JPS6292481A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6292481A
JPS6292481A JP23401985A JP23401985A JPS6292481A JP S6292481 A JPS6292481 A JP S6292481A JP 23401985 A JP23401985 A JP 23401985A JP 23401985 A JP23401985 A JP 23401985A JP S6292481 A JPS6292481 A JP S6292481A
Authority
JP
Japan
Prior art keywords
resist
gate electrode
source
film
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23401985A
Other languages
Japanese (ja)
Inventor
Mikio Kanamori
金森 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23401985A priority Critical patent/JPS6292481A/en
Publication of JPS6292481A publication Critical patent/JPS6292481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve the integration and to eliminate a decrease in characteristics by heat treating and then forming a low resistance electrode material on a high melting point metal heat resistant gate electrode in a self- aligning manner. CONSTITUTION:With resist 8 and gate electrode 1 as masks Si ions are implanted to source, drain regions, the resist 8 is removed, annealed again in As atmosphere to form a high density impurity region 5. After the entire wafer is covered with a resist film 9, and the resist surface is flattened by heating. Then, it is dry etched with O2 until the resist 9 on the SiO2 film 7 is removed. The film 7 is removed by etching with diluted fluoric acid, and Au 10 is deposited by an electron beam depositing method. The resist 9 is eventually removed with organic solvent to remove the Au 10 on the resist 9, source, drain electrodes AuGe-Ni are deposited, alloyed at 400 deg.C to form source and drain electrodes 2, 3.

Description

【発明の詳細な説明】 一 (産業上の利用分野) 本発明は半導体装置の製造方法に関し、特に2層の電極
構造を含む半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device including a two-layer electrode structure.

(従来の技術) 例えば、ガリウム砒素(GaAs)を用いたシ胃ットキ
障壁型を界効果トランジスタ(以下ME5FETと記す
)の高性能化のため、第2図の模式断面図に示すような
MF18 PETの構造が知られている。図においてけ
lは耐熱性ゲート′lr極、2はソース−゛極% 3は
ドレイン電極、4はGaAs動作層、5は高濃度不純物
領域、6は半絶縁性GaAs基板である。本構造では、
例えば、1983年発行のインターナシ冒ナル・ソリッ
ドステート・サーキット@コア77うyx (: II
nternationalSolid−8tate C
1rcaits Conference )の44頁に
示されているように、ゲート′wL極をマスクとしてソ
ース及びドレイン領域に高濃度不純物をイオン注入しそ
して活性化することにより、ソース及びドレインの泊列
寄生抗抵の低減を図っている。
(Prior art) For example, in order to improve the performance of a field effect transistor (hereinafter referred to as ME5FET) using a barrier type field effect transistor using gallium arsenide (GaAs), an MF18 PET as shown in the schematic cross-sectional view of Fig. 2 is used. The structure of is known. In the figure, 1 is a heat-resistant gate electrode, 2 is a source electrode, 3 is a drain electrode, 4 is a GaAs active layer, 5 is a high concentration impurity region, and 6 is a semi-insulating GaAs substrate. In this structure,
For example, Internashi Explosive Solid State Circuit @ Core 77 Uyx (: II
internationalSolid-8tate C
As shown on page 44 of 1Rcaits Conference), by ion-implanting and activating high-concentration impurities into the source and drain regions using the gate 'wL pole as a mask, the parasitic resistance of the source and drain lines is reduced. We are trying to reduce this.

したがって、ゲート電極は活性化のための熱処理後も安
定なシ習ットキ特性を有することが必要であり、現在例
えばタングステンの硅化物(WSi)等の高融点金輪の
混合物もしくは化合物が用いられている。
Therefore, it is necessary for the gate electrode to have stable Si-Jitto characteristics even after heat treatment for activation, and currently, for example, mixtures or compounds of high melting point metals such as tungsten silicide (WSi) are used. .

さらに、ゲートw極材は集積回路においては配線電極に
用いられておシ、配線遅延低減のために低抗抵であるこ
とが要求される。またF”ETを低雑音用、高出力用増
幅素子として用いる場合もゲート抗抵の低減は高性能化
のためik’要である。したがって、本構造では高耐熱
性と低抗抵であるグー)[1の開発が素子の製作及び筒
性能化のために必要となっている。
Further, since the gate w electrode material is used as a wiring electrode in an integrated circuit, it is required to have low resistance in order to reduce wiring delay. Also, when F"ET is used as a low-noise or high-output amplification element, reducing the gate resistance is essential for achieving high performance. Therefore, this structure has high heat resistance and low resistance. ) [The development of 1 is necessary for manufacturing the element and improving the performance of the tube.

(発明が解決しようとする問題点) 現在、高耐熱性を有するゲート電極材として高融点金輪
の混合物もしくは化合物が主に用いられているが、その
比抗抵は、例えばA/、Att等に比べ高く高速動作が
できないという欠点がある。
(Problems to be Solved by the Invention) At present, mixtures or compounds of high melting point metal rings are mainly used as gate electrode materials having high heat resistance, but the resistivity thereof is, for example, A/, Att, etc. The disadvantage is that it is relatively expensive and cannot operate at high speed.

高融点金輪糸材料上にA/ 、Au尋を積層することに
よって低抗抵化が図れるが、この構造のゲート電極の場
合、イオン注入不純物活性化のための熱処理の際、A/
、Auは高融点全極糸膜を通してGaAs中に拡散しや
すく、熱処理後も良好なシ曹ットキ特性を得ることが困
難であることがわかった。したがって、熱処理後にA/
 、Au尋の低抗抵1極材を積層することが好ましいが
、マスク合せで行う場合合せ余裕が必要となシ集積度が
低下する問題がある。
Low resistance can be achieved by laminating A/ and Au thick on a high melting point gold thread material, but in the case of a gate electrode with this structure, A/
It was found that Au easily diffuses into GaAs through the high-melting-point all-polar thread membrane, and it is difficult to obtain good SiOtchi properties even after heat treatment. Therefore, after heat treatment, A/
Although it is preferable to laminate low-resistance single-pole materials such as Au thick, there is a problem in that when this is done by mask alignment, a margin for alignment is required and the degree of integration is reduced.

本発明の目的は、上記の問題点に鑑み、熱処理を行った
稜、尚融点金属系の耐熱性ゲート電極構造に低抗抵の電
極材を自己整合的に形成し、マスク合せ余裕の必要がな
く、集積度を向上でき、かつ特性低下の生じない半導体
装置の製造方法を提供することにある。
In view of the above problems, an object of the present invention is to form a low-resistance electrode material in a self-aligned manner on a heat-treated edge and a heat-resistant gate electrode structure made of a melting point metal, thereby eliminating the need for mask alignment margin. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can improve the degree of integration without causing any deterioration in characteristics.

(問題点を解決するための手段) 本発明の半導体装置の製造方法け、半導体基板に形成し
た半導体動作層上のゲート領域上に第1のゲート電極及
び該第1のゲート電極上に絶縁膜を積層した2層構造を
形成する工程と、前記牛導体基板上全面にレジストを塗
布する工程と、前記絶縁膜上のレジストをエツチング除
去し絶縁膜の上面を線用させる工程と、該上面を蕗出さ
せた絶縁膜を除去する工程と、第2のゲート電極材を前
記第1のゲート電極及び前記レジスト上に形成する工程
と、前記レジスト及び該レジスト上の第2のゲート電極
側を除去する工程とを含み少なくとも2層のゲート電極
構造を形成することを特徴として構成される。
(Means for Solving the Problems) According to the method for manufacturing a semiconductor device of the present invention, a first gate electrode is provided on a gate region on a semiconductor active layer formed on a semiconductor substrate, and an insulating film is provided on the first gate electrode. a step of forming a two-layer structure in which the conductor substrate is laminated, a step of applying a resist to the entire surface of the conductor substrate, a step of etching away the resist on the insulating film and making the upper surface of the insulating film a wire, and a step of etching the resist on the insulating film, a step of removing the exposed insulating film, a step of forming a second gate electrode material on the first gate electrode and the resist, and a step of removing the resist and the second gate electrode side on the resist. The method is characterized in that it includes a step of forming at least a two-layer gate electrode structure.

(作用) トキ特性に劣化を生じさせないとkの絶縁膜によシ耐鮎
性ゲート電極上以外のG a A s表面に耐熱性ゲー
ト電&換厚より厚いレジストを自己整合で形成すること
が可能となるため、リフトオフ法で耐熱性グー)’It
極上にこのグー)%:1fjAと同一寸法で第2のゲー
ト電極材を積層することが可能となる。
(Function) It is possible to form a resist thicker than the heat-resistant gate electrode and the thickness of the heat-resistant gate electrode on the GaAs surface other than on the heat-resistant gate electrode by self-alignment without causing any deterioration of the heat resistance. It is possible to create heat-resistant goo using the lift-off method.
It becomes possible to laminate the second gate electrode material on top of this layer with the same dimensions as the 1fjA.

(実施例) 次に、本発明の実施例について図面をtf!@シて−ニ
5・、− 説明する。第1図(al〜(f)は本発明の一実施例を
説明するために工程順に示した半導体素子の模式断面図
である。
(Example) Next, the drawings regarding the example of the present invention are tf! @Site-ni5・,- Explain. FIGS. 1A to 1F are schematic cross-sectional views of a semiconductor device shown in order of steps to explain an embodiment of the present invention.

まず、第1図(alに示すように、中絶縁性(JaAs
基板6を用意し、基板6土に81イオンを50keV。
First, as shown in Figure 1 (al), medium insulating (JaAs)
Prepare the substrate 6 and apply 81 ions to the soil of the substrate 6 at 50 keV.

2 X 10 ’α1の条件で選択的にイオン注入し、
As雰囲気中で800℃、20分のアニールを行い、G
aAs動作7i114を形成する。次にスパッタ法でW
Si1をG a A s基板4上に0.2 μm 堆f
gし、引き続きCVD法でSi0,7をWSil上に0
.3μm堆積した。次に、ゲート電極となるべき部分に
レジストを形成し、レジストに覆われない領域のSiO
,7をCF、を用いたドライエツチング法で除去した後
、引き続きCF4と03の混合ガスを用いたドライエツ
チング法でWS i lを除去し、WS tよシなる耐
熱性ゲート1極lとその電極上に絶縁物7を形成する。
Selective ion implantation was performed under the condition of 2 x 10'α1,
Annealing was performed at 800°C for 20 minutes in an As atmosphere, and G
aAs operation 7i114 is formed. Next, using the sputtering method, W
Si1 was deposited with a thickness of 0.2 μm on the GaAs substrate 4.
g, and then Si0,7 was deposited on WSil using the CVD method.
.. A thickness of 3 μm was deposited. Next, a resist is formed on the part that will become the gate electrode, and the SiO
. An insulator 7 is formed on the electrode.

次に、第1図(b)に示すように、レジスト8及びゲー
ト電vklをマスクとして8iイオンを150k eV
 、 5 X I O”cm−”の条件でソース、ドレ
イン領域にイオン注入し、レジスト8を除去した稜再び
As雰p気中で800″’0 、20分のアニールを行
い、高濃度不純物領域5を形成する。
Next, as shown in FIG. 1(b), using the resist 8 and gate voltage vkl as masks, 8i ions were heated to 150 k eV.
Ions were implanted into the source and drain regions under the conditions of , 5×IO cm-, and the edge from which the resist 8 was removed was again annealed for 20 minutes at 800 cm in an As atmosphere to form the high concentration impurity region. form 5.

次に、第1図TC)に示すように、レジスト模りを1.
5μmの厚さでウェハーヒ全面に塗布した後、200℃
の加熱によシレジスト表面を平担化した。
Next, as shown in FIG.
After coating the entire surface of the wafer with a thickness of 5 μm, it was heated at 200°C.
The resist surface was flattened by heating.

次に、第1図(d)に示すように、8i0,7上のレジ
スト9が除去されるまでOlを用いてドライエツチング
する。
Next, as shown in FIG. 1(d), dry etching is performed using Ol until the resist 9 on 8i0, 7 is removed.

次に、ts1図(e)に示すように、8i0,7を希フ
ッ酸でエツチング除去した稜、Au1Oを電子ビーム蒸
着法で0.2μm堆積する。
Next, as shown in FIG. ts1 (e), 8i0,7 is removed by etching with dilute hydrofluoric acid, and Au1O is deposited to a thickness of 0.2 μm by electron beam evaporation.

最稜に、第1図げ)に示すように、レジスト9を有機溶
剤で除去することによシレジスト9上のAu1Oを除去
した彼、ソース、ドレイン電極AuGe−Niを蒸着し
、400 ’0のアロイを行うことによ如ソース霜極2
.ドレイン電極3を形成し、F’ETの製作を完了する
At the very top, as shown in Figure 1), the Au1O on the resist 9 was removed by removing the resist 9 with an organic solvent, and AuGe-Ni was deposited on the source and drain electrodes, and a layer of 400'0 was formed. Source frost pole 2 by doing alloy
.. A drain electrode 3 is formed to complete the fabrication of F'ET.

以上のF B ’1’の製作のほか、従来のWSj単層
ゲート−、極(膜厚0.4μm)を用い九PETも製グ
ート長]11m、ゲート−300/JmのFB’J’の
最小雑音指数NFm1nを12GHzにおいて測定した
結果、従来のW8i$RIiゲートを有するF’ETで
はNFm i n 篇2.3dBであり、本発明の実施
例の2層ゲートを有するF’FTではNFm1nt=1
.8dBとNFm1nの改善がみられた。ゲート電極の
抗折が従来に比べて1桁近く低減しているためである。
In addition to the above fabrication of FB '1', we also fabricated 9 PET using the conventional WSj single layer gate and pole (film thickness 0.4 μm). As a result of measuring the minimum noise figure NFm1n at 12 GHz, in the conventional F'ET with the W8i$RIi gate, NFmin is 2.3 dB, and in the F'FT with the two-layer gate according to the embodiment of the present invention, NFm1nt= 1
.. An improvement of 8 dB and NFm1n was observed. This is because the bending of the gate electrode is reduced by nearly an order of magnitude compared to the conventional method.

なお、ゲート抗抵の低減は集積回路においてグー)II
c極材を用いた配線電極の遅延時間短縮に効果があシ、
集積回路の高速動作の実現にも極めて有効である。
In addition, reducing gate resistance is a major issue in integrated circuits) II
It is effective in reducing the delay time of wiring electrodes using c-pole material.
It is also extremely effective in realizing high-speed operation of integrated circuits.

(発明の効果) 以上説明したように、本発明によれば高温熱処理彼耐熱
性ゲート電極上に自己整合で低抗折のゲート電極材を積
階することが可能とガシ、)’ETまたその集積回路の
集積度を低下することなく、かつ特性低下を生ずること
なく、高速動作を実現できるという効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to stack a self-aligned, low-reflection gate electrode material on a high-temperature heat-treated, heat-resistant gate electrode. The effect is that high-speed operation can be realized without reducing the degree of integration of the integrated circuit and without deteriorating the characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜げ)は本発明の一実施例を説明するため
に工8+1111に示した半導体素子の模式断面図、第
2図は従来の高濃度不純物領域を有するFETの模式断
面図である。 1・・・・・・耐熱性ゲート電:&、2 a a・・・
・・・ソース。
Figure 1 (al~ge) is a schematic cross-sectional view of a semiconductor element shown in Figure 8+1111 to explain one embodiment of the present invention, and Figure 2 is a schematic cross-sectional view of a conventional FET having a high concentration impurity region. be. 1...Heat-resistant gate electrode: &, 2 a a...
···sauce.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に形成した半導体動作層上のゲート領域上に
第1のゲート電極及び該第1のゲート電極上に絶縁膜を
積層した2層構造を形成する工程と、前記半導体基板上
全面にレジストを塗布する工程と、前記絶縁膜上のレジ
ストをエッチング除去し、絶縁膜の上面を露出させる工
程と、該上面を露出させた絶縁膜を除去する工程と、第
2のゲート電極材を前記第1のゲート電極及び前記レジ
スト上に形成する工程と、前記レジスト及び該レジスト
上の第2のゲート電極材を除去する工程とを含み少なく
とも2層のゲート電極構造を形成することを特徴とする
半導体装置の製造方法。
a step of forming a two-layer structure in which a first gate electrode is stacked on a gate region on a semiconductor active layer formed on a semiconductor substrate and an insulating film stacked on the first gate electrode; and a step of forming a resist on the entire surface of the semiconductor substrate. a step of applying the resist on the insulating film to expose the upper surface of the insulating film; a step of removing the insulating film with the upper surface exposed; and a step of applying the second gate electrode material to the first gate electrode material. A semiconductor device comprising the steps of: forming a gate electrode on the resist; and removing the resist and a second gate electrode material on the resist. manufacturing method.
JP23401985A 1985-10-18 1985-10-18 Manufacture of semiconductor device Pending JPS6292481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23401985A JPS6292481A (en) 1985-10-18 1985-10-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23401985A JPS6292481A (en) 1985-10-18 1985-10-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6292481A true JPS6292481A (en) 1987-04-27

Family

ID=16964282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23401985A Pending JPS6292481A (en) 1985-10-18 1985-10-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6292481A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489469A (en) * 1987-09-30 1989-04-03 Mitsubishi Electric Corp Field-effect transistor and manufacture thereof
JPS6489470A (en) * 1987-09-30 1989-04-03 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH01109770A (en) * 1987-10-22 1989-04-26 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH022639A (en) * 1988-06-15 1990-01-08 Mitsubishi Electric Corp Manufacture of field effect transistor
JPH022142A (en) * 1988-06-13 1990-01-08 Mitsubishi Electric Corp Field effect transistor and its manufacture
US4977100A (en) * 1988-10-12 1990-12-11 Mitsubishi Denki Kabushiki Kaisha Method of fabricating a MESFET
US5237192A (en) * 1988-10-12 1993-08-17 Mitsubishi Denki Kabushiki Kaisha MESFET semiconductor device having a T-shaped gate electrode
US5322806A (en) * 1988-08-24 1994-06-21 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor device using electron cyclotron resonance plasma CVD and substrate biasing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489469A (en) * 1987-09-30 1989-04-03 Mitsubishi Electric Corp Field-effect transistor and manufacture thereof
JPS6489470A (en) * 1987-09-30 1989-04-03 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH01109770A (en) * 1987-10-22 1989-04-26 Mitsubishi Electric Corp Manufacture of semiconductor device
US5030589A (en) * 1987-10-22 1991-07-09 Mitsubishi Denki Kabushiki Kaisha Production method for a semiconductor device
JPH022142A (en) * 1988-06-13 1990-01-08 Mitsubishi Electric Corp Field effect transistor and its manufacture
JPH022639A (en) * 1988-06-15 1990-01-08 Mitsubishi Electric Corp Manufacture of field effect transistor
US5322806A (en) * 1988-08-24 1994-06-21 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor device using electron cyclotron resonance plasma CVD and substrate biasing
US4977100A (en) * 1988-10-12 1990-12-11 Mitsubishi Denki Kabushiki Kaisha Method of fabricating a MESFET
US5237192A (en) * 1988-10-12 1993-08-17 Mitsubishi Denki Kabushiki Kaisha MESFET semiconductor device having a T-shaped gate electrode

Similar Documents

Publication Publication Date Title
US4425700A (en) Semiconductor device and method for manufacturing the same
KR900008277B1 (en) Method manufacturing a field effect transistor
JPS5950567A (en) Manufacture of field effect transistor
JPS62136883A (en) Manufacture of self-aligning field effect transistor
JPS6292481A (en) Manufacture of semiconductor device
US4700455A (en) Method of fabricating Schottky gate-type GaAs field effect transistor
JPH05299441A (en) Manufacture of field effect transistor
JP3119248B2 (en) Field effect transistor and method of manufacturing the same
JPS59181676A (en) Semiconductor device
JPS6160591B2 (en)
JPS622666A (en) Field effect transistor
JP3035917B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPH0622247B2 (en) Field effect semiconductor device
JPH01161873A (en) Manufacture of semiconductor device
JPS5892265A (en) Manufacture of semiconductor device
JP2889240B2 (en) Compound semiconductor device and method of manufacturing the same
JPH0810706B2 (en) Method for manufacturing field effect transistor
JPH0439772B2 (en)
JPH01251667A (en) Manufacture of field effect transistor
JPS6163063A (en) Manufacture of semiconductor device
JPS59195874A (en) Manufacture of field-effect transistor
JPS5893290A (en) Manufacture of schottky barrier field effect transistor
JPS6050966A (en) Manufacture of field effect transistor
JPS6190470A (en) Manufacture of compound semiconductor device
JPS62150888A (en) Manufacture of field effect transistor