JPS6347982A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6347982A
JPS6347982A JP61193156A JP19315686A JPS6347982A JP S6347982 A JPS6347982 A JP S6347982A JP 61193156 A JP61193156 A JP 61193156A JP 19315686 A JP19315686 A JP 19315686A JP S6347982 A JPS6347982 A JP S6347982A
Authority
JP
Japan
Prior art keywords
source
drain
substrate
active layer
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61193156A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshimasu
敏彦 吉増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61193156A priority Critical patent/JPS6347982A/en
Publication of JPS6347982A publication Critical patent/JPS6347982A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress a substrate current generated due to interval between the n<+> type regions of source and drain to an extremely small value thereby to improve the gm of an FET by substantially equalizing in height the bottoms of the source and drain n<+> type regions formed by an ion implanting method on a semiconductor substrate to that of an active layer under a gate electrode. CONSTITUTION:The bottoms of source and drain n<+> type regions 4, 5 formed by an ion implanting method on a semiconductor substrate 7 are substantially equalized to that of an active layer 6 under a gate electrode 2. For example, the regions 4, 5 of an FET are formed by ion implanting with a mask 8 on a high resistance GaAs substrate 7. A film 9 different from the mask 9 is formed on the substrate 7, the mask 9 is removed, and the substrate 7 is etched in a suitable depth. Then, with the mask 9 the active layer 6 is formed by ion implanting. Thereafter, with the mask 9 the electrode 2 is formed, and source and drain electrodes 1, 3 are further formed to complete the FET.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は電界効果トランジスタを含む半導体装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to improvements in semiconductor devices including field effect transistors.

〈従来の技術〉 従来より、化合物半導体、とりわけGaAsを用いたシ
ョットキーバリア型電界効果トランジスタ(以下、ME
SFETと略す)は、超高速、超高周波素子として優れ
た性能を有しており多用されている。このようなMES
FETにおいて、更に高速化するためにはゲート電極長
とソースとドレインn+領域の間隔を短縮する必要があ
る。また、同一チップ内に、多数の素子を集積する場合
、活性層やn十領域をイオン注入を用いて形成すること
が均一性の点から有効である。
<Conventional technology> Conventionally, Schottky barrier field effect transistors (hereinafter referred to as ME) using compound semiconductors, especially GaAs, have been developed.
SFET (abbreviated as SFET) has excellent performance as an ultra-high speed, ultra-high frequency element and is widely used. This kind of MES
In order to further increase the speed of FETs, it is necessary to shorten the gate electrode length and the distance between the source and drain n+ regions. Furthermore, when a large number of elements are integrated in the same chip, it is effective from the point of view of uniformity to form the active layer and the n+ region using ion implantation.

第2図は、イオン注入技術を用いて製造された従来のG
aAsMESFETの構造を模式的に示す図である。
Figure 2 shows a conventional G manufactured using ion implantation technology.
FIG. 2 is a diagram schematically showing the structure of an aAs MESFET.

第2図において、11はソース電極、12はゲ  ゛−
ト電極、13はドレイン電極、14及び15はソース及
びドレイン電極11.13のコンタクト抵抗を下げるた
めのn+層、16は活性層、17は高抵抗GaAs基板
である。
In FIG. 2, 11 is a source electrode, and 12 is a gate electrode.
13 is a drain electrode, 14 and 15 are n+ layers for lowering the contact resistance of the source and drain electrodes 11 and 13, 16 is an active layer, and 17 is a high resistance GaAs substrate.

上記ゲート電極1.2は電子ビーム直接露光技術等を用
いることで、0.25μm以下に加工することが可能で
あり、またソース及びドレイン電極11゜13は極めて
ゲート電極12に近接した構造となっている。
The gate electrode 1.2 can be processed to a thickness of 0.25 μm or less by using electron beam direct exposure technology, and the source and drain electrodes 11 and 13 can be structured extremely close to the gate electrode 12. ing.

〈発明が解決しようとする問題点〉 イオン注入技術を用いた従来のλIESFETでば、ソ
ースとドレインのn+領域14及び15の底が、活性層
16の底よりもかなり深くなっているだめ、ソースとド
レインのn十領域14及び15の間隔を短縮するにした
がって、ドレイン電極13からソース電極11へ基板1
7を通って流れる電流が増加し、実効的にゲート電極1
2の制御能力が低下する。このだめ、ソースとドレイン
のn+領域14及び15の間隔を短縮しても、MESF
ETの相互コンダクタンス(以下gmと略す)は予想外
に、向上しないという欠点があった。
<Problems to be Solved by the Invention> In the conventional λIESFET using ion implantation technology, the bottoms of the source and drain n+ regions 14 and 15 are considerably deeper than the bottom of the active layer 16; As the distance between the n+ and drain regions 14 and 15 is reduced, the distance between the drain electrode 13 and the source electrode 11 of the substrate 1 is reduced.
7 increases, effectively increasing the current flowing through gate electrode 1
2 control ability decreases. In this case, even if the distance between the source and drain n+ regions 14 and 15 is shortened, the MESF
Unexpectedly, there was a drawback that the mutual conductance (hereinafter abbreviated as gm) of ET was not improved.

本発明は、上記の点に鑑みて創案されたもので、ソース
とドレインのn+領領域間隔の短縮に伴なって生じる基
板電流を極めて小さく抑え、FETのgmの向上を可能
ならしめる新しいFET構造を備えだ半導体装置を提供
することを目的としたものである。
The present invention was devised in view of the above points, and is a new FET structure that suppresses the substrate current that occurs due to the shortening of the distance between the n+ regions of the source and drain to an extremely low level, thereby making it possible to improve the gm of the FET. The purpose of this invention is to provide a semiconductor device equipped with the following.

く問題点を解決するだめの手段〉 上記の目的を達成するため、本発明の半導体装置は、半
導体基板上にイオン注入法によって形成されるソース及
びドレインn−領域の底とゲート電極下の活性層の底の
高さが略等しくなるように構成している。
Means for Solving the Problems> In order to achieve the above object, the semiconductor device of the present invention provides an active layer at the bottom of the source and drain n-regions and under the gate electrode, which are formed on a semiconductor substrate by ion implantation. The structure is such that the heights of the bottoms of the layers are approximately equal.

また、本発明の実施態様にあっては、半導体基板上のゲ
ート電極が形成される領域の近傍の半導体を選択的に除
去した構成となして、イオン注入技術を用いて半導体基
板上に形成されるソース及びドレインn−領域と活性層
の底がほぼ等しくなるように構成している。
Further, in an embodiment of the present invention, the semiconductor substrate is formed on the semiconductor substrate using ion implantation technology, with a structure in which the semiconductor near the region on the semiconductor substrate where the gate electrode is formed is selectively removed. The structure is such that the source and drain n- regions and the bottom of the active layer are approximately equal to each other.

く作用〉 ソースとドレインのn+領領域底と活性層の底をほぼ等
しくしているため、ソースとドレインのn+領領域間隔
を極めて短縮した場合においても、基板に流れる電流が
極めて小さく抑えられる。
Effect> Since the bottoms of the n+ regions of the source and drain are approximately equal to the bottoms of the active layer, even when the distance between the n+ regions of the source and drain is extremely shortened, the current flowing through the substrate can be kept extremely small.

〈実施例〉 以下、図面を参照して本発明の半導体装置の一実施例を
その製造工程にしだがって説明する。
<Embodiment> Hereinafter, one embodiment of the semiconductor device of the present invention will be described according to its manufacturing process with reference to the drawings.

まず、高抵抗GaAs基板7に、FETのソースのn+
領域4及びドレインのn+領域5をマスク8を用いてイ
オン注入により第1図(a)に示すように形成する。イ
オン注入条件は、加速電圧150keVでドーズ量5X
10  cm  のS+ イオンを注入した。次に第1
図(b)に示すようにマスク8とは異なる膜9をGaA
s基板7の表面に形成し、またマスク8は除去する。マ
スク9によりゲート電極の形成される領域に開口してい
る部分より第1図(c)に示すようにGaAs基板7を
適当な深さ、例えば1500Aだけエツチングする。次
に第1図(d)に示すようにマスク9を用いて、イオン
注入により活性層(チャンネル領域)6を形成する。イ
オン注入条件は、加速電圧60keVでドーズ量5×1
0−一のSiイオンを注入した。また上記各注入層の活
性化のため例えばプラズマCVDSiNx保護膜を用い
た800℃、15分間のアニールを施した。以上の工程
により、n 領域4及び5の底の深さは0.25−0.
3μmとなり、また活性層6の底の深さは0.1〜01
5μmとそり、ゲート電極の形成される領域の近傍の基
板表面をエツチングした活性層6の底がほぼ等しくなる
。次に第1図(e)に示すようにマスク9を用いてゲー
十電% 2 ヲ形成し、更に公知の方法によりソース電
極1及びドレイン電極3を形成し本発明の一実施例とし
てのFETの構造を完成する。
First, the n+ source of the FET is placed on the high resistance GaAs substrate 7.
Region 4 and drain n+ region 5 are formed by ion implantation using mask 8 as shown in FIG. 1(a). The ion implantation conditions were an acceleration voltage of 150 keV and a dose of 5X.
10 cm of S+ ions were implanted. Then the first
As shown in Figure (b), a film 9 different from the mask 8 is made of GaA.
s is formed on the surface of the substrate 7, and the mask 8 is removed. Using the mask 9, the GaAs substrate 7 is etched to a suitable depth, for example, 1500 Å, as shown in FIG. 1(c), from the opening in the region where the gate electrode is to be formed. Next, as shown in FIG. 1(d), an active layer (channel region) 6 is formed by ion implantation using a mask 9. The ion implantation conditions were an acceleration voltage of 60 keV and a dose of 5×1.
0-1 Si ions were implanted. Further, in order to activate each of the above injection layers, annealing was performed at 800° C. for 15 minutes using, for example, a plasma CVDSiNx protective film. Through the above steps, the depth of the bottom of n regions 4 and 5 is 0.25-0.
3 μm, and the depth of the bottom of the active layer 6 is 0.1 to 0.1 μm.
The warpage is 5 μm, and the bottoms of the active layer 6, which is obtained by etching the substrate surface in the vicinity of the region where the gate electrode is formed, are approximately equal. Next, as shown in FIG. 1(e), a gate conductor is formed using a mask 9, and a source electrode 1 and a drain electrode 3 are formed by a known method to form an FET as an embodiment of the present invention. Complete the structure of.

上記のような構成により、ソースとドレインのn+領領
域極めて短縮した場合においても、基板と流れる電流は
極めて小さく抑えられ、まだ同時に、ゲート・ソース電
極間の寄生抵抗が低く抑えられる。
With the above configuration, even if the n+ regions of the source and drain are extremely shortened, the current flowing with the substrate can be kept extremely low, and at the same time, the parasitic resistance between the gate and source electrodes can be kept low.

なお、上記マスク8および9は非晶質膜のンリコン酸化
膜中シリコン窒化膜またはGaAs等半導体のネイティ
ブ酸化膜等を用いてよいっまた基板7のエツチングは半
導体基板の種類によって異なるが、GaAsではリン酸
系、Siではヒドラジン等を用いてよい。まだ、第1図
における活性層6と、ソースとドレインのn′領域4及
び5の形成工程の順序は任意であり、以上の説明と逆に
行なうことも可能である。すなわち、ゲート領域の近傍
をエツチングした後、ソースからドレインに至る全領域
に活性層形成のだめのイオン注入を行ない、その後、ソ
ースとドレインのn+領領域形成することも可能である
The masks 8 and 9 may be made of silicon nitride in an amorphous silicon oxide film or a native oxide film of a semiconductor such as GaAs. Etching of the substrate 7 varies depending on the type of semiconductor substrate, but for GaAs For phosphoric acid and Si, hydrazine or the like may be used. However, the order of the steps for forming the active layer 6 and the source and drain n' regions 4 and 5 in FIG. 1 is arbitrary, and it is also possible to carry out the steps in the reverse order of the above description. That is, after etching the vicinity of the gate region, ions can be implanted into the entire region from the source to the drain for forming the active layer, and then the n+ region of the source and drain can be formed.

また、上記したイオン注入条件及びエツチング量の値は
上記実施例に限定されるものではなく、本発明はソース
とドレインのn+領領域底と活性層の底をほぼ等しくす
ることを特徴としており、そのためn+領域4及び5の
底と活性層6の底がほぼ等しくなるように、上記エツチ
ング深さとイオン注入の条件を設定するようになせば良
い。
Furthermore, the above-mentioned ion implantation conditions and etching amount values are not limited to the above-mentioned embodiments, and the present invention is characterized in that the bottoms of the n+ regions of the source and drain are approximately equal to the bottoms of the active layer. Therefore, the etching depth and ion implantation conditions may be set so that the bottoms of n+ regions 4 and 5 and the bottom of active layer 6 are approximately equal.

以上GaAsMESFETを例にとり、本発明の詳細な
説明したが、本発明はこれに限らず、GaAs以外の化
合物半導体やSi等の半導体にも適用することができる
Although the present invention has been described above in detail by taking the GaAs MESFET as an example, the present invention is not limited thereto, and can be applied to compound semiconductors other than GaAs and semiconductors such as Si.

〈発明の効果〉 以上のように本発明は、半導体装置のソースとドレイン
のn+領領域底と活性層の底をほぼ等しくするように成
しており、この結果ソースとドレインのn+領領域甑め
て短縮した場合においても、基板に流れる電流を極めて
小さく抑えることが可能となり、また同時に、ゲート・
ソース電極間の寄生抵抗を低く抑えることが可能なため
、FETのgmを大福に向上させることが可能となる。
<Effects of the Invention> As described above, according to the present invention, the bottom of the n+ region of the source and drain of a semiconductor device is made almost equal to the bottom of the active layer, and as a result, the bottom of the n+ region of the source and drain is made almost equal to the bottom of the active layer. Even when the gate length is shortened, the current flowing through the substrate can be kept extremely small, and at the same time, the gate current
Since it is possible to suppress the parasitic resistance between the source electrodes, it is possible to significantly improve the gm of the FET.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(e)はそれぞれ本発明一実施例装置
の製造工程の一例を説明するための基板断面を模式的に
示す図、第2図はイオン注入技術により製造された従来
のFETの構造例を示す模式図である0 1・・・ソース電極、2・・・ゲート電極、3・・・ド
レイン電極%4・・・ソースのn 領域、5・・・ドレ
インのn十領域、6・・・活性層、7・・・高抵抗Ga
As基板。 代理人 弁理士 杉 山 毅 至(他1名)(G) (d) (e) 第1図 第2図
1(a) to 1(e) are diagrams each schematically showing a cross section of a substrate for explaining an example of the manufacturing process of a device according to an embodiment of the present invention, and FIG. This is a schematic diagram showing an example of the structure of an FET. , 6...active layer, 7...high resistance Ga
As substrate. Agent Patent attorney Takeshi Sugiyama (and 1 other person) (G) (d) (e) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、半導体基板上にイオン注入法によって形成されるソ
ース及びドレインn^+領域の底とゲート電極下の活性
層の底の高さが略等しくなしたことを特徴とする半導体
装置。 2、前記ゲート電極の形成される領域の近傍の半導体を
選択的に除去してなることを特徴とする特許請求の範囲
第1項記載の半導体装置。
[Claims] 1. The bottom of the source and drain n^+ regions formed by ion implantation on the semiconductor substrate and the bottom of the active layer under the gate electrode are approximately equal in height. Semiconductor equipment. 2. The semiconductor device according to claim 1, wherein the semiconductor near the region where the gate electrode is formed is selectively removed.
JP61193156A 1986-08-18 1986-08-18 Semiconductor device Pending JPS6347982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193156A JPS6347982A (en) 1986-08-18 1986-08-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193156A JPS6347982A (en) 1986-08-18 1986-08-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6347982A true JPS6347982A (en) 1988-02-29

Family

ID=16303212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193156A Pending JPS6347982A (en) 1986-08-18 1986-08-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6347982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461063A (en) * 1987-09-01 1989-03-08 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH04171733A (en) * 1990-11-02 1992-06-18 Matsushita Electric Ind Co Ltd Manufacture of field effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104622A (en) * 1982-10-27 1984-06-16 ピルキントン・ピー・エル・シー Improved contact lens
JPS59124331U (en) * 1983-02-10 1984-08-21 篠崎 田鶴子 multicolor identification glasses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104622A (en) * 1982-10-27 1984-06-16 ピルキントン・ピー・エル・シー Improved contact lens
JPS59124331U (en) * 1983-02-10 1984-08-21 篠崎 田鶴子 multicolor identification glasses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461063A (en) * 1987-09-01 1989-03-08 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH04171733A (en) * 1990-11-02 1992-06-18 Matsushita Electric Ind Co Ltd Manufacture of field effect transistor

Similar Documents

Publication Publication Date Title
US4090289A (en) Method of fabrication for field effect transistors (FETs) having a common channel stopper and FET channel doping with the channel stopper doping self-aligned to the dielectric isolation between FETS
JP2550013B2 (en) Field effect transistor
JPS6347982A (en) Semiconductor device
JPH0637106A (en) Manufacture of semiconductor device
JPS62122170A (en) Mis transistor and manufacture thereof
JPH0249012B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPS6037172A (en) Manufacture of field effect transistor
JPH05267338A (en) Manufacture of semiconductor device
JPH02119265A (en) Compound semiconductor device
JPS58145161A (en) Manufacture of semiconductor device
JPS62190768A (en) Semiconductor device
JPS59181066A (en) Manufacture of semiconductor device
JPS6037176A (en) Manufacture of field effect transistor
JPS62112375A (en) Manufacture of semiconductor device
JPS6050966A (en) Manufacture of field effect transistor
JPS5955072A (en) Manufacture of semiconductor device
JPS62291070A (en) Manufacture of semiconductor device
JPS6086871A (en) Manufacture of field effect transistor
JPS59195874A (en) Manufacture of field-effect transistor
JPS6329420B2 (en)
JPH0724259B2 (en) Method for manufacturing compound semiconductor device
JPS5982773A (en) Manufacture of semiconductor device
JPH10270678A (en) Manufacture of semiconductor device
JPS63157474A (en) Manufacture of semiconductor device
JPH0449627A (en) Manufacture of compound semiconductor device