JPS62291070A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62291070A
JPS62291070A JP13411486A JP13411486A JPS62291070A JP S62291070 A JPS62291070 A JP S62291070A JP 13411486 A JP13411486 A JP 13411486A JP 13411486 A JP13411486 A JP 13411486A JP S62291070 A JPS62291070 A JP S62291070A
Authority
JP
Japan
Prior art keywords
etching
gate electrode
gas pressure
substrate
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13411486A
Other languages
Japanese (ja)
Other versions
JPH0770544B2 (en
Inventor
Katsunori Nishii
勝則 西井
Takeshi Konuma
小沼 毅
Koji Watanabe
渡邊 厚司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13411486A priority Critical patent/JPH0770544B2/en
Publication of JPS62291070A publication Critical patent/JPS62291070A/en
Publication of JPH0770544B2 publication Critical patent/JPH0770544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce an amount of scatter of FET threshold voltage and enhance a yield rate of GaAs IC by treating an insulated film through an etching process under low gas pressure and causing a semiconductor substrate to be exposed by increasing the gas pressure for etching. CONSTITUTION:An insulated film 4 is formed on the whole surface of semiconductor substrate 1 after forming an active layer 2 on the substrate 1. After an ohmic electrode 5 is formed, a gate electrode pattern 7 is formed according to a resist 6 and the above insulated film 4 is treated by etching after decreasing etching gas pressure through a reactive ion etching device and as a result, the insulated film 4 is left at a gate electrode opening part 8. And then, the reactive ion etching is carried out by increasing etching gas pressure and the insulated film 4 remained at the gate electrode opening part 8 is treated by etching and the treated film 4 allows the substrate 1 to be exposed, resulting in the formation of a gate electrode 10 at the gate electrode opening 9 where the substrate 1 is exposed. For instance, the formation of recessed part 8 of silicon nitriding film 4 necessitates CF4 gas pressure to have 10 Pa and the etching treatment is carried out under gas pressure of 30 Pa until a resultant substrate exposure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関し、特に高集積度の
G a A s電界効果トランジスタのしきい値電圧の
バラツキを小さく形成する半導体装置の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device that reduces variations in threshold voltage of highly integrated GaAs field effect transistors. It is related to.

従来の技術 GaAs(dSiに比べて電子移動度が5〜6倍大きく
、高周波特性に優れた半導体装置を得ることが可能であ
る。特にG a A sショットキ障壁型電界効果トラ
ンジスタ(以下MES−FET )は超高周波あるいは
超高速素子として優れた特性を有し、MES−FETを
用いた集積回路が超高速IC、マイクロ波ICとして期
待され活発に開発が進められているoしかしGaAs 
MES−FETプロセスはSiプロセスに比べて安定し
ておらず、また基板自体3へ− のバラツキも大きく、これがGaAs  ICの歩留が
低い原因となっている。
Conventional technology GaAs (dSi) has an electron mobility 5 to 6 times higher than that of dSi, and it is possible to obtain semiconductor devices with excellent high frequency characteristics.In particular, GaAs Schottky barrier field effect transistors (hereinafter referred to as MES-FETs) ) have excellent characteristics as ultra-high frequency or ultra-high speed elements, and integrated circuits using MES-FETs are expected to be used as ultra-high-speed ICs and microwave ICs, and active development is progressing.
The MES-FET process is not as stable as the Si process, and there is also large variation in the substrate itself, which is the cause of the low yield of GaAs ICs.

GaAs  ICの歩留向上のためにはプロセスの改良
により、しきい値電圧のバラツキを低減することが不可
欠となっている。
In order to improve the yield of GaAs ICs, it is essential to reduce variations in threshold voltage through process improvements.

第2図は、GaAs FETを形成する従来の製造方法
を示すものである。G a A s基板11にイオン注
入法で活性層12およびソース・ドレイン高濃度層13
を形成する(a)。その後G a A s基板11全面
にシリコン窒化膜14を形成しくb)、次にオーミック
電極15を形成する(C)。その後、フォトレジスト1
6でゲート電極パターン17を形成しくd)、リアクテ
ィブイオンエッチングでゲート電極パターン17開ロ部
のシリコン窒化膜14をエッチング除去し、G a A
 s基板を露出させゲート電極開口部18を形成する(
e)0次に前記ゲート電極開口部18にゲート電極19
を形成しGaAs MES−FETを形成する(f)。
FIG. 2 shows a conventional manufacturing method for forming a GaAs FET. An active layer 12 and a high concentration source/drain layer 13 are formed on the GaAs substrate 11 by ion implantation.
(a). Thereafter, a silicon nitride film 14 is formed on the entire surface of the GaAs substrate 11 (b), and then an ohmic electrode 15 is formed (C). After that, photoresist 1
d), the silicon nitride film 14 at the opening of the gate electrode pattern 17 is etched away by reactive ion etching, and G a A is formed.
Expose the s-substrate and form the gate electrode opening 18 (
e) Next, place the gate electrode 19 in the gate electrode opening 18.
to form a GaAs MES-FET (f).

発明が解決しようとする問題点 第2図で説明したようなGaAs MES−FETの製
造方法は、ゲート電極開口部形成のだめのシリコン窒化
膜のエッチングに異方性を得るためにエッチングガス圧
力を低く例えば10Pa程度としスパッタ性を有するリ
アクティブイオンエッチングを用いている。しかし、リ
アクティブイオンエッチングのバラツキや絶縁膜の膜厚
や膜質がばらついた場合、基板露出丑でのエッチング時
間が異なりオーバーエッチングされる部分が起こる。し
たがって第3図に示すようにG a A s基板11が
リアクティブイオンエッチングによりわずかではあるが
エッチングされ、その結果例えば活性層が薄いノーマリ
オフ型GaAs FETではわずかなエッチングがしき
い値電圧に大きな影響を与えこれがバラツキの原因とな
り高集積化したGaAs  ICでは歩留低下の原因と
なっている。
Problems to be Solved by the Invention The method for manufacturing GaAs MES-FETs as explained in FIG. For example, reactive ion etching with sputtering properties at a pressure of about 10 Pa is used. However, if there are variations in reactive ion etching or variations in the thickness and quality of the insulating film, the etching time for exposed parts of the substrate will vary and some parts will be over-etched. Therefore, as shown in FIG. 3, the GaAs substrate 11 is slightly etched by reactive ion etching, and as a result, for example, in a normally-off type GaAs FET with a thin active layer, a small amount of etching has a large effect on the threshold voltage. This causes variations and causes a decrease in yield in highly integrated GaAs ICs.

問題点を解決するだめの手段 前記問題点を解決するだめに本発明は、半導体基板に活
性層を形成する工程、前記半導体基板全面に絶縁膜を形
成する工程、オーミック電極を形成する工程、レジスト
によりゲート電極パターン5へ−7 を形成する工程、前記絶縁膜をリアクティブイオンエッ
チング装置でエッチングガス圧力を低くしエッチングし
、前記ゲート電極開口部に前記絶縁膜を残存させる工程
、エッチングガス圧力を高くリアクティブイオンエッチ
ングし前記ゲート電極開口部に残存する絶縁膜をエッチ
ングし前記半導体基板を露出させる工程、前記半導体基
板の露出したゲート電極開口部にゲート電極を形成する
工程からなるものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a step of forming an active layer on a semiconductor substrate, a step of forming an insulating film on the entire surface of the semiconductor substrate, a step of forming an ohmic electrode, and a step of forming an ohmic electrode. -7 to the gate electrode pattern 5, etching the insulating film with a reactive ion etching device at a low etching gas pressure, and leaving the insulating film in the gate electrode opening, reducing the etching gas pressure. The method includes a step of exposing the semiconductor substrate by etching the insulating film remaining in the gate electrode opening by high-reactive ion etching, and a step of forming a gate electrode in the exposed gate electrode opening of the semiconductor substrate.

作  用 本発明は」二記した構成により、 GaAs MES−
FETのしきい値電圧のバラツキを低減しGaAs M
ES −FETを用いたGaAs  ICの歩留を向上
することが可能となる。
Function The present invention has the configuration described in section 2.
GaAs M
It becomes possible to improve the yield of GaAs IC using ES-FET.

実施例 本発明の半導体装置の製造方法の一実施例を第1図に示
す。第1図において1はG a A s等の半導体基板
、2は活性層、3はソース・ドレイン高濃度層、4は絶
縁膜、5はオーミック電極、6はフォトレジスト、7は
ゲート電極形成パターン、86ペーノ は、エッチング四部、9けゲート電極開口部、10はゲ
ート電極である。半導体基板1例えばG a A s基
板にイオン注入法で活性層2およびソース・ドレイン高
濃度層3を形成する(a)oこの時注入条件は活性層2
が81イオンを30 keyで6×1o12crn−2
注入し、ソース・ドレイン高濃度層3はSi イオンを
50keyで6X1013cIn−2注入する。その後
820℃で20分間アルシン雰囲気中でキャップレスア
ニールする。その後G a A s基板1全面に絶縁膜
4例えばシリコン窒化膜をプラズマCVD法で4000
人形成する0))0次にリフトオフ法でオーミック電極
6例えばAuGe /N i /Auを1300/40
0/1000人形成する(C)。次にフォトレジスト6
でゲート電極パターン7を形成する(d)。その後、C
F4 ガスを用いガス圧力10paでリアクティブイオ
ンエッチングしシリコン窒化膜4をG a A s基板
1が露出しない程度約3000人ぐらいエッチングして
凹部8を形成する(e)。その後、四部8の残こったシ
リコン窒化膜4をCF4ガス圧力を3oPa としてリ
アクティブイオンエッチングに7 ′\ より除去し、G a A g  基板1を露出させゲー
ト電極開口部9を形成する(f)。その後ゲート金属例
えばT i /P t /Auを1000/600/3
000人蒸着しリフトオフによりゲート電極1oを形成
しGaAsMES−FETを形成する。
Embodiment An embodiment of the method for manufacturing a semiconductor device according to the present invention is shown in FIG. In FIG. 1, 1 is a semiconductor substrate such as GaAs, 2 is an active layer, 3 is a high concentration source/drain layer, 4 is an insulating film, 5 is an ohmic electrode, 6 is a photoresist, and 7 is a gate electrode formation pattern. , 86 are four etched parts, 9 are gate electrode openings, and 10 are gate electrodes. An active layer 2 and a high concentration source/drain layer 3 are formed on a semiconductor substrate 1, for example, a GaAs substrate, by ion implantation (a) o At this time, the implantation conditions are as follows:
is 81 ions in 30 keys 6×1o12crn-2
For the source/drain high concentration layer 3, Si ions are implanted in 6×10 13 cIn-2 in 50 keys. Thereafter, capless annealing is performed at 820° C. for 20 minutes in an arsine atmosphere. Thereafter, an insulating film 4, for example, a silicon nitride film, is formed on the entire surface of the GaAs substrate 1 using a plasma CVD method.
Forming an ohmic electrode 6, for example, AuGe /N i /Au at 1300/40 using the zero-order lift-off method.
Form 0/1000 people (C). Next, photoresist 6
A gate electrode pattern 7 is formed (d). After that, C
Reactive ion etching is performed using F4 gas at a gas pressure of 10 pa to etch the silicon nitride film 4 by about 3,000 degrees to an extent that the GaAs substrate 1 is not exposed to form the recess 8 (e). Thereafter, the remaining silicon nitride film 4 on the four parts 8 is removed by reactive ion etching at a CF4 gas pressure of 3oPa to expose the G a A g substrate 1 and form the gate electrode opening 9 (f ). Then the gate metal, for example T i /P t /Au, is 1000/600/3.
A gate electrode 1o is formed by lift-off, and a GaAs MES-FET is formed.

本発明の実施例では、ゲート電極開口部の形成にリアク
ティブイオンエッチングを用い、シリコン窒化膜の四部
8形成には、エッチングガス(CF4)圧力を10Pa
としスパッタ性を強めたエッチングを行い、その後の基
板露出までのエッチングはエッチングガス圧力を30 
P aとしスパッタ性を弱め基板のエッチングを抑制し
、エッチングのバラツキによるしきい値電圧のバラツキ
をおさえている。第4図はCF4ガス圧力を変化させた
時のシリコン窒化膜およびG a A sのエッチング
レートを示したものである。これよりCF4ガス圧力が
1oPa以下ではG a A sのエッチングレートは
大きいがhespa以上ではほとんどエッチングされな
いことがわかる。
In the embodiment of the present invention, reactive ion etching is used to form the gate electrode opening, and the etching gas (CF4) pressure is 10 Pa to form the four parts 8 of the silicon nitride film.
Then perform etching with enhanced sputtering properties, and then increase the etching gas pressure to 30°C until the substrate is exposed.
P a is used to weaken sputtering properties and suppress etching of the substrate, suppressing variations in threshold voltage due to variations in etching. FIG. 4 shows the etching rate of the silicon nitride film and GaAs when the CF4 gas pressure is changed. It can be seen from this that the etching rate of GaAs is large when the CF4 gas pressure is 1oPa or less, but almost no etching occurs when the pressure is Hespa or more.

なお、本実施例では絶縁膜にシリコン窒化膜を用いたが
、これはシリコン酸化膜等のいかなる絶縁膜でもよい。
Note that although a silicon nitride film is used as the insulating film in this embodiment, any insulating film such as a silicon oxide film may be used.

またオーミック、ゲート金属も本実施例に限らず他の金
属でもよい。また本実施例ではG a A s基板を用
いたが他の半導体基板であってもよい。
Further, the ohmic gate metal is not limited to this embodiment, and may be other metals. Furthermore, although a GaAs substrate is used in this embodiment, other semiconductor substrates may be used.

発明の効果 本発明の半導体装置の製造方法は、サイドエッチングが
なくかつ半導体基板の工、yチングも々く電極開口部が
形成できるため、FETのしきい値電圧のバラツキを低
減し、その結果GaAsICの歩留を向上させることが
できる。
Effects of the Invention The method for manufacturing a semiconductor device of the present invention does not require side etching and can easily form electrode openings by etching the semiconductor substrate, thereby reducing variations in the threshold voltage of FETs. The yield of GaAs IC can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a −qは本発明の一実施例の半導体装置の製造
方法の製造工程断面図、第2図a −fは従来の製造工
程断面図、第3図は従来の方法における工程途中の断面
図、第4図は工、ノチングガス圧とエッチングレートの
関係を示すグラフである。 1・・・・・・半導体基板、2・・・・・・活性層、3
・・・・・・ソース・ドレイン高濃度層、4・・・・・
・絶縁膜、6・・・・・・メーーミック電極、6・・・
・・・フォトレジスト、7・・・・・・ゲ9べ−パ −ト電極形成パターン、8・・・・・・絶縁膜凹部、9
・・・・・・ゲート電極開口部、10・・・・・・ゲー
ト電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 浩・主層 第1図 3 ? 、、3z 第2図
1a-q are cross-sectional views of the manufacturing process of a semiconductor device manufacturing method according to an embodiment of the present invention, FIGS. The cross-sectional view and FIG. 4 are graphs showing the relationship between notching gas pressure and etching rate. 1...Semiconductor substrate, 2...Active layer, 3
...Source/drain high concentration layer, 4...
・Insulating film, 6...Memic electrode, 6...
... Photoresist, 7 ... Ge 9 Vapor electrode formation pattern, 8 ... Insulating film recess, 9
. . . Gate electrode opening, 10 . . . Gate electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Zuhiro/Main layer Figure 1 Figure 3? ,,3z Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板に活性層を形成する工程、前記半導体
基板全面に絶縁膜を形成する工程、オーミック電極を形
成する工程、レジストによりゲート電極形成パターンを
形成する工程、前記絶縁膜をリアクティブイオンエッチ
ング装置でエッチングガス圧力を低くしエッチングし、
前記ゲート電極開口部に前記絶縁膜を残存させる工程、
エッチングガス圧力を高くリアクティブイオンエッチン
グし前記ゲート電極開口部に残存する絶縁膜をエッチン
グし前記半導体基板を露出させる工程、前記半導体基板
の露出したゲート電極開口部にゲート電極を形成する工
程を有することを特徴とする半導体装置の製造方法。
(1) A step of forming an active layer on a semiconductor substrate, a step of forming an insulating film on the entire surface of the semiconductor substrate, a step of forming an ohmic electrode, a step of forming a gate electrode formation pattern with resist, and a step of forming the insulating film with reactive ions. Etching is performed by lowering the etching gas pressure using an etching device.
a step of leaving the insulating film in the gate electrode opening;
a step of exposing the semiconductor substrate by performing reactive ion etching with high etching gas pressure to etch the insulating film remaining in the gate electrode opening; and a step of forming a gate electrode in the exposed gate electrode opening of the semiconductor substrate. A method for manufacturing a semiconductor device, characterized in that:
(2)ゲート電極開口部に絶縁膜を残存させるリアクテ
ィブエッチングにおけるエッチングガス圧力を10Pa
以下とし、半導体基板を露出させるリアクティブイオン
エッチングにおけるエッチングガス圧力を25Pa以上
とすることを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。
(2) Etching gas pressure in reactive etching that leaves the insulating film in the gate electrode opening is 10 Pa.
2. The method of manufacturing a semiconductor device according to claim 1, wherein the etching gas pressure in the reactive ion etching to expose the semiconductor substrate is set to 25 Pa or more.
JP13411486A 1986-06-10 1986-06-10 Method for manufacturing semiconductor device Expired - Lifetime JPH0770544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13411486A JPH0770544B2 (en) 1986-06-10 1986-06-10 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13411486A JPH0770544B2 (en) 1986-06-10 1986-06-10 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62291070A true JPS62291070A (en) 1987-12-17
JPH0770544B2 JPH0770544B2 (en) 1995-07-31

Family

ID=15120787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13411486A Expired - Lifetime JPH0770544B2 (en) 1986-06-10 1986-06-10 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0770544B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248179A (en) * 1987-04-02 1988-10-14 Nec Corp Semiconductor device
US7302376B2 (en) 2002-08-15 2007-11-27 International Business Machines Corporation Device modeling for proximity effects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248179A (en) * 1987-04-02 1988-10-14 Nec Corp Semiconductor device
US7302376B2 (en) 2002-08-15 2007-11-27 International Business Machines Corporation Device modeling for proximity effects

Also Published As

Publication number Publication date
JPH0770544B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
JPH02253632A (en) Manufacture of field effect transistor
JPH0260217B2 (en)
JPH02299245A (en) Manufacture of field-effect transistor
US4997779A (en) Method of making asymmetrical gate field effect transistor
US5322806A (en) Method of producing a semiconductor device using electron cyclotron resonance plasma CVD and substrate biasing
JPS62291070A (en) Manufacture of semiconductor device
JPS63129632A (en) Pattern formation of insulating film and formation of gate electrode of field-effect transistor utilizing said formation
JPS5935479A (en) Manufacture of semiconductor device
JPS6143484A (en) Formation of electrode in semiconductor device
JPS6037173A (en) Manufacture of field effect transistor
JPS62105480A (en) Manufacture of semiconductor device
JPH0439772B2 (en)
JPS6347982A (en) Semiconductor device
JPH0352238A (en) Manufacture of compound semiconductor device
JPH01119071A (en) Compound semiconductor field-effect transistor
JPS6348868A (en) Manufacture of schottky gate type field effect transistor
JPH04350945A (en) Manufacture of field effect transistor
JPS6272175A (en) Manufacture of semiconductor device
JPH01260816A (en) Manufacture of compound semiconductor device
JPS63142872A (en) Manufacture of self-alignment type field-effect transistor
JPH0669243A (en) Manufacture of semiconductor device
JPS6037176A (en) Manufacture of field effect transistor
JPS59986B2 (en) Method for manufacturing field effect transistors
JPS61220374A (en) Manufacture of semiconductor device
JPS63179579A (en) Manufacture of compound semiconductor device