JPS59165466A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59165466A
JPS59165466A JP4023683A JP4023683A JPS59165466A JP S59165466 A JPS59165466 A JP S59165466A JP 4023683 A JP4023683 A JP 4023683A JP 4023683 A JP4023683 A JP 4023683A JP S59165466 A JPS59165466 A JP S59165466A
Authority
JP
Japan
Prior art keywords
region
forming
layer
photoresist
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4023683A
Other languages
Japanese (ja)
Inventor
Hiraaki Tsujii
辻井 平明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4023683A priority Critical patent/JPS59165466A/en
Publication of JPS59165466A publication Critical patent/JPS59165466A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Abstract

PURPOSE:To enable to arbitrarily set accurately the threshold voltage of an FET by the externally applied voltage by providing a buffer region only directly under an active region which becomes a channel between source and drain regions formed in a compound semiconductor substrate. CONSTITUTION:To activate ion implanted layers 26, 27, 30 after removing a silicon nitrided film 22 and a photoresist 28, a heat treatment is performed. Thus, the layers 26, 27, 30 respectively become source, drain region and channel region. A silicon nitrided film 31 is then formed newly by a plasma CVD method, a photoresist pattern 32 is formed thereon, a hole 22 for forming a buffer layer is formed by a photographic step, and a P type region is formed as a buffer layer 34 by using an ion implantation method. Then, after removing the pattern 32, a heat treatment is executed to activate the layer 34. Photoresist is rotatably coated on the overall surface, the photoresist is opened as desired, and a necessary electrode material is deposited.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、とくに化合物半導体材料を用いた
電界効果トランジスタ(以下FETと略す)およびその
製造方法に関する・ 従来例の構成とその問題点 化合物半導体材料を用いた電界効果トランジスタを構成
する場合、ゲートとしてショットキバリアを用いたME
5FETが一般である。ゲート電極に負の電圧を加えて
空乏層を広げ、活性層厚を制御する1−ノーマリオン型
」と呼ばれるデプレッション型FET(以下D−FET
と略す)と、活性層領域がショットキの内部電位により
既に空乏化しておりゲートに正の電圧を加えることによ
り活性層厚を制御する1−ノーマリオフ型」と呼ばれる
二ンハンスト型FET (以下E−FETと略す)があ
る。これらD−FET 、E−FETにおいてしきい値
電圧はFETのゲート部におけるショットキ界面直下の
活性層の厚みによって定まるため、活性層の厚みを、精
度よく薄くする方法が提案されている。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a semiconductor device, particularly a field effect transistor (hereinafter abbreviated as FET) using a compound semiconductor material, and a method for manufacturing the same.Constitution of a conventional example and its problems Compound semiconductor When constructing a field effect transistor using this material, ME using a Schottky barrier as a gate
5FET is common. Depletion type FET (hereinafter referred to as D-FET) is a depletion type FET (hereinafter referred to as "1-normally-on type") in which a negative voltage is applied to the gate electrode to widen the depletion layer and control the active layer thickness.
(abbreviated as "1-normally-off type") and a double-hunched FET (hereinafter referred to as "E-FET"), whose active layer region is already depleted by Schottky's internal potential and whose active layer thickness is controlled by applying a positive voltage to the gate. ). In these D-FETs and E-FETs, the threshold voltage is determined by the thickness of the active layer directly under the Schottky interface in the gate portion of the FET, and therefore methods have been proposed to accurately reduce the thickness of the active layer.

第1図はいわゆる「リセス構造」と呼ばれるもので、ゲ
ート直下の活性層の厚みは、所望のしきい値電圧を得る
ため化学エツチング等の手段で薄くした構造である。第
1図において、1は半絶縁性GaAs基板、2はn型G
aAs 、 3 、4はオーミック電極でソース、ドレ
イン電極となる。6はショク)キー接触でゲート電極と
なる。
The structure shown in FIG. 1 is a so-called "recessed structure" in which the thickness of the active layer directly under the gate is made thinner by means such as chemical etching in order to obtain a desired threshold voltage. In Figure 1, 1 is a semi-insulating GaAs substrate, 2 is an n-type G
aAs, 3, and 4 are ohmic electrodes that serve as source and drain electrodes. 6 becomes the gate electrode when the key is touched.

第2図は他の従来の例であり、半絶縁性GaAs基板1
1にイオン注入法により、ソース、ドレイン領域となる
高濃度イオン注入層12.13およびゲート領域となる
活性層14を形成し活性化後、オーミック電極15.1
6を形成しソース、ドレイン電極とする。17はショッ
トキ接触で金属としてたとえば白金(pt )を用いて
ゲート電極とする。ゲート電極のショットキ界面18は
、熱処理により活性層14の内部へ埋め込むことで、し
きい値を制御する。
FIG. 2 shows another conventional example, in which a semi-insulating GaAs substrate 1
1, a high-concentration ion-implanted layer 12.13 that will become the source and drain regions and an active layer 14 that will become the gate region are formed by ion implantation in 1, and after activation, an ohmic electrode 15.1 is formed.
6 are formed to serve as source and drain electrodes. Reference numeral 17 is a Schottky contact, and a gate electrode is made of platinum (PT) as a metal. The Schottky interface 18 of the gate electrode is embedded into the active layer 14 by heat treatment to control the threshold value.

第1図の構造は化学エツチング等を用いているため、ゲ
ート電極部の活性層の厚みの制御が不十分でしきい値電
圧の制御が困難であるとともに、プレナ構造でない等の
理由で集積回路に用いることは適当でない。
The structure shown in Figure 1 uses chemical etching, etc., so it is difficult to control the threshold voltage because the thickness of the active layer in the gate electrode part is insufficiently controlled, and it is not a planar structure. It is not appropriate to use it for

第2図はゲート部分においてpt  よりなる電極をG
aAs に埋め込んでいるため温度を一定とした場合熱
処理時間を変えることによってしきい値の制御は行うこ
とができるが、集積回路を形成する場合、大面積にわた
りしきい値電圧を均一にすることが困難である。まだ熱
処理は一般に380℃前後で行なわれるため、後の工程
で温度を380℃以上に上げることが出来ず、FETの
製作の方法に制限が生じる。
Figure 2 shows an electrode made of PT at the gate part.
Since it is embedded in aAs, the threshold voltage can be controlled by changing the heat treatment time if the temperature is held constant, but when forming an integrated circuit, it is difficult to make the threshold voltage uniform over a large area. Have difficulty. Since heat treatment is still generally carried out at around 380°C, the temperature cannot be raised above 380°C in subsequent steps, which limits the method of manufacturing FETs.

発明の目的 本発明は上記欠点を除去した新規のFETとその製造方
法を提供することにある。本発明は、FETのしきい値
電圧を外部からの印加電圧により任意に精度よく設定で
きるFETを得ることを目的としている。
OBJECTS OF THE INVENTION The object of the present invention is to provide a new FET that eliminates the above-mentioned drawbacks and a method for manufacturing the same. SUMMARY OF THE INVENTION An object of the present invention is to obtain an FET whose threshold voltage can be arbitrarily and precisely set by an externally applied voltage.

発明の構成 本発明は、化合物半導体基板に形成されたソース、ドレ
イン領域間のチャンネルとなる活性領域直下のみにバッ
ファ領域を設け、この領域にてチャンネル電流を制御す
るものである。そして、本発明の製造方法は、化合物半
導体基板に高濃度イオン注入層を形成してソース、ドレ
イン領域を形成し、チャンネルとなる活性領域をイオン
注入にて形成し、さらに、活性領域の直下に所望のバッ
ファ層をイオン注入法にょシ形成し、ソース、ドレイン
電極、ゲート電極、バッファ層に電圧を印加するだめの
電極をそれぞれ形成しFETを構成するものである。
Structure of the Invention In the present invention, a buffer region is provided only directly under an active region that becomes a channel between source and drain regions formed in a compound semiconductor substrate, and a channel current is controlled in this region. Then, in the manufacturing method of the present invention, a highly concentrated ion-implanted layer is formed on a compound semiconductor substrate to form source and drain regions, an active region that becomes a channel is formed by ion implantation, and a layer directly below the active region is formed. A desired buffer layer is formed by ion implantation, and a source electrode, a drain electrode, a gate electrode, and an electrode for applying a voltage to the buffer layer are formed to form an FET.

実施例の説明 本発明を図面に示す実施例を用いて詳細に説明する。第
3図aにおいてクロム(Cr)をドープしたGaA s
半絶縁性半導体基板21に厚み例えば3000人のシリ
コン窒化膜22をプラズマCVD法により形成し、その
上に7オトレジスト23を回転塗布する。フォトレジス
ト23、窒化膜22にフォト工程にょシンース、ドレイ
ン領域形成用の開孔部24.25を形成し、イオン注入
法を用いて加速エネルギーを150KeV、ドース量を
1×10 cln  としてシリコン(Si)  を注
入し、濃度イオン注入層26,2了を形成する(第3図
a)。
DESCRIPTION OF EMBODIMENTS The present invention will be described in detail using embodiments shown in the drawings. In Figure 3a, GaAs doped with chromium (Cr)
A silicon nitride film 22 having a thickness of, for example, 3,000 wafers is formed on a semi-insulating semiconductor substrate 21 by plasma CVD, and a seven-layer photoresist 23 is spin-coated thereon. Openings 24 and 25 for forming a drain region are formed in the photoresist 23 and the nitride film 22, and then silicon (Si ) to form a concentrated ion-implanted layer 26, 2 (FIG. 3a).

レジスト23を除去後新たにフォトレジスト28を回転
塗布し、第3図すに示すように、フォト工程を用いて活
性領域形成部分の開孔部29を形成し、イオン注入法を
用いて、加速エネルギーを120KeV、ドーズ量を5
×1o126n−2としてシリコン(St)を注入し、
活性層3oを形成する。
After removing the resist 23, a new photoresist 28 is applied by spin coating, and as shown in FIG. Energy 120KeV, dose 5
Silicon (St) is implanted as ×1o126n-2,
An active layer 3o is formed.

シリコン窒化膜22、フォトレジスト28を除去後イオ
ン注入層26.27.30を活性化するためにAsH3
雰囲気中で850℃の温度で20分間熱処理を行う。こ
うして、注入層26,27,30はそれぞソース、ドレ
イン領域2チヤンネル領域となる。
After removing the silicon nitride film 22 and photoresist 28, AsH3 was applied to activate the ion implantation layers 26, 27, and 30.
Heat treatment is performed in an atmosphere at a temperature of 850° C. for 20 minutes. In this way, the injection layers 26, 27, and 30 become source and drain regions and two channel regions, respectively.

第3c図に示すように、新たにプラズマCVD法によシ
リコン窒化膜31を例えば4000への厚みに形成ビ、
その土にフォトレジストパターン32を1.2μmの厚
さで形成し、フォト工程を用いてバッフ(層形成するた
めの開孔部33を形成し、イオン注入法を用いて加速エ
ネルギーを170 KeV 、ドーズ量を2×10 m
 としてバリウム(Be)を注入しバッフ7層34とし
てp型の領域を形成する。なお、活性領域30へのイオ
ン注入量は、バッファ層34のイオン注入により補償さ
れる量だけ多くしておく。
As shown in FIG. 3c, a silicon nitride film 31 is newly formed to a thickness of, for example, 4000 nm by plasma CVD method.
A photoresist pattern 32 with a thickness of 1.2 μm is formed on the soil, and a photo process is used to form a buffer (hole 33 for forming a layer), and an acceleration energy of 170 KeV is applied using an ion implantation method. 2×10 m
Barium (Be) is then implanted to form a p-type region as the buffer 7 layer 34. Note that the amount of ions implanted into the active region 30 is increased by the amount compensated for by the ion implantation into the buffer layer 34.

次にレジストハターン32を除去後、バファ層34を活
性化するためにH2雰囲気中で700℃の温度で20分
間熱処理を行う。
Next, after removing the resist pattern 32, heat treatment is performed at a temperature of 700° C. for 20 minutes in an H2 atmosphere to activate the buffer layer 34.

全面にフォトレジスト(図示せず)を例えば1.2μm
の厚さに回転塗布し、所望の所のフォトレジストを開孔
させ、必要な電極材料を蒸着後、さきのフォトレジスト
を溶剤でとかすことにより目的とする形状の金属膜を形
成するといりいわゆる「リフトオフ法」と呼ばれる方法
を用いて、第3dに示すようにケース、ドレイン、ゲー
ト電極およびバッファ層の電極(第4図aに示す)を形
成する。この場合、フォトレジストを1.2μm回転塗
布後金属材料としてTi を6 ’O0人、その上にも
pt を500人、半の上にAuを3000人活性領域
35上に蒸着して、リフトオフ法によりショットキゲー
ト電極36を形成する。さらにフォトレジストを1.2
μm蓬塗布後金属材料としてAu、、 Geの合金を1
500八、その上にAu を250OAソース、ドレイ
ン領域の高濃度イオン注入層37.38上に蒸着させリ
フトオフ法によりソース電極39、ドレイン電極40を
形成する。
Apply a photoresist (not shown) on the entire surface with a thickness of 1.2 μm, for example.
After spin-coating the photoresist to a thickness of , opening holes in the photoresist at desired locations, and depositing the necessary electrode material, the photoresist is dissolved with a solvent to form a metal film in the desired shape. Using a method called "lift-off method," the case, drain, gate electrode, and buffer layer electrode (shown in FIG. 4a) are formed as shown in FIG. 3d. In this case, after spin-coating photoresist to a thickness of 1.2 μm, 6'O0 of Ti as a metal material, 500 of PT on top of that, and 3000 of Au on top of the active region 35 were deposited using a lift-off method. A Schottky gate electrode 36 is formed by the following steps. Add photoresist to 1.2
After coating μm, an alloy of Au, Ge was used as the metal material.
A source electrode 39 and a drain electrode 40 are formed by depositing 250 OA of Au on the high-concentration ion-implanted layers 37 and 38 of the source and drain regions by a lift-off method.

同様フォトレジストを1.2μm回転塗布後、金属とし
て八2 を4000人蒸着後リフトオフ法に表ヒクノフ
ァ層34とオーミック接触を形成し、バッファ層の電極
41とする。第4図aは第3図における工程を経て形成
されたFETの要部断面斜視図であり、第3図dは第4
図のA−A’線断面図である。
After spin-coating a similar photoresist to a thickness of 1.2 .mu.m, 4,000 layers of 82 as a metal were vapor-deposited, and an ohmic contact was formed with the surface layer 34 using a lift-off method to form an electrode 41 of the buffer layer. FIG. 4a is a cross-sectional perspective view of the main part of the FET formed through the steps shown in FIG.
It is a sectional view taken along the line AA' in the figure.

第5図は、第3d図におけるゲート電極35真下の深さ
と、活性領域、バッファ層のキャリア濃度曲線61、曲
線52を示したものである。深さ約0.3μmのところ
にバッファ層34と活性領域30によるp −n接合が
形成されている。第4図すに示すようにバッファ層34
に負の電圧を印加するとp−n接合における逆バイアス
となるだめ活性領域3oとバッファ層34に空乏層が広
がる。
FIG. 5 shows the depth just below the gate electrode 35, the carrier concentration curve 61 of the active region and the buffer layer, and the curve 52 in FIG. 3d. A p-n junction is formed between the buffer layer 34 and the active region 30 at a depth of approximately 0.3 μm. As shown in FIG. 4, the buffer layer 34
When a negative voltage is applied to the active region 3o and the buffer layer 34, a depletion layer spreads as a reverse bias occurs in the p-n junction.

この空乏層により活性領域30の実効的な厚みdは薄く
することができる。今簡単のだめに活性領域のキャリア
濃度Ndは2×10 m  で一定であるとすると実効
的な活性領域の厚みdeは、ショットキ界面からp−n
接合面の距離dわら、′ショットキの内部電位Vg の
空乏層の厚みを差し引いたもので、一般にdは次式で表
わされる。
This depletion layer allows the effective thickness d of the active region 30 to be reduced. For the sake of simplicity, if we assume that the carrier concentration Nd in the active region is constant at 2 × 10 m, the effective thickness de of the active region is p−n from the Schottky interface.
The distance d between the junction surfaces is calculated by subtracting the thickness of the depletion layer of the Schottky internal potential Vg, and d is generally expressed by the following equation.

ここでdo は、活性領域の厚み、εは基板の誘電率、
eは単位電荷、Vdは印加電圧であり逆バイアスの方向
を正にとっている。Vdはp −n接合の拡散電位であ
る。
Here, do is the thickness of the active region, ε is the dielectric constant of the substrate,
e is a unit charge, Vd is an applied voltage, and the direction of reverse bias is positive. Vd is the diffusion potential of the p-n junction.

またこの場合しきい値電圧■thは第2式に示すように
表わされる。
Further, in this case, the threshold voltage th is expressed as shown in the second equation.

従って第(1)式よりバッファ層に印加電圧■d を変
化させることにより、ショットキ直下の活性層の厚みd
は一義的に決まり、第(2)式よりしきい値電圧V。h
が決まる。第6図は印加電圧■8  と、しきい値電圧
■thの関係を示したものである。曲線61は、その関
係を示している。このようにバッファ層の印加電圧を変
化させることにより轟易にしきい値電圧を変化させるこ
とにより、D−FET。
Therefore, from equation (1), by changing the voltage d applied to the buffer layer, the thickness d of the active layer directly under the Schottky can be
is uniquely determined, and from equation (2), the threshold voltage V. h
is decided. FIG. 6 shows the relationship between the applied voltage (8) and the threshold voltage (2). Curve 61 shows that relationship. By changing the voltage applied to the buffer layer in this way, the threshold voltage can be easily changed to create a D-FET.

E−FETを同一工程を用いて容易に製造できる。E-FETs can be easily manufactured using the same process.

まだ、本発明の場合、外部の印加電圧で活性領域の実効
的な厚みを制御できるので、従来のFETに比較して、
活性領域の厚みを大きくすることができ、製造が容易と
なる。さらに、第千−図の構造のコトク、バッファ層3
4の長さを、ショットキ電極のゲート長の等しいかある
いは短くすることによシ、ソース領域およびドレイン領
域近傍はバッファ層による空乏層がひろがらないため、
ソース抵抗およびドレイン抵抗の低減をはかることがで
き、FETの高周波特性を改善することが可能となる。
However, in the case of the present invention, the effective thickness of the active region can be controlled by an externally applied voltage, so compared to conventional FETs,
The thickness of the active region can be increased, which facilitates manufacturing. Furthermore, the advantage of the structure shown in Figure 1000 is that the buffer layer 3
By making the length of 4 equal to or shorter than the gate length of the Schottky electrode, the depletion layer due to the buffer layer does not expand near the source and drain regions.
The source resistance and drain resistance can be reduced, and the high frequency characteristics of the FET can be improved.

なお、以上本発明の一実施例として、GaAsを用いて
説明したが、他の半導体材料、例えばシリコン、インジ
ウムーヒ素−燐混晶等を用いたショット4FETに適用
できることは言うまでも雇い。
Although the present invention has been described above using GaAs as an embodiment, it goes without saying that it can be applied to shot 4 FETs using other semiconductor materials such as silicon, indium-arsenic-phosphorus mixed crystal, etc.

発明の効果 以上実施例で説明した様に、本発明は通常の半絶縁性化
合物半導体材料を用いE−FETにおいて活性領域直下
にバッファ層を形成することにより、しきい値電圧を容
易に精度よく設定でき、すなわちD−FET 、E−F
ETを外部印加電圧により自由に変更することができる
Effects of the Invention As explained in the examples, the present invention uses a normal semi-insulating compound semiconductor material to form a buffer layer directly under the active region of an E-FET, thereby easily and accurately adjusting the threshold voltage. Can be set, i.e. D-FET, E-F
ET can be freely changed by externally applied voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のリセス構造を有するGaAsショットキ
FETの構造図、第2図は従来の白金埋め込みゲートに
よるGaAsショットキFETの構造図、第3図a−d
は本発明の一実施例のGaA sショットキFETの構
造を説明するだめの製造工程の概略図、第4図aは本発
明の一実施例によるGaAsショットキFETの要部断
面図、第4図すは同FETのバイアス状態を示す断面図
、第5図は本発明のショットキFETのゲート電極直下
の深さとキャリア濃度の関係を示した図、第6図はバッ
ファ層の印加電圧としきい値電圧の関係を示した図であ
る。 21・・・・・・半絶縁性GaAs基板、22・・・・
・・シリコン窒化膜、23・・・・・・フォトレジスト
、26.27・・・・・・高濃度イオン注入層、28・
・・・・・フォトレジスト、29・・・・・・活性層用
開孔部、3o・・・・・・活性層、31・・・・・・シ
リコン窒化膜、32・・・・・・フォトレジスト、34
・・・・・・バッファ層、36・・・・・・ゲート電極
、39・・・・・・ソース電極、40・・・・・・ドレ
イン電極、41・・・・・・バック7層の電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 第 4 図
Figure 1 is a structural diagram of a GaAs Schottky FET with a conventional recess structure, Figure 2 is a structural diagram of a conventional GaAs Schottky FET with a platinum-embedded gate, and Figures 3 a-d.
4A is a schematic diagram of the manufacturing process for explaining the structure of a GaAs Schottky FET according to an embodiment of the present invention, FIG. is a cross-sectional view showing the bias state of the same FET, FIG. 5 is a diagram showing the relationship between the depth just below the gate electrode and the carrier concentration of the Schottky FET of the present invention, and FIG. 6 is a diagram showing the relationship between the applied voltage of the buffer layer and the threshold voltage. It is a diagram showing the relationship. 21... Semi-insulating GaAs substrate, 22...
...Silicon nitride film, 23...Photoresist, 26.27...High concentration ion implantation layer, 28.
...Photoresist, 29...Opening part for active layer, 3o...Active layer, 31...Silicon nitride film, 32... Photoresist, 34
... Buffer layer, 36 ... Gate electrode, 39 ... Source electrode, 40 ... Drain electrode, 41 ... Back 7 layer electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)化合物半導体基板上にソース、ドレイン領域、前
記ソース、ドレイン領域の間にチャンネルとなる活性領
域を形成し、前記活性領域直下のみにバッファ領域を形
成し、前記ソース、ドレイン領域にソース電極、ドレイ
ン電極を形成し、前記活性領域上にゲート電極を形成し
、前記バッファ領域への制御電極を形成したことを特徴
とする半導体装置。
(1) Forming a source and a drain region on a compound semiconductor substrate, an active region serving as a channel between the source and drain regions, forming a buffer region only directly under the active region, and forming a source electrode in the source and drain regions. . A semiconductor device, further comprising a drain electrode formed, a gate electrode formed on the active region, and a control electrode connected to the buffer region.
(2)バッファ層の長さが、ショットキ電極を形成した
ゲート長と等しいかあるいは短かいことを特徴とする特
許請求の範囲第1項に記載の半導体装置0
(2) The semiconductor device 0 according to claim 1, wherein the length of the buffer layer is equal to or shorter than the gate length on which the Schottky electrode is formed.
(3)バッフ1層に、バッファ層電極を介して電圧を印
加することにより、チャンネル電流をノーマリオンある
いはノーマリオフとすることを特徴とする特許請求の範
囲第1項に記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the channel current is made normally on or normally off by applying a voltage to the first buffer layer through the buffer layer electrode.
(4)化合物半導体基板上に、ノース、ドレイン領域と
なる高濃度イオン注入層を形成する工程、前記半導体基
板上にチャンネル領域となる活性領域を形成するイオン
注入層を形成する工程、前記活性領域直下にバッファ層
となるイオン注入層を形成する工程、前記ソース領域、
ドレイン領域、およびバッファ層にオーミック電極を形
成する工程、前記活性領域にショットキゲート電極を形
成する工程を含むことを特徴とする半導体装置の製造方
法0
(4) A step of forming a high concentration ion implantation layer that will become a north and drain region on a compound semiconductor substrate, a step of forming an ion implantation layer that will form an active region that will become a channel region on the semiconductor substrate, and a step of forming an ion implantation layer that will become an active region that will become a channel region on the semiconductor substrate. a step of forming an ion implantation layer serving as a buffer layer directly below the source region;
A method for manufacturing a semiconductor device 0 characterized by including the steps of forming an ohmic electrode in a drain region and a buffer layer, and forming a Schottky gate electrode in the active region.
JP4023683A 1983-03-10 1983-03-10 Semiconductor device and manufacture thereof Pending JPS59165466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4023683A JPS59165466A (en) 1983-03-10 1983-03-10 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4023683A JPS59165466A (en) 1983-03-10 1983-03-10 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59165466A true JPS59165466A (en) 1984-09-18

Family

ID=12575081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4023683A Pending JPS59165466A (en) 1983-03-10 1983-03-10 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59165466A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163662A (en) * 1985-01-14 1986-07-24 Agency Of Ind Science & Technol Manufacture of field-effect transistor
JPS61267369A (en) * 1985-05-22 1986-11-26 Hitachi Ltd Field effect transistor
JPS6249671A (en) * 1985-06-17 1987-03-04 テキサス インスツルメンツ インコーポレイテツド Gallium-arsenide fe transistor and making thereof
JPS62214671A (en) * 1986-03-17 1987-09-21 Hitachi Ltd Field effect transistor
JPS63129673A (en) * 1986-11-20 1988-06-02 Sony Corp Field effect transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163662A (en) * 1985-01-14 1986-07-24 Agency Of Ind Science & Technol Manufacture of field-effect transistor
JPS61267369A (en) * 1985-05-22 1986-11-26 Hitachi Ltd Field effect transistor
JPS6249671A (en) * 1985-06-17 1987-03-04 テキサス インスツルメンツ インコーポレイテツド Gallium-arsenide fe transistor and making thereof
JPS62214671A (en) * 1986-03-17 1987-09-21 Hitachi Ltd Field effect transistor
JPS63129673A (en) * 1986-11-20 1988-06-02 Sony Corp Field effect transistor

Similar Documents

Publication Publication Date Title
US5374575A (en) Method for fabricating MOS transistor
JPS6049669A (en) Thin-film transistor and manufacture thereof
JPS59165466A (en) Semiconductor device and manufacture thereof
JPH0974208A (en) Semiconductor stress sensor
JPH0543291B2 (en)
JP3034546B2 (en) Method for manufacturing field effect transistor
JP2759153B2 (en) Thin film E @ 2 PROM and method of manufacturing the same
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JPS59225574A (en) Manufacture of semiconductor device
JPH04196215A (en) Semiconductor device
JP3597458B2 (en) Method for manufacturing semiconductor device
KR910006752B1 (en) Bi c - mos transistor and its manufacturing method
JPS6097662A (en) Manufacture of semiconductor device
JP2726730B2 (en) Manufacturing method of field effect transistor
JPH024137B2 (en)
JPS63219176A (en) Manufacture of field-effect transistor
JPH0156537B2 (en)
JPH028454B2 (en)
JPS63136669A (en) Semiconductor device
JPS61163666A (en) Manufacture of field-effect transistor
JPS5893290A (en) Manufacture of schottky barrier field effect transistor
JPH01270359A (en) Manufacture of vertical type field-effect transistor
JPH04162635A (en) Manufacture of semiconductor device
JPH04162420A (en) Manufacture of semiconductor device
JPH03135074A (en) Manufacture of semiconductor device