JPH0724259B2 - Method for manufacturing compound semiconductor device - Google Patents

Method for manufacturing compound semiconductor device

Info

Publication number
JPH0724259B2
JPH0724259B2 JP8992488A JP8992488A JPH0724259B2 JP H0724259 B2 JPH0724259 B2 JP H0724259B2 JP 8992488 A JP8992488 A JP 8992488A JP 8992488 A JP8992488 A JP 8992488A JP H0724259 B2 JPH0724259 B2 JP H0724259B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor device
heat treatment
silicon nitride
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8992488A
Other languages
Japanese (ja)
Other versions
JPH01260816A (en
Inventor
幹夫 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8992488A priority Critical patent/JPH0724259B2/en
Publication of JPH01260816A publication Critical patent/JPH01260816A/en
Publication of JPH0724259B2 publication Critical patent/JPH0724259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体装置の製造方法に関し、特にイオ
ン注入層の活性化のための熱処理方法に関する。
The present invention relates to a method for manufacturing a compound semiconductor device, and more particularly to a heat treatment method for activating an ion-implanted layer.

〔従来の技術〕[Conventional technology]

化合物半導体装置、特に砒化ガリウム(GaAs)を用いた
ショットキ障壁ゲート型電界効果トランジスタ(以下ME
SFETという)は、高速動作が可能であり高周波増幅器ま
た高速集積回路の基本素子として用いられている。
Compound semiconductor devices, especially Schottky barrier gate type field effect transistors (hereinafter ME) using gallium arsenide (GaAs).
SFET) is capable of high speed operation and is used as a basic element of high frequency amplifiers and high speed integrated circuits.

上述のFETの製造は例えば1981年発行のエレクトロニク
ス レターズ(Electronics Letters)の17巻の944頁に
述べられているように、先ず半絶縁性のGaAs基板上に選
択的にSi等の不純物をイオン注入した後、Asの蒸発を防
ぐため二酸化シリコンまたは窒化シリコン等の保護膜を
GaAs基板上全面に被着し、800℃程度の熱処理を行い不
純物の活性化を行う。次に不純物領域上に、例えばAlか
らなるショットキゲート電極を形成した後、AuGe−Niな
どのオーミック接触を有するソース,ドレイン電極を形
成することによりFETを完成させる。
The above-mentioned FET is manufactured, for example, as described in Electronics Letters, Vol. 17, Vol. 17, p. 944. First, impurities such as Si are selectively ion-implanted on a semi-insulating GaAs substrate. After that, a protective film such as silicon dioxide or silicon nitride is used to prevent the evaporation of As.
It is deposited on the entire surface of the GaAs substrate and heat-treated at about 800 ° C to activate the impurities. Next, after forming a Schottky gate electrode made of, for example, Al on the impurity region, source and drain electrodes having ohmic contact such as AuGe-Ni are formed to complete the FET.

GaAs基板の熱処理は二酸化シリコン膜や窒化シリコン膜
を用いるキャップアニールの他、保護膜を用いずに単に
アルシン雰囲気中で行うキャップレスアニールがあり、
これらの方法が選択されて用いられる。
The heat treatment of the GaAs substrate includes cap annealing using a silicon dioxide film or a silicon nitride film, and capless annealing performed simply in an arsine atmosphere without using a protective film.
These methods are selected and used.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

GaAs基板を用いたMESFETを有する集積回路を製作した場
合、MESFETのドレイン電流が、近接する他のFETの負電
位によって変動するいわゆるサイドゲート効果が生じ、
回路の動作が不安定になる問題が有る。
When an integrated circuit having a MESFET using a GaAs substrate is manufactured, a so-called side gate effect occurs in which the drain current of the MESFET fluctuates due to the negative potential of another FET in proximity,
There is a problem that the operation of the circuit becomes unstable.

本発明の目的は、サイドゲート効果を低減した化合物半
導体装置の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a compound semiconductor device with a reduced side gate effect.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の化合物半導体装置の製造方法は、半絶縁性化合
物半導体基板にイオン注入法により選択的に不純物を導
入した後熱処理を行い、該不純物を活性化して動作層を
形成する化合物半導体装置の製造方法であって、不純物
を導入した領域上のみに窒化シリコン膜を形成した後ア
ルシン雰囲気中で熱処理するものである。
A method of manufacturing a compound semiconductor device according to the present invention is a method of manufacturing a compound semiconductor device in which an impurity is selectively introduced into a semi-insulating compound semiconductor substrate by an ion implantation method and then heat treatment is performed to activate the impurity to form an operating layer. In this method, a silicon nitride film is formed only on a region where impurities are introduced, and then heat treatment is performed in an arsine atmosphere.

サイドゲート効果は、FETに近接した電極の電圧によりF
ETの動作層と動作層下の半絶縁性基板とのn−i接合に
電位差が生じ、したがって動作層の厚さが変調されるこ
とによって発生する。この場合半絶縁性基板中の深い順
位、例えばEL2などのトラップ密度が小さいとこの効果
は小さくなる。また、近接した電極とFET間の領域では
絶縁性が高い方が動作層部に加わる電位差が小さくなる
ため、サイドゲート効果が小さくなる。
The side gate effect is F due to the voltage of the electrode near the FET.
It is caused by a potential difference at the ni junction between the operating layer of the ET and the semi-insulating substrate below the operating layer, thus modulating the thickness of the operating layer. In this case, this effect is diminished when the deep rank in the semi-insulating substrate, for example, the trap density of EL2 is small. Further, in the region between the electrode and the FET which are adjacent to each other, the higher the insulating property is, the smaller the potential difference applied to the operating layer portion is, and thus the side gate effect is reduced.

熱処理を行った場合基板表面近傍においてトラップ密度
が減少するため、絶縁性が低下することが知られてい
る。発明者は、このトラップ密度の減少量、つまり絶縁
性が窒化シリコン膜を用いたアニールとアルシン中での
アニールで異なり、アルシン中でのアニールの方が窒化
シリコン膜の場合よりトラップ密度の減少が小さく、絶
縁性が高いことを見出し本発明に至った。
It is known that when heat treatment is performed, the trap density decreases in the vicinity of the surface of the substrate, so that the insulating property decreases. The inventor has found that the reduction amount of the trap density, that is, the insulating property is different between the annealing using the silicon nitride film and the annealing in the arsine, and the annealing in the arsine reduces the trap density more than the case of the silicon nitride film. The inventors have found that they are small and have high insulating properties, and have reached the present invention.

また、n−i接合領域においては前述したように、トラ
ップ密度の小さい方がサイドゲート効果が小さいので窒
化シリコン膜を用いたアニールが有利である。
Further, in the ni junction region, as described above, the smaller the trap density is, the smaller the side gate effect is. Therefore, the annealing using the silicon nitride film is advantageous.

以上によりFETの動作層部のみに窒化シリコン膜を被着
した後アルシン中で熱処理を行うことにより動作層部近
傍でトラップ密度が大きく減少し、またFETと近接した
電極間でのトラップ密度の減少が小さいことからサイド
ゲート効果の小さい化合物半導体装置が得られる。
As described above, by depositing a silicon nitride film only on the operating layer of the FET and then performing a heat treatment in arsine, the trap density is greatly reduced near the operating layer, and the trap density between the electrode adjacent to the FET is also reduced. Is small, a compound semiconductor device having a small side gate effect can be obtained.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図(a)〜(c)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図である。
1A to 1C are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention.

先ず第1図(a)に示すように、半絶縁性のGaAs基板5
の表面に選択的にSiイオンを加速電圧50keV,ドーズ量2
×1012cm-2の条件でイオン注入しGaAs動作層4を形成す
る。
First, as shown in FIG. 1 (a), a semi-insulating GaAs substrate 5 is used.
Si ions are selectively applied to the surface of Si at an acceleration voltage of 50 keV and a dose of 2
Ions are implanted under the condition of × 10 12 cm -2 to form the GaAs operating layer 4.

次に第1図(b)に示すように、プラズマCVD法で窒化
シリコン膜6を0.5μmの膜厚で基板上全面に被着した
後ドライエッチング法でパターニングし、GaAs動作層4
上にのみ窒化シリコン膜6を残す。そして、アルゴンガ
スで希釈したアルシン分圧2Torrの雰囲気中で800℃,20
分間の熱処理を行いイオン注入不純物であるSiの活性化
を行う。
Next, as shown in FIG. 1B, a silicon nitride film 6 having a thickness of 0.5 μm is deposited on the entire surface of the substrate by a plasma CVD method and then patterned by a dry etching method.
The silicon nitride film 6 is left only on the top. Then, in an atmosphere of arsine partial pressure 2 Torr diluted with argon gas, 800 ° C, 20
The heat treatment for 1 minute is performed to activate Si which is an ion-implanted impurity.

最後に、第1図(c)に示すように、GaAs動作層4上に
Alからなるゲート電極1,AuGe−Niからなるソース電極2,
ドレイン電極3を形成し、FETの製作を完了させる。
Finally, as shown in FIG. 1 (c), on the GaAs operating layer 4
Gate electrode made of Al 1, source electrode made of AuGe-Ni 2,
The drain electrode 3 is formed, and the fabrication of the FET is completed.

また、比較のため上記工程のうち熱処理の際、窒化シリ
コン膜のみを使って熱処理した場合、さらにアルシン雰
囲気のみで熱処理した場合の従来の製造方法によるFET
も製作した。そして、これら熱処理方法が異なる3種類
のFETのサイドゲート効果を隣接するFETのオーミック電
極に負の電圧を印加した場合のドレイン電流の変化によ
り調べた。第2図にその結果を示す。
For comparison, in the heat treatment of the above steps, the FET manufactured by the conventional manufacturing method when the heat treatment is performed using only the silicon nitride film, and further the heat treatment is performed only in the arsine atmosphere.
Also made. Then, the side gate effect of the three types of FETs having different heat treatment methods was examined by the change of drain current when a negative voltage was applied to the ohmic electrodes of the adjacent FETs. The results are shown in FIG.

第2図に示したように、本実施例の場合、ドレイン電流
が減少し始めるサイドゲート電圧は従来例のものより大
きく、サイドゲート効果が低減されていることがわか
る。
As shown in FIG. 2, in the case of this embodiment, the side gate voltage at which the drain current starts to decrease is higher than that of the conventional example, and the side gate effect is reduced.

耐熱性ゲートを用いたn+セルフアライン構造のFETにも
本発明を適用した。この製造の場合は耐熱ゲートを形成
し、セルフアラインでn+層形成のためのSi注入を行った
後、n+注入の領域上にのみSiN膜を0.5μm形成してアル
シン雰囲気中で熱処理を行った。この場合も従来の一種
類のアニール方法に比べサイドゲート効果が抑制される
ことがわかった。
The present invention is also applied to an n + self-aligned structure FET using a heat resistant gate. In the case of this manufacturing, after forming a heat-resistant gate and performing Si implantation for n + layer formation by self-alignment, a SiN film of 0.5 μm is formed only on the n + implantation region and heat treatment is performed in an arsine atmosphere. went. Also in this case, it was found that the side gate effect is suppressed as compared with the conventional one type of annealing method.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、半絶縁性基板に不
純物を導入したのち、この不純物を導入した領域上のみ
に窒化シリコン膜を形成し、アルシン雰囲気中で熱処理
することにより、サイドゲート効果を低減させることが
できるため、回路動作の不安定性を抑制できる効果があ
る。
As described above, according to the present invention, after introducing an impurity into a semi-insulating substrate, a silicon nitride film is formed only on a region into which the impurity is introduced, and a heat treatment is performed in an arsine atmosphere to obtain a side gate effect. As a result, the instability of circuit operation can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図は本
実施例及び従来例によって得られたFETのドレイン電流
とサイドゲート電圧との関係を示す図である。 1…ゲート電極、2…ソース電極、3…ドレイン電極、
4…GaAs動作層、5…GaAs基板、6…窒化シリコン膜。
1 (a) to 1 (c) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention, and FIG. 2 is a drain current of an FET obtained by this embodiment and a conventional example. It is a figure which shows the relationship between a side gate voltage and. 1 ... Gate electrode, 2 ... Source electrode, 3 ... Drain electrode,
4 ... GaAs operating layer, 5 ... GaAs substrate, 6 ... Silicon nitride film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/812 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 29/812

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半絶縁性化合物半導体基板にイオン注入法
により選択的に不純物を導入した後熱処理を行い、該不
純物を活性化して動作層を形成する化合物半導体装置の
製造方法において、不純物を導入した領域上のみに窒化
シリコン膜を形成した後アルシン雰囲気中で熱処理する
ことを特徴とする化合物半導体装置の製造方法。
1. A method of manufacturing a compound semiconductor device, wherein an impurity is selectively introduced into a semi-insulating compound semiconductor substrate by an ion implantation method and then heat treatment is performed to activate the impurity to form an operation layer. A method for manufacturing a compound semiconductor device, comprising: forming a silicon nitride film only on the formed region and then performing heat treatment in an arsine atmosphere.
JP8992488A 1988-04-11 1988-04-11 Method for manufacturing compound semiconductor device Expired - Lifetime JPH0724259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8992488A JPH0724259B2 (en) 1988-04-11 1988-04-11 Method for manufacturing compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8992488A JPH0724259B2 (en) 1988-04-11 1988-04-11 Method for manufacturing compound semiconductor device

Publications (2)

Publication Number Publication Date
JPH01260816A JPH01260816A (en) 1989-10-18
JPH0724259B2 true JPH0724259B2 (en) 1995-03-15

Family

ID=13984249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8992488A Expired - Lifetime JPH0724259B2 (en) 1988-04-11 1988-04-11 Method for manufacturing compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH0724259B2 (en)

Also Published As

Publication number Publication date
JPH01260816A (en) 1989-10-18

Similar Documents

Publication Publication Date Title
KR920002090B1 (en) Method of manufacturing field effect transistor
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
JPH02253632A (en) Manufacture of field effect transistor
US3873372A (en) Method for producing improved transistor devices
JPH05299441A (en) Manufacture of field effect transistor
JP2550013B2 (en) Field effect transistor
US4888626A (en) Self-aligned gaas fet with low 1/f noise
US4895811A (en) Method of manufacturing semiconductor device
GB2074374A (en) Method of making field effect transistors
JPH0212927A (en) Manufacture of mesfet
JPH0724259B2 (en) Method for manufacturing compound semiconductor device
JPS6292327A (en) Semiconductor device and manufacture thereof
JPH0249012B2 (en) HANDOTAISOCHINOSEIZOHOHO
JP2716719B2 (en) Method for manufacturing MESFET
JPH0824132B2 (en) Method for manufacturing field effect transistor
JPS6037173A (en) Manufacture of field effect transistor
JPS6347982A (en) Semiconductor device
JPS6298780A (en) Manufacture of self-aligning gaas digital integrated circuit
JPS6037176A (en) Manufacture of field effect transistor
JPS6054480A (en) Manufacture of gallium arsenide schottky barrier junction gate field effect transistor
JPS58145161A (en) Manufacture of semiconductor device
JPS62259472A (en) Semiconductor device
JPS6348868A (en) Manufacture of schottky gate type field effect transistor
JPH0322696B2 (en)
JPS59986B2 (en) Method for manufacturing field effect transistors