JPS62112375A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62112375A
JPS62112375A JP25320785A JP25320785A JPS62112375A JP S62112375 A JPS62112375 A JP S62112375A JP 25320785 A JP25320785 A JP 25320785A JP 25320785 A JP25320785 A JP 25320785A JP S62112375 A JPS62112375 A JP S62112375A
Authority
JP
Japan
Prior art keywords
substrate
mask
drain region
conductivity type
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25320785A
Other languages
Japanese (ja)
Other versions
JPH0424876B2 (en
Inventor
Masayuki Yoshida
正之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25320785A priority Critical patent/JPS62112375A/en
Publication of JPS62112375A publication Critical patent/JPS62112375A/en
Publication of JPH0424876B2 publication Critical patent/JPH0424876B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To realize high speed operation by a method wherein impurity layers which have lower concentrations than a substrate are formed with good controllability with respect to a drain region to reduce a parasitic capacitance between the drain region and the substrate. CONSTITUTION:A conductive polycrystalline Si gate electrode 6 and P<->type layers 7 are formed on a P-type Si substrate 1 with insulating isolation layers 2 by using a gate oxide film 3 and an Si3N4 mask 5 as predetermined. P doped polycrystalline Si 8 is applied and removed by RIE except remaining parts on the side surfaces and ions are implanted by using the gate electrode as a mask and a heat treatment is performed to form N<-> layers 10a and 11a. After the mask 5 is removed, a resist mask 12 is applied and an ion implantation and a heat treatment are performed to form N<+>type layers 10b and 11b. After the resist 12 is removed, SiO2 13 is applied and apertures are selectively formed and electrodes 15 are attached. With this constitution, the layers which have lower concentrations than the substrate can be formed at predetermined positions in a self-alignment manner and a depletion layer is significantly extended toward the substrate 1 side in the drain region 11 side so that the parasitic capacitance between the drain region and the substrate can be reduced and high speed operation can be realized.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置及びその製造方法に関し、特にドレ
イン1lfi近傍に改良を施したものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly improves the vicinity of the drain 1lfi.

〔発明の技術的背景〕[Technical background of the invention]

周知の如く、例えばMO3型電界効果トランジスタ(F
ET)においては、素子の微細化に伴ってドレイン近傍
における電界が強くなり、ホ・ソトキャリアの発生など
が発生し、悪影響を及ばづ−0そこで、これを緩和する
ためLDD(Liすl+口yD oped  D ra
in)技術が知られでいる。この技術は、チャネル近傍
のドレイン領域に低濃度の拡散層を形成し、空乏層をト
レイン領域側により伸ばすことにより電界集中を緩和し
ている(参考文献:5eiki  Oc+ura  e
t al 、  IEEE  Trans、 onEl
ectron Devices  、 VO+  ED
−27,N08、p1359 (1980))。また、
他の手段としては、L D D 1111造のN−型の
ドレイン領域の寄生抵抗を低減するため、そのドレイン
領域上の側壁形成物をゲート電極と同一物質で形成する
特許提案がなされている。
As is well known, for example, MO3 type field effect transistor (F
With the miniaturization of elements, the electric field near the drain becomes stronger in ET), which causes the generation of photocarriers, which has an adverse effect. yD oped D ra
in) the technology is known. This technology alleviates electric field concentration by forming a low concentration diffusion layer in the drain region near the channel and extending the depletion layer toward the train region (Reference: 5eiki Oc+ura e
tal, IEEE Trans, onEl
ectron Devices, VO+ED
-27, N08, p1359 (1980)). Also,
As another means, in order to reduce the parasitic resistance of the N-type drain region of the LDD 1111 structure, a patent proposal has been made in which the side wall formation on the drain region is formed of the same material as the gate electrode.

〔背景技術の問題点〕[Problems with background technology]

ところで、L D D IN造のトランジスタは、ゲー
ト側壁にゲートと同一物質を使用した場合も含めてドレ
イン側に低S度層を形成することで電界を緩和している
。しかしながら、素子の微細化にともなって、ソース・
ドレイン領域間のパンチスルーを防ぐため、またしきい
値制御等の理由により基板濃度を高くしなければならな
い。従って、ドレイン領域端のチャネル方向に伸びる空
乏層が小さくなり、やはり電界集中を招く。その結果、
この電界集中によりギヤリアが加速され、インパクトイ
オン化等によりホラ]・ギヤリフが発生する。
Incidentally, in LDD IN transistors, even when the same material as the gate is used for the gate sidewalls, the electric field is alleviated by forming a low S degree layer on the drain side. However, with the miniaturization of elements, the source
In order to prevent punch-through between drain regions and for reasons such as threshold control, the substrate concentration must be increased. Therefore, the depletion layer extending in the channel direction at the end of the drain region becomes smaller, which also causes electric field concentration. the result,
This electric field concentration accelerates the gear, and impact ionization causes gear rift.

特にNMO8+−ランジスタでは、ホールは基板中を流
れ基板電位の変動の原因となり、一方エレクトロンはグ
ー1−絶縁腹中に注入され、エレク1ヘロントラップや
$1−3iQ2界面準位生成によりしきい値の変動及び
相Hコンダクタンスの減少を引起こす。
Particularly in the NMO8+- transistor, holes flow through the substrate and cause fluctuations in the substrate potential, while electrons are injected into the Goo1- insulator, and due to the generation of the Elek1 Heron trap and the $1-3iQ2 interface level, the threshold value is and a decrease in phase H conductance.

更に、ドレイン領域が高濃度の基板に囲まれているため
ドレイン領域と基板との空乏層が伸びず、容量が増大す
る。その結果、この容量は奇生FJffiとなり、素子
の高速動作化を妨げる。
Furthermore, since the drain region is surrounded by the highly doped substrate, the depletion layer between the drain region and the substrate does not extend, increasing the capacitance. As a result, this capacitance becomes anomalous FJffi, which impedes high-speed operation of the device.

(発明の目的〕 本発明は上記事情に鑑みてなされたもので、半導体基板
より低濃度の第1導電型の不純物層を所定に位置に自己
整合的に形成できるとともに、ドレインm域と半導体基
板との寄生容量を低減して素子の高速動作化をなしえる
半導体装置の製造方法を提供することを目的とづる。
(Object of the Invention) The present invention has been made in view of the above circumstances, and it is possible to form an impurity layer of the first conductivity type at a lower concentration than the semiconductor substrate in a predetermined position in a self-aligned manner, and to An object of the present invention is to provide a method for manufacturing a semiconductor device that can reduce the parasitic capacitance between the semiconductor device and the device and increase the speed of operation of the device.

(発明の概要) 本発明は、第1導電型の半導体基板上にゲート酸化膜を
介して導電性パターンを形成する工程と、この導電性パ
ターンをマスクとして前記基板表面に第2導電型の不純
物を導入し該基板より低濃度の第1導電型の不純物層を
形成する工程と、全面に導電性慢を形成した後これを反
応性イオンエツチングによりエツチングし、導電性膜を
前記導電性パターンの少なくともドレインrjI Ii
’i形成予形成予定壁に残存さけ導電性パターンとから
ゲート電極を形成する工程と、このゲート電極をマスク
として前記不純物層内に第2導電型の不純物を導入し第
2導M型の不純物領域を形成する工程とを具備すること
を特徴とする。従って、通常のMOSFETではグー1
〜N極をマスクとして基板と逆導電型の不純物をイオン
注入することによりソース・ドレイン領域を形成するの
で、チャネル側に基板と導電型の低濃度層を自己整合的
に形成することは出来ない。これに対し、本発明によれ
ば、導電性パターンをマスクとして不純物を基板に導入
するため、導電性パターンに対し自己整合的に形成して
不純物層をドレイン領域に対し制律口情よく形成できる
とともに、トレーインrRIJi!と基板との寄生容量
を低減できる。
(Summary of the Invention) The present invention includes a step of forming a conductive pattern on a semiconductor substrate of a first conductivity type via a gate oxide film, and using the conductive pattern as a mask to inject impurities of a second conductivity type onto the surface of the substrate. A step of introducing an impurity layer of the first conductivity type with a lower concentration than that of the substrate, and forming a conductive film on the entire surface and then etching it by reactive ion etching to form a conductive film on the conductive pattern. At least drain rjI Ii
A step of forming a gate electrode from a conductive pattern remaining on the wall to be formed before i formation, and introducing an impurity of a second conductivity type into the impurity layer using the gate electrode as a mask. The method is characterized by comprising a step of forming a region. Therefore, in a normal MOSFET, 1
~Since the source/drain regions are formed by ion-implanting impurities of the opposite conductivity type to the substrate using the N pole as a mask, it is not possible to form a low concentration layer of the conductivity type of the substrate on the channel side in a self-aligned manner. . In contrast, according to the present invention, since impurities are introduced into the substrate using the conductive pattern as a mask, the impurity layer can be formed in a self-aligned manner with respect to the conductive pattern and can be formed in a controlled manner with respect to the drain region. Along with Train rRIJi! The parasitic capacitance between the substrate and the substrate can be reduced.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図(a)〜(e)を参照
して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1(a) to (e).

(1) 1:f、不11i1171al12X 101
1cm’ ノf”!!の単結晶シリコン基板1の表面に
、シリコン窒化膜を用いた選択酸化法によりフィールド
酸化膜2を形成した。つづいて、前記フィールド酸化膜
2で囲まれた基板1の素子領域に厚さ150人のゲート
酸化膜3を形成した。次いで、全面に厚さ5000人の
多結晶シリコン否、厚さ200人のシリコン窒化膜(夫
々図示せず)を堆積した後、フォトレジスト(4)をマ
スクとして前記シリコン窒化膜、多結晶シリコン摸を反
応性イオンエツチング(RYE)によりエツチングし、
窒化膜パターン5、多結晶シリコンかパターン6を夫々
形成した。但し、前記多結晶シリコン膜は、シリコン窒
化膜を堆積する前にPOCQ3拡散層により抵抗を下げ
、メタリックな導体として使用できるようにしである。
(1) 1:f, not11i1171al12X 101
A field oxide film 2 was formed on the surface of a single-crystal silicon substrate 1 with a thickness of 1 cm'f''!! by a selective oxidation method using a silicon nitride film. A gate oxide film 3 with a thickness of 150 μm was formed in the device region.Next, a polycrystalline silicon film with a thickness of 5000 μm and a silicon nitride film (not shown) with a thickness of 200 μm were deposited on the entire surface, and then photolithography was performed. Using the resist (4) as a mask, the silicon nitride film and polycrystalline silicon pattern are etched by reactive ion etching (RYE),
A nitride film pattern 5 and a polycrystalline silicon pattern 6 were formed, respectively. However, the resistance of the polycrystalline silicon film is lowered by a POCQ3 diffusion layer before the silicon nitride film is deposited, so that it can be used as a metallic conductor.

更に、前記フオトレジス1−をマスクとして前記素子領
域にリンを加速電圧100KeV、ドーズ!l 2 X
 10” rtm2及び加速電圧200KeV、ドーズ
ff12X10”Can’の条件で2段イオン注入し、
フォトレジストを剥離した後、熱処理を施した。その結
果、かなり平坦でかつピーク濃度が基板1の不純物濃度
を越えないP−領域7.7が形成された。更に、全面に
厚さ3000人のリンドープした多結晶シリコン膜8を
堆積した(第1図(b)図示)。
Furthermore, using the photoresist 1- as a mask, phosphorus was applied to the element region at an acceleration voltage of 100 KeV at a dose! l 2 X
Two-stage ion implantation was performed under the conditions of 10" rtm2, acceleration voltage 200 KeV, and dose ff12X10"Can'.
After removing the photoresist, heat treatment was performed. As a result, a P- region 7.7 was formed which was fairly flat and whose peak concentration did not exceed the impurity concentration of the substrate 1. Furthermore, a phosphorus-doped polycrystalline silicon film 8 having a thickness of 3000 nm was deposited over the entire surface (as shown in FIG. 1(b)).

(2)次に、RIEにより前記多結晶シリコン膜8をエ
ツチングし、前記多結晶シリコンパターン6の側壁にこ
の多結晶シリコンgI8を残した。
(2) Next, the polycrystalline silicon film 8 was etched by RIE, leaving this polycrystalline silicon gI8 on the sidewalls of the polycrystalline silicon pattern 6.

この結果、多結晶シリコンパターン6と残存する多結晶
シリコン膜8とからゲート電極9が形成された。つづい
て、前記ゲート1!tfi9をマスクとして前記素子領
域にリンを加速電圧40KeV、ドーズff15X10
13αりの条件でイオン注入し、N”iJ[10a、1
1aを形成した(第1図(C)図示)。次いで、熱リン
酸に、1こり前記窒化膜パターン4を剥離した後、前乙
己ゲー1−電穫9を覆うようにフォトレジスト12を形
成した。更に、フォトレジスト12をマスクとして前記
素子領域にヒ素を加速電圧40KeV、ドーズI!15
xlo”個゛2の条件でイオン注入し、熱処理しN”f
IAljtlob、11bを形成した。コノ結果、N″
′r4′r4域1N” flu域l Obによりソース
領域10が形成され、N−Gi[11a、 N4″領b
xiibによりドレイン領域11が形成された(第1図
(d>開示)。しかる後、フt i−レジスト12を剥
離し、全面にパッシベーション役としてのS!02M1
13を形成した。ひきつづき、前記ソース・ドレイン順
11i!10.11上に対応する5iOz膜13を選択
的に除去し、コンタクトホール14を形成した後、ここ
にAfi配線15を形成してNチャネルMOSトランジ
スタを形成した(第1図(e)図示)。
As a result, a gate electrode 9 was formed from the polycrystalline silicon pattern 6 and the remaining polycrystalline silicon film 8. Next, the gate 1! Using tfi9 as a mask, phosphorus was applied to the element region at an acceleration voltage of 40KeV and a dose of ff15X10.
Ion implantation was performed under the conditions of 13α, N”iJ[10a, 1
1a (as shown in FIG. 1(C)). Next, after peeling off the nitride film pattern 4 using hot phosphoric acid, a photoresist 12 was formed so as to cover the front gate 1 and the electrode 9. Furthermore, using the photoresist 12 as a mask, arsenic is applied to the element region at an acceleration voltage of 40 KeV and a dose of I! 15
Ion implantation was performed under the conditions of xlo"2, heat treated, and N"f
IAljtlob, 11b was formed. Kono result, N″
'r4' r4 region 1N" flu region l Ob forms the source region 10, N-Gi[11a, N4" region b
A drain region 11 was formed using xiib (FIG. 1 (d>disclosure). After that, the resist 12 was peeled off, and the entire surface was coated with S!02M1 as a passivation layer.
13 was formed. Continuing with the source/drain order 11i! After selectively removing the 5iOz film 13 corresponding to 10.11 and forming a contact hole 14, an Afi wiring 15 was formed here to form an N-channel MOS transistor (as shown in FIG. 1(e)). .

本発明によれば、ソース・ドレイン領域10.11をP
−gA領域、7の表面に設けるため、空乏層は基板側に
かなり伸び、ドレイン順1或11と基板1との寄生容量
を低減できる。従って、素子を高速動作化できる。また
、前記P−領領域は多結晶シリコンパターン6をマスク
として基板1にリンをイオン注入することにより形成し
、かつトレイン?A域11を溝成するN−領[11a、
N+領1j111bも夫々ゲート電極9、)Aトリジス
ト12をマスクとしてイオン注入することにより形成(
るため、ドレ・イン領M11をP一層7に対し制御性よ
く形成できる。
According to the present invention, the source/drain regions 10.11 are made of P
Since the depletion layer is provided on the surface of the -gA region 7, the depletion layer extends considerably toward the substrate, and the parasitic capacitance between the drain order 1 or 11 and the substrate 1 can be reduced. Therefore, the device can be operated at high speed. Further, the P- region is formed by ion-implanting phosphorus into the substrate 1 using the polycrystalline silicon pattern 6 as a mask, and the P- region is formed by ion-implanting phosphorus into the substrate 1 using the polycrystalline silicon pattern 6 as a mask. N-region [11a,
The N+ regions 1j111b are also formed by ion implantation using the gate electrode 9 and )A resist 12 as masks, respectively.
Therefore, the drain/in region M11 can be formed in the P layer 7 with good controllability.

次に、本発明に係るNチャネルM OS l−ランジス
タの作用を、従来のそれと比較しつつ第2図及び第3図
を参照して説明する。ここで、第2図は従来、第3図は
本発明の場合を示す。また、ドレイン領域11近傍の空
乏層21の伸びを表わすため、ドレイン領域11及びゲ
ート電極9に5v、ソース領域10及び基板1にOvを
印加した場合を示す。即ち、従来の場合は、M仮1の不
純物濃度が高いためドレイン領域11の空乏層21はあ
まり伸びない。これに対し、本発明の場合は、ドレイン
ratallが低1度の不純物層(P−1)に設けられ
ているため、空乏層21は基板側にかなり伸びる。また
、チャネル表面には、グー1−電J′f(5v)によっ
て誘起される反転層22が形成される。更に、ピンチオ
フ点23の電位(ピンチオフ電圧Vp)はその下の不純
物濃度によって影響され、従来の場合ではvpが低く、
本発明の場合はVρは高くなる。そして、ドレイン領域
11には5Vがかかつているため、表面の空乏層22の
ピンチオフ点23とドレイン領域11との間(こかかる
電界は本発明の場合の方が小さくなる。
Next, the operation of the N-channel MOS l-transistor according to the present invention will be explained with reference to FIGS. 2 and 3 while comparing it with that of the conventional one. Here, FIG. 2 shows the conventional case, and FIG. 3 shows the case of the present invention. Furthermore, in order to represent the extension of the depletion layer 21 near the drain region 11, a case is shown in which 5V is applied to the drain region 11 and the gate electrode 9, and Ov is applied to the source region 10 and the substrate 1. That is, in the conventional case, the depletion layer 21 of the drain region 11 does not extend much because the impurity concentration of the M temporary 1 is high. In contrast, in the case of the present invention, since the drain latall is provided in the low 1 degree impurity layer (P-1), the depletion layer 21 extends considerably toward the substrate side. Furthermore, an inversion layer 22 induced by the Goo 1-electric current J'f (5v) is formed on the channel surface. Furthermore, the potential at the pinch-off point 23 (pinch-off voltage Vp) is influenced by the impurity concentration below it, and in the conventional case, vp is low;
In the case of the present invention, Vρ becomes high. Since 5V is applied to the drain region 11, the electric field between the pinch-off point 23 of the depletion layer 22 on the surface and the drain region 11 is smaller in the present invention.

また、本発明の場合、トイレイン領域近傍が低濃度とな
っているため、チャネル側に空乏層21がのびやすく表
面の空乏層の幅が大きくなり、両端にかかる電界はさら
に小さくなる。更に、反転8122中をソース領tJ 
10からドレイン領域11に向けて走ってきた電子は表
面の空乏層21中の電界によって加速され、インバク1
ヘイオン化によってホットキャリアを生成する。しかる
に、本発明では、この空乏層21中の電界が小さいため
、インバク1−イオン化を起こしにくく高信頼性の素子
が得られる。
Further, in the case of the present invention, since the concentration near the toilet-in region is low, the depletion layer 21 tends to extend toward the channel side, and the width of the surface depletion layer increases, and the electric field applied to both ends becomes further smaller. Furthermore, the inside of the inversion 8122 is the source region tJ.
Electrons running toward the drain region 11 from 10 are accelerated by the electric field in the depletion layer 21 on the surface, and
Hot carriers are generated by ionization of the rays. However, in the present invention, since the electric field in the depletion layer 21 is small, it is possible to obtain a highly reliable device in which invacuum 1-ionization is less likely to occur.

なお、上記実施例では、ゲート電極を多結晶シリコンパ
ターンの側壁(こ導電性膜としての多結晶シリコン膜を
そのパターンの側壁に残存させることにより形成したが
、これに限定されない。例えば、第4図の如く多結晶シ
リコンパターン6を覆うように多結晶シリコン摸31を
形成してもよい。
In the above embodiment, the gate electrode was formed by leaving the polycrystalline silicon film as a conductive film on the sidewall of the polycrystalline silicon pattern. However, the present invention is not limited to this. A polycrystalline silicon pattern 31 may be formed to cover the polycrystalline silicon pattern 6 as shown in the figure.

また、第5図に示す如くドレイン領域11側の多結晶シ
リコンパターン6を覆うように形成してもよい。
Alternatively, as shown in FIG. 5, it may be formed to cover the polycrystalline silicon pattern 6 on the drain region 11 side.

また、上記実施例では、導電性膜として多結晶シリコン
膜を用いたが、これに限らず、MOなどの金属膜を用い
てもよい。
Further, in the above embodiment, a polycrystalline silicon film is used as the conductive film, but the present invention is not limited to this, and a metal film such as MO may also be used.

更に、上記実施例では、N+領領域形成する際第1図(
d)に示す如くフォトレジストをマスクとしてイオン注
入したが、これに限らない。例えば、全面にS i 0
2 mを堆積した後、RIEを用いて多結晶シリコンパ
ターンの側壁に残存させ、これをマスクとしてイオン注
入してもよい。
Furthermore, in the above embodiment, when forming the N+ region, FIG.
Although ions were implanted using a photoresist as a mask as shown in d), the present invention is not limited thereto. For example, S i 0 on the entire surface
After depositing 2 m, it may be left on the sidewalls of the polycrystalline silicon pattern using RIE, and ions may be implanted using this as a mask.

〔発明の効甲〕[Efficacy of invention]

以上詳述した如く本発明によれば、半導体v板より低a
lllfの不純物層をドレイン領域に対し!ill闇性
よく形成できるどどもに、ドレイン領域と半導体基板と
の奇生容量を低減して素子の高速動作イヒをなしえる半
導体装置の製造方法を・提供−r:8る。
As detailed above, according to the present invention, the a
lllf impurity layer to the drain region! To those who can form illumination easily, we provide a method for manufacturing a semiconductor device that reduces the parasitic capacitance between the drain region and the semiconductor substrate and enables high-speed operation of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の一実施例に係るNチャ
ネルM OS l−ランジスタの製造方法を工程順に示
す断面図、第2図は従来のNチャネルMO8l−ランジ
スタの作用を説明するための断面図、第3図は本発明に
係るNチャネルMOSトランジスタの作用を説明するだ
めの断面図、第4図及び第5図は夫々本発明に係る導電
性膜の形成方法を説明するための断面図である。 1・・・P型の単結晶シリコン基板、2・・・フィール
ド酸化膜、3・・・ゲート酸化膜、5・・・窒化膜パタ
ーン、6・・・多結晶シリコンパターン、7・・・P一
層、8.31・・・多結晶シリコン膜、9・・・グーj
′−電(↓、10・・・ソース領域、10a、11a・
・・N−領域、11・・・ドレイン領域、10b、11
b・・・N+領領域12・・・フォロレジス1へ、13
・・・S i 02 膜、14・・・コンタクトホール
、15・・・A℃配線、21・・・空乏層、22・・・
反転層、23・・・ピンチオフ点。 出願人代理人 弁理士 鈴江武彦 第1図
FIGS. 1(a) to (e) are cross-sectional views showing the manufacturing method of an N-channel MO8l-transistor according to an embodiment of the present invention in the order of steps, and FIG. 2 shows the operation of a conventional N-channel MO8l-transistor. FIG. 3 is a cross-sectional view for explaining the operation of the N-channel MOS transistor according to the present invention, and FIGS. 4 and 5 are respectively for explaining the method of forming a conductive film according to the present invention. FIG. DESCRIPTION OF SYMBOLS 1... P-type single crystal silicon substrate, 2... Field oxide film, 3... Gate oxide film, 5... Nitride film pattern, 6... Polycrystalline silicon pattern, 7... P one layer, 8.31... polycrystalline silicon film, 9... goo j
'-electronic (↓, 10... source region, 10a, 11a,
...N- region, 11...Drain region, 10b, 11
b...N+ region 12...To the follow register 1, 13
... S i 02 film, 14 ... contact hole, 15 ... A ° C wiring, 21 ... depletion layer, 22 ...
Inversion layer, 23...pinch-off point. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板上にゲート酸化膜を介し
て導電性パターンを形成する工程と、この導電性パター
ンをマスクとして前記基板表面に第2導電型の不純物を
導入し該基板より低濃度の第1導電型の不純物層を形成
する工程と、全面に導電性膜を堆積した後これを反応性
イオンエッチングによりエッチングし、導電性膜を前記
導電性パターンの少なくともドレイン領域形成予定部側
の側壁に残存させ前記導電性パターンとからゲート電極
を形成する工程と、このゲート電極をマスクとして前記
不純物層表面に第2導電型の不純物を導入し第2導電型
の不純物領域を形成する工程とを具備することを特徴と
する半導体装置の製造方法。
(1) A step of forming a conductive pattern on a semiconductor substrate of a first conductivity type via a gate oxide film, and using this conductive pattern as a mask, impurities of a second conductivity type are introduced into the surface of the substrate. forming a low concentration impurity layer of the first conductivity type; depositing a conductive film on the entire surface; etching it by reactive ion etching; a step of forming a gate electrode from the conductive pattern left on the side wall thereof; and using the gate electrode as a mask, introducing a second conductivity type impurity into the surface of the impurity layer to form a second conductivity type impurity region. A method for manufacturing a semiconductor device, comprising the steps of:
(2)第2導電型の不純物領域がソース・ドレイン領域
であることを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the second conductivity type impurity region is a source/drain region.
(3)ゲート電極をマスクとして前記不純物層に第2導
電型の不純物を導入して第2導電型の低濃度不純物領域
を形成した後、ゲート電極の少なくともドレイン領域形
成側を覆うようにマスク材を形成し、更にこれを用いて
前記低濃度不純物領域に第2導電型の不純物を導入し高
濃度不純物領域を形成することを特徴とする特許請求の
範囲第1項記載の半導体装置の製造方法。
(3) After introducing a second conductivity type impurity into the impurity layer using the gate electrode as a mask to form a second conductivity type low concentration impurity region, a mask material is applied to cover at least the side where the drain region is formed of the gate electrode. A method for manufacturing a semiconductor device according to claim 1, characterized in that a second conductivity type impurity is introduced into the low concentration impurity region to form a high concentration impurity region. .
JP25320785A 1985-11-12 1985-11-12 Manufacture of semiconductor device Granted JPS62112375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25320785A JPS62112375A (en) 1985-11-12 1985-11-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25320785A JPS62112375A (en) 1985-11-12 1985-11-12 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS62112375A true JPS62112375A (en) 1987-05-23
JPH0424876B2 JPH0424876B2 (en) 1992-04-28

Family

ID=17248042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25320785A Granted JPS62112375A (en) 1985-11-12 1985-11-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62112375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225529A (en) * 1990-04-06 1992-08-14 Applied Materials Inc Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
EP0856892A2 (en) * 1997-01-30 1998-08-05 Oki Electric Industry Co., Ltd. MOSFET and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225529A (en) * 1990-04-06 1992-08-14 Applied Materials Inc Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
EP0856892A2 (en) * 1997-01-30 1998-08-05 Oki Electric Industry Co., Ltd. MOSFET and manufacturing method thereof
EP0856892A3 (en) * 1997-01-30 1999-07-14 Oki Electric Industry Co., Ltd. MOSFET and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0424876B2 (en) 1992-04-28

Similar Documents

Publication Publication Date Title
US6277675B1 (en) Method of fabricating high voltage MOS device
JP3640406B2 (en) Method for manufacturing transistor
JP3049492B2 (en) MOSFET and manufacturing method thereof
JP2835216B2 (en) Method for manufacturing semiconductor device
EP0198335B1 (en) Graded extended drain concept for reduced hot electron effect
JPH02250331A (en) Semiconductor device and its manufacture
JPS61259575A (en) Hybrid extension drain construction for reducing effect of hot electron
JPH08264789A (en) Insulated gate semiconductor device and manufacture
JP3057439B2 (en) Method for manufacturing semiconductor device
JPS60247974A (en) Semiconductor device
JP2633104B2 (en) Method for manufacturing semiconductor device
GB2038088A (en) Semiconductor structures
JP2852901B2 (en) Method of manufacturing MOSFET
JPS62112375A (en) Manufacture of semiconductor device
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
JPH0637106A (en) Manufacture of semiconductor device
KR100253261B1 (en) Fabrication method of thin film transistor
KR0170436B1 (en) Method of manufacturing mosfet
JP3061157B2 (en) Method for forming semiconductor device
KR0167606B1 (en) Process of fabricating mos-transistor
JPH0612822B2 (en) Semiconductor device
JPH0348428A (en) Semiconductor device
JPH05267338A (en) Manufacture of semiconductor device
JP2880885B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH053135B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees