JPS63248179A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63248179A
JPS63248179A JP8234187A JP8234187A JPS63248179A JP S63248179 A JPS63248179 A JP S63248179A JP 8234187 A JP8234187 A JP 8234187A JP 8234187 A JP8234187 A JP 8234187A JP S63248179 A JPS63248179 A JP S63248179A
Authority
JP
Japan
Prior art keywords
insulating film
gate
gate electrode
film
stress concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8234187A
Other languages
Japanese (ja)
Inventor
Sakae Hojo
栄 北城
Mikio Kanamori
金森 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8234187A priority Critical patent/JPS63248179A/en
Publication of JPS63248179A publication Critical patent/JPS63248179A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit stress changes and stress concentration near a gate and the edge of an insulating film for a Schottky FET, etc., by applying the insulating film onto a semiconductor operating layer near a gate electrode. CONSTITUTION:When an insulating film 6 consisting of SiO2 is applied onto an operating layer near a Schottky gate 1 with the exception of the gate 1, stress changes and stress concentration near the gate and the edges of the insulating film are made smaller than there is the insulating film on the gate 1. Accordingly, the charge fluctuation of the operating layer is inhibited, thus preventing the generation of the alteration of the threshold of a Schottky FET, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a semiconductor device.

(従来の技術) 半導体装置、例えば、砒化ガリウム(GaAs)を用い
た7ヨツト=?#壁型電界効果トランンλり(以下、M
ESFETと称す)として、第2図に示すような構造が
知られている。
(Prior Art) Semiconductor devices, for example, 7 yota using gallium arsenide (GaAs) =? #Wall-type field effect transformer λ (hereinafter referred to as M
A structure as shown in FIG. 2 is known as an ESFET.

第2図に於て、IAはゲート電極、2aはノース電極、
2bはドレイン電極、3はGaAsからな6は絶縁膜、
7は第2層金属である。
In Figure 2, IA is the gate electrode, 2a is the north electrode,
2b is a drain electrode, 3 is made of GaAs, 6 is an insulating film,
7 is the second layer metal.

現在、このようなMESFETを用いた高速の集積回路
が製作されている。
Currently, high-speed integrated circuits using such MESFETs are being manufactured.

(発明が解決しようとする問題点) GaAsMESFETを農作した場合、現因では所望の
FETのしきい値電圧を得ることが困難で有り、従って
FETもしくはFETを用いた集積回路の歩−mまりが
極めて低いという問題がある。この原因の一つとし℃、
化合物千尋体上に形成された、ゲート電極、絶縁膜など
の薄映の応力が、化合物午今体内に圧電分極を発生させ
るためと考えられている。その圧電分極により、化合物
子4体内に設けられた動作層の電荷が変化するため、F
ETのしきい値電圧が変化することになる。このしきい
値電圧の変化iま短チャネルはど太きいため、倣細索子
の開発に於て、特にこの問題は一著となる。
(Problems to be Solved by the Invention) When GaAs MESFETs are produced, it is currently difficult to obtain a desired FET threshold voltage, and therefore the yield rate of FETs or integrated circuits using FETs is low. The problem is that it is extremely low. One of the reasons for this is ℃,
It is thought that the stress of thin reflections of the gate electrode, insulating film, etc. formed on the compound atom body generates piezoelectric polarization within the compound atom body. Due to the piezoelectric polarization, the electric charge of the active layer provided inside the compound element 4 changes, so F
The threshold voltage of ET will change. Since the change in threshold voltage is very large in the short channel, this problem becomes particularly important in the development of imitation cords.

贅だピエゾ電荷は、GaAs基板(100)面上でゲー
ト方向が(011,1と(011)と直交する場合、符
号が逆であるため、ピエゾ電荷が発生すると円方向のF
 ETのしきい値電圧が異なってしまう現象が発生する
。従って、集積回路を製作する場合FETを直交して配
置することが困難で有り、このことが集積回路の集積度
を下げる問題となっている。また薄膜のエツジ近傍に発
生する商い地、力婁甲は、X:8i軸性の観点からも間
もと考えられる。
If the gate direction is perpendicular to (011,1 and (011)) on the (100) surface of the GaAs substrate, the sign of the extra piezoelectric charge is opposite, so when the piezoelectric charge is generated, the F in the circular direction
A phenomenon occurs in which the threshold voltages of ET differ. Therefore, when manufacturing an integrated circuit, it is difficult to arrange the FETs orthogonally, which causes a problem of lowering the degree of integration of the integrated circuit. In addition, it is thought that the trade area, the bulge, which occurs near the edge of the thin film is a temporary one from the viewpoint of the X:8i axis property.

不発明の目的1丁、化合物手纏体電界効果トランジスタ
のケート及び絶縁膜のエツジ近傍の応力変化と応力集中
を抑制した信頼性の旨い半導体装置を提供することにあ
る。
One object of the invention is to provide a highly reliable semiconductor device in which stress changes and stress concentration near the edges of the gate and insulating film of a compound hand-wrapped field effect transistor are suppressed.

(間稙点を解決−fるための手段) 本発明の半導体装置は、半導体動作層上に遇択的に配置
されたゲート電極と絶縁膜を有し、絶縁膜はゲート電極
上近傍の半導体動作層上全面に仮着され、ケート電極上
には絶縁膜が存在しない構造をとるものである。
(Means for Solving Interference Points) The semiconductor device of the present invention has a gate electrode and an insulating film selectively disposed on a semiconductor active layer, and the insulating film covers the semiconductor near the gate electrode. It has a structure in which it is temporarily attached to the entire surface of the active layer, and there is no insulating film on the gate electrode.

(作用) GaAsのようにせん亜鉛構造では、結晶に歪が加えら
れると分極が誘起され、その分極によりピエゾ電荷が発
生することが知られている。特に、GaAs動作層上に
形成されたゲート電極、及び半導体動作層上に被Nされ
る絶縁膜のエツジ近傍では応力集中が生じるため、ピエ
ゾ電荷の発生が極めて多くなる。従っ℃、この応力集中
を抑制することが重要となっている。
(Function) It is known that in a zinc structure such as GaAs, polarization is induced when strain is applied to the crystal, and piezoelectric charges are generated by the polarization. In particular, stress concentration occurs near the edges of the gate electrode formed on the GaAs active layer and the insulating film coated with N on the semiconductor active layer, so that piezoelectric charges are extremely generated. Therefore, it is important to suppress this stress concentration.

本発明省寺は、ゲート電極膜上に絶縁膜がある場合とな
い場合について、これらのエツジ近傍に発生する応力集
中の関係を数値解析および実験により調べた結果、ゲー
ト電極膜上に絶縁膜がない場合は、ゲート電極膜上に絶
縁膜がある場合に比べ応力集中が小であることが明らか
になった。
As a result of numerical analysis and experiments investigating the relationship between stress concentration occurring near these edges with and without an insulating film on the gate electrode film, the present inventor, Shoji, found that the insulating film on the gate electrode film is It has become clear that when there is no insulating film on the gate electrode film, stress concentration is smaller than when there is an insulating film on the gate electrode film.

(実施例) 次に、本発明の一実施例について図面を0照して製造方
法と共に説明する。第1図ta+〜te+は本発明の一
実施例を説明するための工程順に示した半尋体チッグの
断面図である。
(Example) Next, an example of the present invention will be described together with a manufacturing method with reference to the drawings. FIG. 1 ta+ to te+ are cross-sectional views of a half-body TIG shown in the order of steps for explaining an embodiment of the present invention.

先ず、第1図(alに示すように、G a A sの半
絶縁性基数5の表面にSiイオンを50 keV、2X
1012(m−2の条件でイオン注入し、爽にアルンン
(ASH3)雰囲気中で800°C,20分間のに一ル
を行い(j a A s動作層3を形成した。
First, as shown in FIG.
Ions were implanted under the conditions of 1012 (m-2), and then heated at 800° C. for 20 minutes in an ASH3 atmosphere (to form a JAs active layer 3).

次に、第1図fb)に示すように、動作層3を佼うよう
に半絶縁性基板5上にタングステン7リサイド(WSi
)をスバ、り法を用いて0.5μmの膜厚に堆積した。
Next, as shown in FIG.
) was deposited to a thickness of 0.5 μm using the sprue method.

次に、通常のホトグラフィ法と四フッ化炭素を用いたド
ライエツチング法とによって〜Si膜を所定の形にパタ
ーニングし、ショットキーゲート1を形成した。
Next, the ~Si film was patterned into a predetermined shape by conventional photography and dry etching using carbon tetrafluoride to form a Schottky gate 1.

続いて、第1図fc)に示すようにs’Mウドキーゲー
ト1をマスクにして、Siイオンを150keV。
Next, as shown in FIG. 1 fc), using the s'M Udokey gate 1 as a mask, Si ions were heated at 150 keV.

5X10  cm  の条件でイオン注入し、更にアル
ンン雰囲気中で750℃、20分のアニールを行いn+
層4a、4bを形成した。
Ion implantation was performed under the conditions of 5 x 10 cm, and further annealing was performed at 750°C for 20 minutes in an atmosphere of n+
Layers 4a and 4b were formed.

伏イて、第1図(d)に示すように、AuGe−Niの
金属層からなるソース電極2a及びドレイン電Q2bを
形成した。次に、絶縁膜として、スパッタ法を用いて5
i02膜6を0.5μm被看した。次に、ホトレジスト
を5i02膜6上全6上全、5μmの膜厚で塗布し、2
00 ’OでベークするととKよシウエハ表面を平坦に
した。次にCF、を用いたドライエツチング法でホトレ
ジストをエツチングするとともにゲート電極上の5iO
zllllを除去した。
As shown in FIG. 1(d), a source electrode 2a and a drain electrode Q2b made of a metal layer of AuGe-Ni were formed face down. Next, as an insulating film, 5
The i02 film 6 was exposed to a thickness of 0.5 μm. Next, photoresist was applied to the entire 5i02 film 6 to a film thickness of 5 μm.
Baking at 00'O made the wafer surface flat. Next, the photoresist is etched by a dry etching method using CF, and 5iO on the gate electrode is etched.
zllll was removed.

最後に、第1図(e)に示すように、ショットキーゲー
ト1、ソース電極2a、  ドレイン電極2b上にTi
−Pt−Auから成る第2層笠域It7を形成した。
Finally, as shown in FIG. 1(e), Ti is deposited on the Schottky gate 1, the source electrode 2a, and the drain electrode 2b.
A second layer cap region It7 made of -Pt-Au was formed.

また、比較のため、上記工程のうちドライエツチングに
よりゲート電極膜上の絶縁膜を取らなかった従来のFE
Tも形成した。
For comparison, a conventional FE in which the insulating film on the gate electrode film was not removed by dry etching in the above process was also shown.
T was also formed.

異なる構造を1するFETのしきい値電圧を(OIIJ
刀向と方向11〕刀向で測定した。表1に結果をまとめ
る。表1より明らかなように、ゲート電極上に5i02
膜がないFETでは、(011)方向と(011)方向
でのしきい値電圧VTの違いは小さく、このことからゲ
ートの工ッジ部での応力集中が小であることがわかった
The threshold voltage of FET with different structure is (OIIJ
Sword direction and direction 11] Measured in the sword direction. Table 1 summarizes the results. As is clear from Table 1, 5i02 on the gate electrode
In the FET without a film, the difference in threshold voltage VT between the (011) direction and the (011) direction is small, which indicates that stress concentration at the edge of the gate is small.

表   1 以上の説明では、ゲート電極としてWSi  を用いた
が、例えばアルミニウム(AI)など他の材料でも良い
。また、絶縁膜もsio、以外に/リコン屋化膜(Si
N)など他の材料でも良い。また、ここではGaAsか
ら成る化合物半纏体材料を用いて説明したが、他の半畳
体材料でも同僚である。
Table 1 In the above description, WSi was used as the gate electrode, but other materials such as aluminum (AI) may also be used. In addition to SIO, the insulating film is also silicone film (Si).
Other materials such as N) may also be used. In addition, although the explanation has been made using a compound semi-consolidated material made of GaAs, other semi-consolidated materials may also be used.

(発明の効果) 以上説明したように本発明は、ゲート電極上をぼく半導
体動作層上に絶縁膜を形成することにより、ゲート電極
エツジ部近傍に発生する応力集中を小さくすることが出
来るため、時!11:変動を抑制することが可能となる
。従って牛尋体装置の信租性は同上する。
(Effects of the Invention) As explained above, in the present invention, by forming an insulating film on the semiconductor active layer over the gate electrode, it is possible to reduce the stress concentration generated near the edge of the gate electrode. Time! 11: Fluctuations can be suppressed. Therefore, the credibility of the Ushijintai device is the same as above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fa)〜te)は本発明の一実施例を説明するた
めの工程順に示した半2I呈体チップの断面図、第2図
は、従来のMESFETの一例の断面図である。 l・・・・・・ショットキゲート、IA・・・・・・ゲ
ート電極、2a・・・・・・ソース電極、2b・・・・
・・ドレイン電極、3・・・・・・動作層、4a、4b
・・・・・・n wll 5・・・・・・半絶縁性基板
、6・・・・・・絶縁膜、7・・・・・・第2層金楓。 坪 l 菌
FIGS. 1 fa) to TE) are cross-sectional views of a semi-2I chip shown in the order of steps for explaining an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an example of a conventional MESFET. l...Schottky gate, IA...gate electrode, 2a...source electrode, 2b...
...Drain electrode, 3...Active layer, 4a, 4b
......n wll 5... Semi-insulating substrate, 6... Insulating film, 7... Second layer gold maple. Tsubo l bacteria

Claims (1)

【特許請求の範囲】[Claims] 半導体動作層上に選択的に配置されたゲート電極と絶縁
膜とを有する半導体装置において、前記絶縁膜はゲート
電極上を除く前記半導体動作層上全面に被着されている
ことを特徴とする半導体装置。
A semiconductor device having a gate electrode and an insulating film selectively disposed on a semiconductor active layer, wherein the insulating film is deposited on the entire surface of the semiconductor active layer except on the gate electrode. Device.
JP8234187A 1987-04-02 1987-04-02 Semiconductor device Pending JPS63248179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8234187A JPS63248179A (en) 1987-04-02 1987-04-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8234187A JPS63248179A (en) 1987-04-02 1987-04-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63248179A true JPS63248179A (en) 1988-10-14

Family

ID=13771862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8234187A Pending JPS63248179A (en) 1987-04-02 1987-04-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63248179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257618A (en) * 1989-03-29 1990-10-18 Mitsubishi Electric Corp Semiconductor device and its manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129878A (en) * 1984-11-29 1986-06-17 Fujitsu Ltd Semiconductor device
JPS62291070A (en) * 1986-06-10 1987-12-17 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS63161625A (en) * 1986-12-25 1988-07-05 Matsushita Electric Ind Co Ltd Manufacture of field-effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129878A (en) * 1984-11-29 1986-06-17 Fujitsu Ltd Semiconductor device
JPS62291070A (en) * 1986-06-10 1987-12-17 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS63161625A (en) * 1986-12-25 1988-07-05 Matsushita Electric Ind Co Ltd Manufacture of field-effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257618A (en) * 1989-03-29 1990-10-18 Mitsubishi Electric Corp Semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
JP2707433B2 (en) Method for manufacturing thin film transistor
JPH02253632A (en) Manufacture of field effect transistor
EP0085916A3 (en) Method of fabricating field effect transistors
JPH02299245A (en) Manufacture of field-effect transistor
US4559693A (en) Process for fabricating field effect transistors
JPH02271538A (en) Manufacture of semiconductor device
JPS63248179A (en) Semiconductor device
JPS63248136A (en) Semiconductor device
TWI244727B (en) Method of fabricating ferroelectric memory transistors
JPH01228133A (en) Manufacture of semiconductor device
JPS63237577A (en) Manufacture of misfet
JPS59225571A (en) Field effect transistor
JPS59165466A (en) Semiconductor device and manufacture thereof
JPS6112079A (en) Manufacture of semiconductor element
JPS6158266A (en) Semiconductor device and manufacture thereof
JPH0240924A (en) Manufacture of semiconductor device
JPS6286869A (en) Manufacture of semiconductor device
KR960026570A (en) Highly Integrated Semiconductor Device Manufacturing Method
KR100192363B1 (en) Structure of thin film transistor and manufacture thereof
JPH03280551A (en) Manufacture of thin film transistor
JPH01204476A (en) Semiconductor device and manufacture thereof
JPS6292480A (en) Manufacture of compound semiconductor device
JPH01208870A (en) Manufacture of compound semiconductor device
JPH01253967A (en) Semiconductor device and its manufacture
JPH03131041A (en) Manufacture of semiconductor device