JPH024137B2 - - Google Patents

Info

Publication number
JPH024137B2
JPH024137B2 JP56063000A JP6300081A JPH024137B2 JP H024137 B2 JPH024137 B2 JP H024137B2 JP 56063000 A JP56063000 A JP 56063000A JP 6300081 A JP6300081 A JP 6300081A JP H024137 B2 JPH024137 B2 JP H024137B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
forming
mask pattern
pattern
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56063000A
Other languages
Japanese (ja)
Other versions
JPS57177572A (en
Inventor
Kenichi Kikuchi
Toshiki Ehata
Hideki Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6300081A priority Critical patent/JPS57177572A/en
Priority to DE8282300499T priority patent/DE3273695D1/en
Priority to EP82300499A priority patent/EP0057605B1/en
Publication of JPS57177572A publication Critical patent/JPS57177572A/en
Publication of JPH024137B2 publication Critical patent/JPH024137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66871Processes wherein the final gate is made after the formation of the source and drain regions in the active layer, e.g. dummy-gate processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66878Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Description

【発明の詳細な説明】 本発明は、シヨツトキゲート電界効果トランジ
スタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a shot gate field effect transistor.

シヨツトキゲート電界効果トランジスタ(以下
MESFETと略記する)は、特に超高周波におけ
るすぐれた増幅あるいは、発振用素子として賞用
されている。また、超高速動作の集積回路の基本
構成素子としても、すぐれたものであることは周
知である。
Short gate field effect transistor (hereinafter referred to as
MESFET (abbreviated as MESFET) is prized as an excellent amplification or oscillation element, especially at ultra-high frequencies. It is also well known that it is an excellent basic component for integrated circuits operating at ultra-high speeds.

従来最も普通に用いられているMESFETの構
造は第1図に示したようなものである。ここで1
は高比抵抗または半絶縁性半導体結晶基板、2は
導電性半導体結晶層で通常、動作層と称されてい
るものである。3はシヨツトキゲート電極、4,
5はそれぞれオーミツク特性を有するソース、ド
レイン電極である。
The structure of the MESFET most commonly used in the past is shown in Figure 1. Here 1
2 is a high resistivity or semi-insulating semiconductor crystal substrate, and 2 is a conductive semiconductor crystal layer which is usually called an operating layer. 3 is a short gate electrode, 4,
Reference numerals 5 denote source and drain electrodes each having ohmic characteristics.

この動作層のキヤリア濃度Nd、および厚さa
はMESFETのピンチオフ電圧Vpと次の第1式の
ような関係がある。
The carrier concentration Nd and thickness a of this active layer
has a relationship with the pinch-off voltage Vp of the MESFET as shown in the following first equation.

Vp=Vb−qNd/2εa2 ……(1) ただしVbはビルトイン電圧、εは半導体結晶
の誘電率、qは電荷素量 Vpは回路設計上の要求から与えられるが、こ
のVpの値を満足するよう(1)式を用いてNd,aの
値が定められる。
Vp=Vb-qNd/2εa 2 ...(1) However, Vb is the built-in voltage, ε is the dielectric constant of the semiconductor crystal, and q is the elementary charge amount.Vp is given from the circuit design requirements, and this value of Vp is satisfied. The values of Nd and a are determined using equation (1) so that.

第1図のような従来の構造の欠点の一つは、ゲ
ート3とソース4あるいはゲート3とドレイン5
の間の抵抗値が大きいために充分大きなgmの値
が得られないこと、また大きなゲートソース間直
列抵抗のために雑音特性が劣化することである。
特にピンチオフ電圧Vpの絶対値が小さいとき、
あるいはノーマリオフ(Vp>0)においては、
(1)式から明らかなようにNdあるいはaは小さな
値とせねばならないためにゲート・ソース間の直
列抵抗は、より大きな値となる。また動作層2
が、GaAs結晶を用いている場合には、ゲート・
ソース間のおよびゲート・ドレイン間の結晶表面
部67に高密度の表面準位が存在して、それによ
り表面電位がほぼ固定され、半導体結晶内の表面
近くでは空乏層ができるため、ゲート・ソース間
直列抵抗はいつそう大きな値となり、特にノーマ
リオフ型では、きわめて重大な問題であつた。
One of the drawbacks of the conventional structure as shown in FIG.
The problem is that a sufficiently large value of gm cannot be obtained because the resistance value between the gate and the source is large, and the noise characteristics are deteriorated due to the large series resistance between the gate and the source.
Especially when the absolute value of the pinch-off voltage Vp is small,
Or in normally off (Vp>0),
As is clear from equation (1), since Nd or a must be set to a small value, the series resistance between the gate and source becomes a larger value. Also, the operating layer 2
However, when using GaAs crystal, the gate
High-density surface states exist in the crystal surface area 67 between the source and between the gate and drain, which nearly fixes the surface potential, and a depletion layer is formed near the surface within the semiconductor crystal. The series resistance between the capacitor and the capacitor can reach a very large value, which is a very serious problem, especially in the normally-off type.

このような欠点を解決するための方法の一つと
して、第2図のように、ゲート・ソース間および
ゲート・ドレイン間の動作層9,10をゲート電
極直下の動作層8の厚さよりも厚くすることが行
われている。この方法では8の動作層の厚さ、キ
ヤリア濃度を(1)式の条件を満すよう定める必要が
あるが、このような段差構造において、エツチン
グ等で、8の部分の厚さを精密に再現性良く制御
することは現在の技術では困難である。
One way to solve this problem is to make the active layers 9 and 10 between the gate and source and between the gate and drain thicker than the active layer 8 directly under the gate electrode, as shown in FIG. things are being done. In this method, it is necessary to determine the thickness of the active layer 8 and the carrier concentration to satisfy the conditions of equation (1), but in such a step structure, the thickness of the active layer 8 must be precisely determined by etching, etc. Control with good reproducibility is difficult with current technology.

本発明は、上記の従来技術の欠点を解決する新
たなMESFETの製法を提供するものである。
The present invention provides a new MESFET manufacturing method that solves the above-mentioned drawbacks of the prior art.

本発明は、半絶縁性の半導体基板の一主面に一
導電型の第1の半導体層を、ピンチオフ電圧が所
望の値となるように、その厚さ、キヤリア濃度を
選択して形成する工程と、ストライプ状の所定厚
さのパターンを第1の半導体層上に形成する工程
と、マスクパターンをマスクとして、第1の半導
体層と同一の導電型を与える不純物を選択的にイ
オン注入または熱拡散法により導入することによ
り、第2の半導体層を形成する工程と、マスクパ
ターンよりも薄いメタル層を蒸着により形成し、
マスクパターンを除去してその上のメタル層を除
去することにより、マスクパターンに対して正確
に反転した反転パターンを形成する工程と、シヨ
ツトキゲート金属を反転パターンよりも薄く蒸着
する工程と、反転パターンを除去することによ
り、リフトオフによつて、第1の半導体層上に位
置したシヨツトキゲート電極を形成する工程と、
第2の半導体層上にソースおよびドレイン電極を
形成する工程とを含むことを特徴とする。
The present invention is a process of forming a first semiconductor layer of one conductivity type on one principal surface of a semi-insulating semiconductor substrate by selecting its thickness and carrier concentration so that the pinch-off voltage becomes a desired value. A step of forming a striped pattern with a predetermined thickness on the first semiconductor layer, and using the mask pattern as a mask, selectively ion-implanting or heating an impurity that gives the same conductivity type as the first semiconductor layer. A step of forming a second semiconductor layer by introducing it by a diffusion method, and a step of forming a metal layer thinner than the mask pattern by vapor deposition,
A step of forming an inverted pattern that is exactly inverted with respect to the mask pattern by removing the mask pattern and removing the metal layer thereon, a step of depositing a shot gate metal thinner than the inverted pattern, and a step of forming the inverted pattern. forming a shot gate electrode located on the first semiconductor layer by lift-off;
The method is characterized in that it includes a step of forming source and drain electrodes on the second semiconductor layer.

本発明によれば、反転パターンは金属により構
成され、かつ蒸着により形成されるので、マスク
パターンの側壁にメタル層が形成されることが全
くない。しかも、反転パターンはシヨツトキゲー
ト金属の層よりも厚く、マスクパターンは反転パ
ターンよりも厚いので、リフトオフを容量かつ完
全に行なつて、歩留りを向上することができる。
According to the present invention, since the inversion pattern is made of metal and is formed by vapor deposition, no metal layer is formed on the sidewalls of the mask pattern. Moreover, since the inversion pattern is thicker than the shot gate metal layer and the mask pattern is thicker than the inversion pattern, lift-off can be performed capacitively and completely to improve yield.

本発明を以下図面にもとずいて説明する。 The present invention will be explained below based on the drawings.

本発明のMESFETの一例は第3図に示す如き
ものである。
An example of the MESFET of the present invention is shown in FIG.

第3図は、半導体体結晶基板1上に、シヨツト
キゲート電極20の下方において浅い動作層1
5、ソース電極22並びにゲート・ソース電極間
の下方において深い動作層13、ドレイン電極2
3並びにゲート・ドレイン電極間の下方において
深い動作層14を設けたMESFETである。この
ような構造のMESFETは、ゲート・ソース間抵
抗およびゲート・ドレイン間抵抗が小さくgmが
大きいすぐれたものであると同時に、以下に詳細
に説明するように、本発明による製造方法によれ
ば容易に歩留り良く製造できるものである。
FIG. 3 shows a shallow active layer 1 on a semiconductor crystal substrate 1 below a shot gate electrode 20.
5. Source electrode 22, deep active layer 13 below between the gate and source electrodes, and drain electrode 2
3 and a deep active layer 14 below between the gate and drain electrodes. MESFETs with such a structure are excellent in that they have low gate-source resistance and gate-drain resistance and large gm, and at the same time, can be easily manufactured using the manufacturing method of the present invention, as will be explained in detail below. It can be manufactured with high yield.

第4−a図〜第4−e図は、本発明による
MESFETの製造工程を説明するための断面図で
ある。
Figures 4-a to 4-e are according to the present invention.
FIG. 3 is a cross-sectional view for explaining the manufacturing process of MESFET.

まず第4図aに示したごとく、高比抵抗、また
は半絶縁性半導体結晶基板1の表面に一導電型の
半導体結晶層11を形成する。このとき11の厚
さ、キヤリア濃度は第(1)式よりVpが所望の値と
なるよう定める。11の作成法は気相エピタキシ
ヤル法、液相エピタキシヤル法、あるいは半絶縁
性基板1へ不純物をイオン注入する方法等のいず
れを用いても良い。
First, as shown in FIG. 4a, a semiconductor crystal layer 11 of one conductivity type is formed on the surface of a high resistivity or semi-insulating semiconductor crystal substrate 1. As shown in FIG. At this time, the thickness and carrier concentration of 11 are determined from equation (1) so that Vp becomes a desired value. The manufacturing method 11 may be a vapor phase epitaxial method, a liquid phase epitaxial method, or a method of ion-implanting impurities into the semi-insulating substrate 1.

例えばGaAs半絶縁性結晶基板へ28Si+をイオン
注入して、ピンチオフ電圧0ボルト(ノーマリオ
フ)の動作層を得るには、28Si+の注入量を5.5×
1011ドーズ/cm2、加速電圧120KeVで注入するの
が、その一例である。(ただし活性化率100%)こ
のときの深さ方向に対するキヤリア濃度分布を図
10中の23の実線で示した。
For example, in order to obtain an active layer with a pinch-off voltage of 0 volts (normally off) by ion-implanting 28 Si + into a GaAs semi-insulating crystal substrate, the amount of 28 Si + implanted should be 5.5×
An example is implantation at a dose of 10 11 /cm 2 and an accelerating voltage of 120 KeV. (However, the activation rate was 100%) The carrier concentration distribution in the depth direction at this time is shown by the solid line 23 in FIG.

次に上記結晶層11の表面に、第4図bに示す
ように、ストライプ状の注入マスク12を形成す
る。12の材料としてはSiO2が適当であるが、
イオン注入の選択マスクとして用い得る材料で、
容易に形成、はく離できるものであれば他のもの
であつても良い。次に12をマスク材として先に
形成された結晶層11と同一の導電型となる不純
物をイオン注入、または熱拡散法で結晶基板中に
導入し、深い動作層13,14を形成する。
Next, a striped implantation mask 12 is formed on the surface of the crystal layer 11, as shown in FIG. 4b. SiO 2 is suitable as the material for 12, but
A material that can be used as a selective mask for ion implantation.
Other materials may be used as long as they can be easily formed and peeled off. Next, using 12 as a mask material, impurities having the same conductivity type as the previously formed crystal layer 11 are introduced into the crystal substrate by ion implantation or thermal diffusion to form deep active layers 13 and 14.

前記深い動作層13,14をイオン注入で行う
ときの条件としては、浅い動作層11よりも深く
注入するために注入エネルギが浅い動作層11の
注入に用いたエネルギよりも大きく、かつ注入量
は最終ピークキヤリア濃度が動作層11のピーク
キヤリア濃度に比べて極度に過大にならないよう
な値に選択するのが好ましい。これはゲートに印
加される電圧によつて降服破壊が生じないように
するためである。このような注入条件の一例とし
て、注入エネルギを400KeV、注入量を1.07×
1012ドーズ/cm2の値に選択した場合のキヤリア密
度分布の理論値を第10図の破線24で例示す
る。12によつてマスクされない部分13,14
の濃度は1回目の浅いイオン注入による濃度に2
回目の深いイオン注入による濃度を加算した値と
なり、その分布は第5図の一点破線25で例示さ
れる。
The conditions for implanting the deep active layers 13 and 14 by ion implantation are that the implantation energy is greater than the energy used for implanting the shallow active layer 11 in order to implant the deep active layer 11 deeper than the shallow active layer 11, and the implantation amount is It is preferable to select a value such that the final peak carrier concentration is not extremely excessive compared to the peak carrier concentration of the active layer 11. This is to prevent breakdown from occurring due to the voltage applied to the gate. As an example of such implantation conditions, the implantation energy is 400KeV and the implantation amount is 1.07×
The theoretical value of the carrier density distribution when a value of 10 12 dose/cm 2 is selected is illustrated by the broken line 24 in FIG. Parts 13, 14 not masked by 12
The concentration of is 2 times higher than that of the first shallow ion implantation.
This value is obtained by adding the concentration obtained by the deep ion implantation of the second time, and its distribution is illustrated by the dashed line 25 in FIG.

第10図より明らかなように、ピンチオフ電圧
を与える主要な動作層15内のキヤリア総数に比
べて、深い動作層13,14のキヤリア総数は約
3倍大きく、従つて動作層13,14が、15と
全く同一に形成された従来法の第1図における場
合と比較すると、本方法では少なくともゲート・
ソース間抵抗は1/3以下に低減できる。13,1
4あるいは15がイオン注入で形成される場合に
は、次に、これらイオン注入層の活性化を目的と
したアニールを行う。この際、結晶基板が
GaAs、InPなどの化学物半導体である場合には、
As圧またはP圧制御によりアニールを実施する
などの表面劣化防止に留意しながら700〜850℃、
数10分間のアニールを行う。
As is clear from FIG. 10, the total number of carriers in the deep active layers 13 and 14 is about three times larger than the total number of carriers in the main active layer 15 that provides the pinch-off voltage, so that the active layers 13 and 14 Compared to the case of the conventional method shown in FIG.
Source-to-source resistance can be reduced to less than 1/3. 13,1
When layers 4 and 15 are formed by ion implantation, annealing is then performed for the purpose of activating these ion implanted layers. At this time, the crystal substrate
In the case of chemical semiconductors such as GaAs and InP,
700 to 850℃ while taking care to prevent surface deterioration by performing annealing by controlling As pressure or P pressure.
Anneal for several 10 minutes.

次にAuの薄膜16,17,18を真空蒸着に
よつて基板全面に形成する(第4図c)。この薄
膜16,17,18は、図示の通りマスク12に
比べて薄くなつていることが必要である。また、
この薄い膜16〜18は蒸着により形成されるの
で、マスク12の側壁にはAuが付着することは
ない。従つて、後のリフトオフを容易かつ歩留り
よく行なうことができる。
Next, thin films 16, 17, and 18 of Au are formed on the entire surface of the substrate by vacuum evaporation (FIG. 4c). The thin films 16, 17, and 18 need to be thinner than the mask 12, as shown. Also,
Since the thin films 16 to 18 are formed by vapor deposition, Au does not adhere to the sidewalls of the mask 12. Therefore, subsequent lift-off can be performed easily and with high yield.

その後SiO2膜12をHF系エツチセントで除去
することにより同時にSiO2膜12の上のAu17
をリフトオフによつて除去すると、第4図dに示
したごとくSiO212のパターンに対して反転し
たAuのパターン16,18が得られる。
After that, by removing the SiO 2 film 12 with HF-based etchant, the Au 17 on the SiO 2 film 12 is removed at the same time.
When removed by lift-off, Au patterns 16 and 18 are obtained which are inverted with respect to the SiO 2 pattern 12, as shown in FIG. 4d.

しかる後、シヨツトキゲート電極となるべき金
属、例えばAl19,20,21を第4図eのよ
うに全面に蒸着する。このAl19〜21につい
ては、図示の通り薄い膜16,17に比べて更に
薄くなつていることが必要である。また、このシ
ヨツトキゲート金属としては、前述の薄い膜16
〜18の構成材料と別個に(選択的に)エツチン
グできる材料であることが必要である。
Thereafter, a metal to be used as a shot gate electrode, for example Al 19, 20, 21, is deposited on the entire surface as shown in FIG. 4e. These Al 19 to 21 need to be thinner than the thin films 16 and 17 as shown in the figure. In addition, as this shot gate metal, the thin film 16 mentioned above is used.
It is necessary that the material can be etched separately (selectively) from the constituent materials of ~18.

次にAu16,18をヨード系エツチヤントで
除去すると同時に16,18の上のAl19,2
1をリフトオフで除去すると、第4図fのごと
く、Alのシヨツトキゲート電極20が、浅い動
作層15の真上に正確に同一位置に形成される。
Next, Au16,18 is removed with an iodine etchant, and at the same time Al19,2 on top of 16,18 is removed.
1 is removed by lift-off, an Al shot gate electrode 20 is formed directly above the shallow active layer 15 at exactly the same position as shown in FIG. 4f.

もし、シヨツトキゲート電極20が、正確に位
置合わせができずに、位置ずれを生じると浅い動
作層の一部にシヨツトキゲート電極が存在しない
部分が生じるため、この部分の直列抵抗が大とな
る欠点を生じる。しかしながら本方法ではセルフ
アラインであるため位置ずれは、本質的に生じな
いという長所を有している。
If the shot gate electrode 20 cannot be accurately aligned and misaligns, there will be a part of the shallow active layer where the shot gate electrode does not exist, resulting in a disadvantage that the series resistance of this part will be large. . However, this method has the advantage that positional displacement essentially does not occur because it is self-aligned.

次に、通常の良く知られた方法で、ソース電極
22、ドレイン電極23を形成すると第3図に示
すMESFETが出来上る。
Next, a source electrode 22 and a drain electrode 23 are formed by a commonly known method to complete the MESFET shown in FIG.

本発明は以上の図面にもとづいて説明した内容
に限定されるものではなく、本発明の目的は、
GaAs,InP,Siなどの多くの半導体結晶を用い
て達成しうるものであり、特に一つの半導体結晶
のみに限定したものでない。またマスク等の材料
も本発明の意図を変えずに任意に選択し得る。
The present invention is not limited to the content explained based on the above drawings, and the purpose of the present invention is to
This can be achieved using many semiconductor crystals such as GaAs, InP, and Si, and is not limited to only one semiconductor crystal. Moreover, the material of the mask etc. can be arbitrarily selected without changing the intention of the present invention.

以上述べた如く、本発明によれば、ゲート・ソ
ース間の直列抵抗が小さく、gmの大きな
MESFETが容易に、かつ簡単な工程で、歩留り
よく作成できる。
As described above, according to the present invention, the series resistance between the gate and source is small and the gm is large.
MESFETs can be easily created with a simple process and a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来法によるシヨツトキゲー
ト電界効果トランジスタの断面図であり、第3図
は本発明のシヨツトキゲート電界効果トランジス
タの断面図であり、第4図a〜第4図fは本発明
による製造工程を示すための断面構造図あり、第
5図は本発明による動作層のキヤリア濃度分布を
示すための図である。 図中1は半導体結晶基板、2,8,9,10は
動作層、3,20はシヨツトキゲート電極、4,
22はソース電極、5,23はドレイン電極、1
3,14は深い動作層、15は浅い動作層、12
はストライプ状マスク、16,18は反転マスク
である。
1 and 2 are cross-sectional views of a short-gate field effect transistor according to the conventional method, FIG. 3 is a cross-sectional view of a short-gate field effect transistor of the present invention, and FIGS. 4a to 4f are cross-sectional views of a short-gate field effect transistor of the present invention. FIG. 5 is a diagram showing the carrier concentration distribution of the active layer according to the present invention. In the figure, 1 is a semiconductor crystal substrate, 2, 8, 9, 10 are active layers, 3, 20 are shot gate electrodes, 4,
22 is a source electrode, 5 and 23 are drain electrodes, 1
3 and 14 are deep operating layers, 15 are shallow operating layers, 12
is a striped mask, and 16 and 18 are inverted masks.

Claims (1)

【特許請求の範囲】 1 半絶縁性の半導体基板の一主面に一導電型の
第1の半導体層を、ピンチオフ電圧が所望の値と
なるように、その厚さ、キヤリア濃度を選択して
形成する工程と、 ストライプ状の所定厚さのマスクパターンを前
記第1の半導体層上に形成する工程と、 前記マスクパターンをマスクとして、前記第1
の半導体層と同一の導電型を与える不純物を選択
的にイオン注入または熱拡散法により導入するこ
とにより、前記マスクパターンの半導体層の両側
に第2の半導体層を形成する工程と、 前記マスクパターンよりも薄いメタル層を蒸着
により形成し、前記マスクパターンを除去してそ
の上の前記メタル層を除去することにより、前記
マスクパターンに対して正確に反転した前記メタ
ル層による反転パターンを形成する工程と、 前記メタル層との間で選択的な除去が可能なシ
ヨツトキゲート金属を前記反転パターンよりも薄
く蒸着する工程と、 前記反転パターンを除去することにより、リフ
トオフによつて、前記第1の半導体層上に位置し
たシヨツトキゲート電極を形成する工程と、 第2の半導体層上にソースおよびドレイン電極
を形成する工程とを含むことを特徴とする電界効
果トランジスタの製造方法。
[Claims] 1. A first semiconductor layer of one conductivity type is formed on one main surface of a semi-insulating semiconductor substrate, and its thickness and carrier concentration are selected so that the pinch-off voltage becomes a desired value. forming a striped mask pattern with a predetermined thickness on the first semiconductor layer; and using the mask pattern as a mask,
forming a second semiconductor layer on both sides of the semiconductor layer of the mask pattern by selectively introducing impurities that give the same conductivity type as the semiconductor layer of the mask pattern by ion implantation or thermal diffusion; forming a thinner metal layer by vapor deposition, removing the mask pattern and removing the metal layer thereon, thereby forming an inverted pattern of the metal layer that is accurately inverted with respect to the mask pattern; and depositing a shot gate metal that can be selectively removed between the metal layer and the metal layer to be thinner than the inversion pattern, and removing the inversion pattern to form the first semiconductor layer by lift-off. A method of manufacturing a field effect transistor, comprising the steps of: forming an overlying short gate electrode; and forming source and drain electrodes on a second semiconductor layer.
JP6300081A 1981-01-29 1981-04-24 Field effect transistor and manufacture thereof Granted JPS57177572A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6300081A JPS57177572A (en) 1981-04-24 1981-04-24 Field effect transistor and manufacture thereof
DE8282300499T DE3273695D1 (en) 1981-01-29 1982-01-29 A schottky-barrier gate field effect transistor and a process for the production of the same
EP82300499A EP0057605B1 (en) 1981-01-29 1982-01-29 A schottky-barrier gate field effect transistor and a process for the production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6300081A JPS57177572A (en) 1981-04-24 1981-04-24 Field effect transistor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS57177572A JPS57177572A (en) 1982-11-01
JPH024137B2 true JPH024137B2 (en) 1990-01-26

Family

ID=13216609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6300081A Granted JPS57177572A (en) 1981-01-29 1981-04-24 Field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS57177572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204913A (en) * 2006-02-02 2007-08-16 Groz Beckert Kg System component for knitting system and method for treating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816247B1 (en) 2006-02-02 2008-11-26 Groz-Beckert KG System component for a knitting system, and handling process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012985A (en) * 1973-06-01 1975-02-10
JPS535581A (en) * 1976-07-06 1978-01-19 Toshiba Corp Schottky gate type field effect transistor
JPS53143177A (en) * 1977-05-20 1978-12-13 Hitachi Ltd Production of field effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012985A (en) * 1973-06-01 1975-02-10
JPS535581A (en) * 1976-07-06 1978-01-19 Toshiba Corp Schottky gate type field effect transistor
JPS53143177A (en) * 1977-05-20 1978-12-13 Hitachi Ltd Production of field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204913A (en) * 2006-02-02 2007-08-16 Groz Beckert Kg System component for knitting system and method for treating the same

Also Published As

Publication number Publication date
JPS57177572A (en) 1982-11-01

Similar Documents

Publication Publication Date Title
US4343082A (en) Method of making contact electrodes to silicon gate, and source and drain regions, of a semiconductor device
JPS63263770A (en) Gaas mesfet and manufacture of the same
JPH048943B2 (en)
US4601095A (en) Process for fabricating a Schottky-barrier gate field effect transistor
USRE32613E (en) Method of making contact electrodes to silicon gate, and source and drain regions, of a semiconductor device
JPH024137B2 (en)
GB2074374A (en) Method of making field effect transistors
JPH03101169A (en) Method of making semiconductor device
JPS58124276A (en) Schottky gate field effect transistor and manufacture thereof
US4694563A (en) Process for making Schottky-barrier gate FET
US4621415A (en) Method for manufacturing low resistance sub-micron gate Schottky barrier devices
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
US5888890A (en) Method of manufacturing field effect transistor
JPS58123778A (en) Schottky gate field-effect transistor and its manufacture
JPS58123777A (en) Schottky gate field-effect transistor and its manufacture
JPS6336151B2 (en)
JP2707436B2 (en) Method for manufacturing field effect transistor
JPH0434821B2 (en)
JPS6086871A (en) Manufacture of field effect transistor
JPS6347982A (en) Semiconductor device
JPS61265870A (en) Manufacture of field effect transistor
JPS58124277A (en) Manufacture of schottky gate type field effect transistor
JPH0439772B2 (en)
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPS59181066A (en) Manufacture of semiconductor device