入によって動作
層を形成する場合でも、注入する不純物はシリコンに限
らず、セレン(Se)等の他不純物イオンを用いてもよ
いことは勿論である。
In each of the above embodiments, the ion implantation method was used as a means for forming the active layer (l force), but it may be formed by other methods, such as an epitaxial layer formed by vapor phase growth.In this case as well, the GeO heat treatment may be carried out under the same conditions as in the above two embodiments.Also, even when forming the active layer by ion implantation, the impurity to be implanted is not limited to silicon, but other impurity ions such as selenium (Se) may be used. Of course.

上記二つの実施例においては、Ge薄膜上の絶縁膜とし
てAs5G膜を用い、後の熱処理の際Ge薄膜中にAJ
が導入されるように配慮したが、Ge薄膜−ヒの絶縁膜
は必ずしもGeに対してドナーとなる不純物を含む必要
はない。しかし、高性能のトランジスタを再現性よく形
成するには、Geを高濃度にドープし、ソース、ドレイ
ン部の接触抵抗を低減させることが必要である。従って
上記実施例のような不純物を添加した絶縁膜を用いるこ
とが好ましい。
In the above two examples, an As5G film was used as the insulating film on the Ge thin film, and AJ was added to the Ge thin film during subsequent heat treatment.
Although consideration has been given to introducing the Ge thin film, the insulating film of the Ge thin film does not necessarily need to contain an impurity that becomes a donor for Ge. However, in order to form high-performance transistors with good reproducibility, it is necessary to dope Ge at a high concentration to reduce the contact resistance of the source and drain portions. Therefore, it is preferable to use an insulating film doped with impurities as in the above embodiment.

次にこの発明のショトキバリア電界効果トランジスタは
、実効的なソース、ドレイン間の間隔が大幅に短縮可能
であるとともに、これらソース、ドレインとゲートをセ
ルフアライメントに一度で形成できるという特徴を有し
ているが、スは−サ用絶縁膜の上には電極用金属が残置
されていることからこれら残置金属との寄生容最が問題
になるような場合には、さらにこれらの一部または全部
を除去する工程を追加すればよい。この工程は通常の7
オトエツチ技術と、エツチング技術との組合せで容易に
行ないうるものである。
Next, the Schottky barrier field effect transistor of the present invention is characterized in that the effective spacing between the source and drain can be significantly shortened, and the source, drain, and gate can be formed in self-alignment at one time. However, since electrode metal remains on the insulating film for insulation, if parasitic interaction with these remaining metals becomes a problem, some or all of these metals must be removed. All you have to do is add a process. This process is the usual 7
This can be easily done by combining the etching technique and the etching technique.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、実効的なソース、
ゲート間の間隙は第1の実施例で説明したG@薄膜、ま
たは、第2の実施例で説明した下層スは−サ膜のオーバ
ーエツチング量で制御でき、しかもこの微小間隙を隔て
てゲート、ソース、ドレイン領域がセルフアライメント
に形成できるため、チャネル直列抵抗をゲート耐圧を損
なうととなく大幅に低減させることが可能となる。
As described above, according to the present invention, an effective source,
The gap between the gates can be controlled by the amount of overetching of the G@thin film explained in the first embodiment or the lower layer G@thin film explained in the second embodiment. Since the source and drain regions can be formed in self-alignment, channel series resistance can be significantly reduced without impairing gate breakdown voltage.

さらに、ソース、ドレイン部のオーミック接触電極と、
ゲート部のショットキ接触電極を同一の金属で、しかも
一度に形成できる上、オーミック接触形成のためのアロ
イ工程を必要としないため、しばしばアロイ工程で発生
していたAuGeのボールアップもなく、平滑な電極を
有するME、S’ FETが得られる。
Furthermore, ohmic contact electrodes in the source and drain parts,
The Schottky contact electrode in the gate area can be formed from the same metal at the same time, and there is no need for an alloying process to form an ohmic contact. A ME, S' FET with electrodes is obtained.

また、従来のMES FETの製造工程で要求されるよ
うなマスク合せ精度も必要でないため、生産性向上にも
効果が顕著である。
Furthermore, since the mask alignment precision required in the conventional MES FET manufacturing process is not required, the effect of improving productivity is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のショットキバリアゲート型電界効果トラ
ンジスタの断面図、第2図ないし第7図は1実施例のシ
ョットキバリアゲート型電界効果トランジスタの製造方
法全工程順に示すいずれも断面図、第8図ないし第11
図は別の実施例の製造方法を工程順に示すいずれも断面
図である。 11・・−・・・・・・半絶縁性GaA s基板12・
−・・・・・・・動作層 15・・・・・・・−・ゲート電極層 16・・・・・・・・・ソース電極層 17・・・・・・・・・ドレイン電極層21 (21g
、 21g 、 21d)・・・電極のチタン金属層部
22 (22g 、 22g 、 22d)・・・電極
のアルミニウム金属層部18・・・・・・・・・Ge薄
層 19・・・・−・・・・CVD810!層(スは−サ層
下層)20・・・・・・・−・81.N4層(スは−ザ
層上層)代理人 弁理士 井 上 −男 第 1 図 第 2 図 第3図 第 4 図 第 5 図 第 6 図 第7図 I 第 B 図 第1O図
FIG. 1 is a sectional view of a conventional Schottky barrier gate field effect transistor, and FIGS. Figure 11
The figures are all cross-sectional views showing the manufacturing method of another embodiment in the order of steps. 11... Semi-insulating GaAs substrate 12.
-... Operating layer 15... Gate electrode layer 16... Source electrode layer 17... Drain electrode layer 21 (21g
, 21g, 21d)...Titanium metal layer portion 22 of the electrode (22g, 22g, 22d)...Aluminum metal layer portion 18 of the electrode...Ge thin layer 19...- ...CVD810! Layer (lower layer) 20...81. N4 layer (upper layer) agent Patent attorney Inoue - Male Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure I Figure B Figure 1O

Claims (1)

【特許請求の範囲】 (11高比抵抗半導体基板の主面に能動層を形成する工
程と、前記能動層の表面にゲルマニウム薄膜を被着する
工程と、前記ゲルマニウム薄膜に債層させこの素子の電
極金属層よりも厚く少くとも一層でなる絶縁膜を形成す
る工程と、前記絶縁膜に対しそのゲート形成予定域に第
1の開孔を設けたのちこの絶縁膜をエツチングマスクと
してゲルマニウム薄膜に前記開孔よりも広域にエツチン
グを施す工程と、前記絶縁膜に第1の開化を挾んで相対
する第2の開孔を設ける工程と、ゲルマニウムに対して
ドナーとなる不純物をイオン注入する工程と、前記半導
体基板をゲルマニウムN膜ととも圧熱処理する工程と、
電極金FANを被着しパターニングを施して第1の開孔
にゲート電極を第2の開化にソース電極およびドレイン
電極を夫々形成する工程とを具備することを特徴とする
電界効果トランジスタの製造方法。 (2)半導体基板をゲルマニウム薄膜とともに熱処理す
る工程の雰囲気がひ素を含む雰囲気であることを特徴と
する特許請求の範囲第1項に記載の電界効果トランジス
タの製造方法。
[Scope of Claims] (11) A step of forming an active layer on the main surface of a high resistivity semiconductor substrate, a step of depositing a germanium thin film on the surface of the active layer, and a step of depositing a bond layer on the germanium thin film. A step of forming an insulating film having at least one layer thicker than the electrode metal layer, and forming a first hole in the insulating film in the area where the gate is to be formed, and then using the insulating film as an etching mask to form the first hole in the germanium thin film. a step of etching a wider area than the opening; a step of providing a second opening in the insulating film that faces the first opening; and a step of ion-implanting an impurity to serve as a donor for germanium; a step of applying pressure heat treatment to the semiconductor substrate together with a germanium N film;
A method for manufacturing a field effect transistor, comprising the steps of depositing and patterning an electrode gold FAN to form a gate electrode in a first opening and a source electrode and a drain electrode in a second opening, respectively. . (2) The method for manufacturing a field effect transistor according to claim 1, wherein the atmosphere in the step of heat-treating the semiconductor substrate together with the germanium thin film is an atmosphere containing arsenic.
JP15778683A 1983-08-31 1983-08-31 Manufacture of field effect transistor Pending JPS6050967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15778683A JPS6050967A (en) 1983-08-31 1983-08-31 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15778683A JPS6050967A (en) 1983-08-31 1983-08-31 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS6050967A true JPS6050967A (en) 1985-03-22

Family

ID=15657261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15778683A Pending JPS6050967A (en) 1983-08-31 1983-08-31 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS6050967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231040A (en) * 1989-04-27 1993-07-27 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231040A (en) * 1989-04-27 1993-07-27 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
JP3377022B2 (en) Method of manufacturing heterojunction field effect transistor
TW559903B (en) Semiconductor device and method for fabricating the same
JPS6292481A (en) Manufacture of semiconductor device
JPS63248136A (en) Semiconductor device
JPS6050967A (en) Manufacture of field effect transistor
JPH0543291B2 (en)
JP2792948B2 (en) Method for manufacturing semiconductor device
JPS616871A (en) Manufacture of field-effect transistor
JPS6050966A (en) Manufacture of field effect transistor
JPS6050965A (en) Field effect transistor and manufacture thereof
JPH0219622B2 (en)
JPH0622247B2 (en) Field effect semiconductor device
JPS6142963A (en) Manufacture of semiconductor device
JP2889240B2 (en) Compound semiconductor device and method of manufacturing the same
JPH0436459B2 (en)
JPS62150888A (en) Manufacture of field effect transistor
JPH08288308A (en) Fabrication of field-effect transistor
JPS6347982A (en) Semiconductor device
JP2003163225A (en) Semiconductor device and manufacturing method therefor
JPH0439772B2 (en)
JPS5893290A (en) Manufacture of schottky barrier field effect transistor
JPS6038883A (en) Manufacture of schottky gate type field effect transistor
JPS6173381A (en) Manufacture of semiconductor integrated circuit device
JPS6292478A (en) Manufacture of semiconductor device