JPS63161625A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPS63161625A
JPS63161625A JP31139386A JP31139386A JPS63161625A JP S63161625 A JPS63161625 A JP S63161625A JP 31139386 A JP31139386 A JP 31139386A JP 31139386 A JP31139386 A JP 31139386A JP S63161625 A JPS63161625 A JP S63161625A
Authority
JP
Japan
Prior art keywords
insulating film
effect transistor
substrate
film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31139386A
Other languages
Japanese (ja)
Other versions
JPH07111979B2 (en
Inventor
Toshiharu Tanpo
反保 敏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31139386A priority Critical patent/JPH07111979B2/en
Publication of JPS63161625A publication Critical patent/JPS63161625A/en
Publication of JPH07111979B2 publication Critical patent/JPH07111979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To relax the stress of a substrate interface, and to improve yield by changing film quality toward the surface from the substrate interface during the deposition of a film. CONSTITUTION:An ion implantation layer 2 is formed onto the surface of a GaAs semi-insulating substrate 1, and a PCVD-SiN film 3 is deposited onto the surface of the GaAs substrate. An ohmic electrode 4 and a gate electrode 5 for source-drain are shaped, thus completing a field-effect transistor FET. The quality of the insulating film 3 is changed to film thickness. Accordingly, the adhesion of the substrate and the insulating film is intensified, stress in the vicinity of the surface of the substrate is relaxed, no crack is generated, the uniformity of element characteristics in a wafer surface is improved, and the yield of a semiconductor device is enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電界効果トランジスタ(FET)の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing field effect transistors (FETs).

従来の技術 従来、電極間分離膜や層間絶縁膜に用いられている膜は
、堆積中に膜質を変えて堆積しない。
BACKGROUND OF THE INVENTION Conventionally, films used for interelectrode separation films and interlayer insulating films do not change their film quality during deposition.

発明が解決しようとする問題点 従来の方法では、膜の熱膨張係数と基板のそれが相異な
るため、基板表面附近にストレスがはいリ、製造工程中
クランクの発生や基板上の各素子に悪影響を及ぼすとい
う問題点がある。
Problems that the invention aims to solve In conventional methods, the coefficient of thermal expansion of the film is different from that of the substrate, which creates stress near the surface of the substrate, causing cranking during the manufacturing process and adversely affecting each element on the substrate. There is a problem that it causes

問題点を解決するための手段 本発明は、これらの問題から、膜堆積中に基板界面から
表面に向って膜質を変化させることにより、基板界面の
ストレスを緩和するものである。
Means for Solving the Problems The present invention solves these problems by changing the film quality from the substrate interface toward the surface during film deposition, thereby alleviating the stress at the substrate interface.

作  用 本発明の半導体装置の製造方法により、基板と絶縁膜と
の密着が強くなり、基板表面附近のストレスが緩和され
、クラックの発生がなくなり、ウェハ面内の素子特性の
均一性が高まり、半導体装置の歩留りが向上する。
Effect: The semiconductor device manufacturing method of the present invention strengthens the adhesion between the substrate and the insulating film, relieves stress near the substrate surface, eliminates the occurrence of cracks, and increases the uniformity of device characteristics within the wafer surface. The yield of semiconductor devices is improved.

実施例 以下本発明の一実施例を説明する。Example An embodiment of the present invention will be described below.

第1図は、GaAs電界効果トランジスタ(GaABF
 E T )の製造工程図である。第1図aにおいてG
 a A s半絶縁性基板10表面にフォトリソ技術と
イオン注入技術を用い、イオン注入層2を形成する。第
1図すにおいてGaAs基板表面上にPCVD−3iN
膜3を堆積する。第1図Cにおいて、ソース・ドレイン
のオーミック電極4.ゲート電極5を形成し、FETが
完成する。
Figure 1 shows a GaAs field effect transistor (GaABF).
ET) is a manufacturing process diagram. In Figure 1a, G
The ion implantation layer 2 is formed on the surface of the a As semi-insulating substrate 10 using photolithography and ion implantation techniques. In Figure 1, PCVD-3iN was deposited on the surface of the GaAs substrate.
Deposit film 3. In FIG. 1C, source/drain ohmic electrodes 4. A gate electrode 5 is formed, and the FET is completed.

従来PCVD−5iN模3の膜質はSi/N =0.7
〜0.75で膜厚に対してほぼ一定である。
The film quality of conventional PCVD-5iN model 3 is Si/N = 0.7
~0.75, which is almost constant with respect to film thickness.

本発明では、この絶縁膜の膜質を膜厚に対して変化させ
ることを特徴としている。
The present invention is characterized in that the film quality of this insulating film is changed depending on the film thickness.

第2図は、半絶縁性Ga A s基板上にプラズマCV
 D −S i N膜(PCVD−8iN膜)を堆ff
1t、り場合t7) PCVD−8i N 膜中(7)
 S i 、 N 、Ot7)量ヲ百分率表示した図で
ある。この図は、SiN堆積に用いられるS t H4
,NH3の全流量を108C;CM から11005C
Cまで連続に増加させ、1oovv。
Figure 2 shows plasma CV on a semi-insulating GaAs substrate.
Deposition of D-SiN film (PCVD-8iN film)
1t, t7) PCVD-8i N film (7)
It is a diagram showing the amount of S i , N , Ot7) as a percentage. This figure shows S t H4 used for SiN deposition.
, the total flow rate of NH3 from 108C; CM to 11005C
Continuously increase to C, 1oovv.

0.3 torrで堆積した場合である。堆積膜厚は4
200人で、G a A s基板との界面では比較的酸
素0の量が多く、表面附近では非常にその量は減少して
いる。SiN膜はG a A ts基板に対して圧縮応
力となりその量はes x 1o  dyn/c++1
である一方酸素量が多い界面附近では5t−0−N膜で
あり、この場合G a A s基板に対して2 X 1
0 dyn/ caと小さな引張応力となり、全膜厚で
は、G a A s基板に対して応力がほとんどかから
ないようになる。
This is the case where deposition was performed at 0.3 torr. Deposited film thickness is 4
200 people, the amount of oxygen 0 is relatively large at the interface with the GaAs substrate, but the amount decreases significantly near the surface. The SiN film exerts compressive stress on the Ga Ats substrate, and the amount of stress is es x 1o dyn/c++1
On the other hand, near the interface where the amount of oxygen is high, it is a 5t-0-N film, and in this case, the film is 2×1 for the GaAs substrate.
The tensile stress is as small as 0 dyn/ca, and almost no stress is applied to the GaAs substrate at the full film thickness.

今回5tH4,NH3の全流量で行なった場合を述べた
が、デポ時の圧力を高圧から低圧に変化させた場合、プ
ラズマ電界(パワー)を低電界から高電界に変化させた
場合、基板温度を低温から高温に変化させた場合も同様
、絶縁膜の堆積速度が〜100へ/諧から〜500人/
mm  の変化であれば、堆積した絶縁膜は、第1図に
示す絶縁膜が形成される。
This time we have described the case where the full flow rate of 5tH4 and NH3 was used, but if the pressure at the time of deposition is changed from high pressure to low pressure, and if the plasma electric field (power) is changed from low electric field to high electric field, the substrate temperature will change. Similarly, when changing from low temperature to high temperature, the deposition rate of the insulating film increases from ~100/scale to ~500/
If the change is in mm 2 , the deposited insulating film will form the insulating film shown in FIG.

第3図は、SiN  膜による基板のそり(たわみ)を
2インチウニ・・の中心を基準にして表わした図である
。第2図より、従来のPCVD−8iN膜の場合に比べ
本発明の実施例の場合の方が、そりが小さいことがわか
る。従来のそりは、半導体装置を製造する上で、フォト
リングラフィによる不均一性を生み、半導体装置の歩留
りを悪化させる。このため基板のたわみはできるだけ少
ない方がよい。
FIG. 3 is a diagram showing the warp (deflection) of the substrate caused by the SiN film with the center of a 2-inch sea urchin as a reference. From FIG. 2, it can be seen that the warpage is smaller in the case of the example of the present invention than in the case of the conventional PCVD-8iN film. Conventional warpage causes non-uniformity due to photolithography in manufacturing semiconductor devices, which deteriorates the yield of semiconductor devices. For this reason, it is better to minimize the deflection of the substrate.

第4図は、SiN膜による基板上のFETの閾値電圧V
ヤ、を2インチウェハの中心を基準にして表わした図で
ある。第3図より、従来のPCVD−8iN膜の場合に
比べ本発明の実施例の場合の方が、■や。
Figure 4 shows the threshold voltage V of an FET on a substrate made of a SiN film.
FIG. From FIG. 3, it can be seen that compared to the case of the conventional PCVD-8iN film, the case of the embodiment of the present invention is .

の変化は小さいことがわかる。It can be seen that the change in is small.

発明の効果 以上のように本発明によれば、基板と絶縁膜との密着が
強くなり、基板表面附近のストレスが緩和され、クラッ
クの発生がなくなり、ウエノ・面内の素子特性の均一性
が高まり、半導体装置の歩留りが向上した。
Effects of the Invention As described above, according to the present invention, the adhesion between the substrate and the insulating film is strengthened, the stress near the substrate surface is alleviated, the occurrence of cracks is eliminated, and the uniformity of device characteristics within the surface of the wafer is improved. As a result, the yield of semiconductor devices has improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における電界効果トランジス
タの製造工程を示す断面図、第2図は半絶縁性G a 
A s基板上にプラズマCV D −S i N嘆(P
CVD−3i N 膜) ヲ堆積シタ場合ノPCVD−
3i N膜中のSi、N、Oの量を百分率表示した特性
図、第3図はSiN 膜により基板のそり(たわみ)を
表わした特性図、第4図はSiN 膜による基板上のF
ETの閾値電圧v+hの分布を表わした特性図である。 1・・・・・・G a A s半絶縁性基板、2・・・
・・・イオン注入層、3・・・・・・SiN 絶縁膜、
4,6・・・・・・電極。 、i −) z し’l  (Atomic  Con
ctrtret:onls)T ; : :
FIG. 1 is a cross-sectional view showing the manufacturing process of a field effect transistor according to an embodiment of the present invention, and FIG.
Plasma CVD-S iN (P
CVD-3i N film) PCVD-
3i Characteristic diagram showing the amounts of Si, N, and O in the N film as percentages. Figure 3 is a characteristic diagram showing the warping (deflection) of the substrate due to the SiN film. Figure 4 is the characteristic diagram showing the warping (deflection) of the substrate due to the SiN film.
FIG. 3 is a characteristic diagram showing the distribution of threshold voltage v+h of ET. 1...G a As semi-insulating substrate, 2...
...Ion implantation layer, 3...SiN insulating film,
4, 6... Electrode. , i −) z し'l (Atomic Con
ctrtret:onls)T ; : :

Claims (6)

【特許請求の範囲】[Claims] (1)半導体の一主面に、一導電型の第1の半導体層を
形成する工程と、前記第1の半導体層をはさんで前記第
1の半導体と同一導電型の高濃度の第2の半導体層を形
成する工程と、前記第1、第2の半導体層表面に被着条
件を連続的に変化させた絶縁膜を被着させる工程と、ゲ
ート部にショットキ電極を、ソースドレイン部にオーミ
ック電極を形成する工程とを含んでなる電界効果トラン
ジスタの製造方法。
(1) A step of forming a first semiconductor layer of one conductivity type on one main surface of the semiconductor, and a second semiconductor layer of high concentration of the same conductivity type as the first semiconductor layer sandwiching the first semiconductor layer. a step of depositing an insulating film on the surfaces of the first and second semiconductor layers under successively changing deposition conditions; and a step of forming a Schottky electrode on the gate portion and a Schottky electrode on the source/drain portion. A method for manufacturing a field effect transistor, comprising the step of forming an ohmic electrode.
(2)絶縁膜形成時の、一雰囲気中のガスの圧力を高圧
から低圧に連続的に減圧する特許請求の範囲第1項記載
の電界効果トランジスタの製造方法。
(2) The method for manufacturing a field effect transistor according to claim 1, wherein the pressure of a gas in an atmosphere is continuously reduced from high pressure to low pressure during the formation of the insulating film.
(3)絶縁膜形成時のプラズマ電界のパワーを低電界か
ら高電界に連続的にパワーを上昇させる特許請求の範囲
第1項記載の電界効果トランジスタの製造方法。
(3) The method for manufacturing a field effect transistor according to claim 1, wherein the power of the plasma electric field during the formation of the insulating film is continuously increased from a low electric field to a high electric field.
(4)絶縁膜形成時のガスの全流量を連続的に増加させ
る特許請求の範囲第1項記載の電界効果トランジスタの
製造方法。
(4) The method for manufacturing a field effect transistor according to claim 1, wherein the total flow rate of gas during the formation of the insulating film is continuously increased.
(5)絶縁膜形成時の基板温度を低温から連続的に高く
する特許請求の範囲第1項記載の電界効果トランジスタ
の製造方法。
(5) The method for manufacturing a field effect transistor according to claim 1, wherein the substrate temperature is raised continuously from a low temperature during the formation of the insulating film.
(6)絶縁膜形成時の絶縁膜堆積速度を〜100Å/m
inから〜500Å/minまで連続的に速くする特許
請求の範囲第1項記載の電界効果トランジスタの製造方
法。
(6) Insulating film deposition rate during insulating film formation ~100 Å/m
2. The method of manufacturing a field effect transistor according to claim 1, wherein the speed is continuously increased from in to ~500 Å/min.
JP31139386A 1986-12-25 1986-12-25 Method for manufacturing field effect transistor Expired - Fee Related JPH07111979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31139386A JPH07111979B2 (en) 1986-12-25 1986-12-25 Method for manufacturing field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31139386A JPH07111979B2 (en) 1986-12-25 1986-12-25 Method for manufacturing field effect transistor

Publications (2)

Publication Number Publication Date
JPS63161625A true JPS63161625A (en) 1988-07-05
JPH07111979B2 JPH07111979B2 (en) 1995-11-29

Family

ID=18016644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31139386A Expired - Fee Related JPH07111979B2 (en) 1986-12-25 1986-12-25 Method for manufacturing field effect transistor

Country Status (1)

Country Link
JP (1) JPH07111979B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248179A (en) * 1987-04-02 1988-10-14 Nec Corp Semiconductor device
WO2007091301A1 (en) * 2006-02-07 2007-08-16 Fujitsu Limited Semiconductor device and process for producing the same
JP2007311464A (en) * 2006-05-17 2007-11-29 Fujitsu Ltd Compound semiconductor device and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248179A (en) * 1987-04-02 1988-10-14 Nec Corp Semiconductor device
WO2007091301A1 (en) * 2006-02-07 2007-08-16 Fujitsu Limited Semiconductor device and process for producing the same
US7960763B2 (en) 2006-02-07 2011-06-14 Fujitsu Limited Semiconductor device and method of manufacturing the same
US8163653B2 (en) 2006-02-07 2012-04-24 Fujitsu Limited Semiconductor device and method of manufacturing the same
US8227838B2 (en) 2006-02-07 2012-07-24 Fujitsu Limited Semiconductor device and method of manufacturing the same
US8399361B2 (en) 2006-02-07 2013-03-19 Fujitsu Limited Semiconductor device and method of manufacturing the same
JP2007311464A (en) * 2006-05-17 2007-11-29 Fujitsu Ltd Compound semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JPH07111979B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
JPH0640550B2 (en) Method of manufacturing thin film transistor
US7172935B2 (en) Method of forming multiple gate insulators on a strained semiconductor heterostructure
JPH046835A (en) Compound semiconductor device
JPS63161625A (en) Manufacture of field-effect transistor
JPH02228042A (en) Manufacture of thin film semiconductor device
JPS6353711B2 (en)
JPS59188978A (en) Manufacture of schottky gate type field effect transistor
JPS6354228B2 (en)
JPH05291220A (en) Manufacture of semiconductor device
JPS6236874A (en) Semiconductor device
JPH0544194B2 (en)
JPH04243166A (en) Thin film transistor and manufacture thereof
KR940001021B1 (en) Mos transistor with p-type conductivity gate and manufacturing method thereof
JPS63250863A (en) Field-effect semiconductor device
JPS6347979A (en) Thin film transistor
JPH03188632A (en) Semiconductor device
JPS59165460A (en) Semiconductor device and manufacture thereof
JPS60263437A (en) Manufacture of thin film transistor
JPS63228760A (en) Manufacture of semiconductor device
JPS6190470A (en) Manufacture of compound semiconductor device
JPS628573A (en) Semiconductor device and manufacture thereof
JPH0447970B2 (en)
JPS6216520A (en) Manufacture of semiconductor device
JPH04236424A (en) Semiconductor wafer provided with insulating film and manufacture thereof
JPH01106470A (en) Thin film transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees