JPS5935479A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5935479A
JPS5935479A JP14737882A JP14737882A JPS5935479A JP S5935479 A JPS5935479 A JP S5935479A JP 14737882 A JP14737882 A JP 14737882A JP 14737882 A JP14737882 A JP 14737882A JP S5935479 A JPS5935479 A JP S5935479A
Authority
JP
Japan
Prior art keywords
film
insulating film
layer
mask
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14737882A
Other languages
Japanese (ja)
Inventor
Yasuo Nemoto
根本 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14737882A priority Critical patent/JPS5935479A/en
Publication of JPS5935479A publication Critical patent/JPS5935479A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To obtain an FET having a high gate withstand voltage by a method wherein an ion implanted layer is formed on a semiconductor substrate and is covered with an insulating film, a column type insulating film having an overhang type insulating film is provided thereon, and drain.source regions are formed by self-alignment according to ion implantation through the ion implanted layer using the overhang type insulating film as the mask. CONSTITUTION:The Si ion implanted layer 3 is formed in the surface layer of the semiinsulating GaAs substrate 1, the whole surface is covered with the AlN film 4, and an SiO2 film 5 and an Si3N4 film 6 are laminated to be adhered thereon. Then dry etching is performed to form the film 5 into the columnar film 7 at the central part, and to form the film 8 consisting of the film 6 in the overhang type, Si ions are implanted through the film 4 using the overhang type film as the mask, and the drain region 9 and the source region 10 of high impurity concentration are provided by selfalignment. After then, an Si3N4 film 11 is adhered on the whole surface, the films 8, 7 being made unnecessary are removed together with the film 11 adhered thereon, the film 4 in a generated opening 13 is also removed, a gate electrode 14 is provided on the exposed layer 3, and a drain electrode 15 an a source electrode 16 and fixed respectively to the regions 9, 10 interposing the films 4 between them.

Description

【発明の詳細な説明】 (al  発明の技術分野 本発明は半導体装置の製造方法に係り、特に、所望のゲ
ート耐圧を得ることの出来るセルフアライメント方式に
よる電界効果型半導体装置(FET)の製造方法に関す
る。
Detailed Description of the Invention (al) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and in particular, a method for manufacturing a field effect semiconductor device (FET) using a self-alignment method that can obtain a desired gate breakdown voltage. Regarding.

(b)  従来技術と問題点 半導体装置の動作周波数或いは動作速度を高めるために
、半導体装置のパターンはますます微細化されている。
(b) Prior Art and Problems In order to increase the operating frequency or operating speed of semiconductor devices, the patterns of semiconductor devices are becoming increasingly finer.

この微細パターンを形成する方法として、セルフアライ
メント(自己整合)方式が半導体装置の製造工程におい
て多く用いられている。
As a method for forming this fine pattern, a self-alignment method is often used in the manufacturing process of semiconductor devices.

MES  FET、或いはMIS  FET等のゲート
電極をセルフアライメント方式により製作する場合、従
来は通常下記の製造工程に従っていた。
When manufacturing gate electrodes of MES FETs, MIS FETs, etc. by a self-alignment method, the following manufacturing process has conventionally been followed.

即ち、ソース領域及びドレイン領域をイオン注入法によ
り形成する際に、ゲート部にイオンが注入されるのを阻
止するための金属膜と絶縁膜との二重層を設け、或いは
金属層のみを設け、これをマスフとしてイオン注入工程
を施し、ゲート電極。
That is, when forming the source region and the drain region by ion implantation, a double layer of a metal film and an insulating film is provided to prevent ions from being implanted into the gate region, or only a metal layer is provided. This was used as a mask and an ion implantation process was performed to form the gate electrode.

ソース及びドレインのコンタクト領域を形成していた。Source and drain contact regions were formed.

上記製造方法によれば、ゲート電極とソース及びドレイ
ン領域との相互位置関係は完全に自己整合され、位置ず
れを生じることはない。しかしその反面、ショットキ金
属(ゲート電極)がソース及びドレインの高濃度領域と
接触或いは近接するため、ショットキ耐圧(ゲート耐圧
)を十分に高くすることが出来ない。
According to the above manufacturing method, the mutual positional relationship between the gate electrode and the source and drain regions is completely self-aligned, and no positional deviation occurs. However, on the other hand, since the Schottky metal (gate electrode) is in contact with or close to the high concentration regions of the source and drain, the Schottky breakdown voltage (gate breakdown voltage) cannot be made sufficiently high.

(C)  発明の目的 本発明の目的は上記問題点を解消し、ゲート耐圧を十分
に高くすることが可能なセルファライン方式による電界
効果型半導体装置の製造方法を提供することにある。
(C) Object of the Invention An object of the present invention is to provide a method for manufacturing a field effect semiconductor device using a self-line method, which solves the above problems and makes it possible to sufficiently increase the gate breakdown voltage.

(d+  発明の構成 本発明の特徴は、半導体基板表面に第1の絶縁膜を形成
する工程と、該第1の絶縁膜上の所定の位置に前記第1
の絶縁膜とはエツチング材料の異なる第2の絶縁膜をオ
ーバーハング状に形成する工程と、該第2の絶縁膜をマ
スクとして前記半導体基板表面に所定の不純物を選択的
に導入する工程と、前記第1及び第2の絶縁膜のいずれ
ともエツチング材料の異なる第3の絶縁膜を前記第2の
絶縁膜の側壁部には被着せしめることなく前記第1の絶
縁膜の表面の露呈せる部分に被着せしめる工程と、前記
第2の絶縁膜を除去して前記第1の絶縁膜表面を露呈せ
しめる工程と、該開口内に首呈せる第1の絶縁膜を選択
的に除去する工程と、表出された半導体基板表面に所定
の導電材料を選択的に被着してゲート電極を形成する工
程とを含むことにある。
(d+ Structure of the Invention The present invention is characterized by a step of forming a first insulating film on the surface of a semiconductor substrate, and a step of forming the first insulating film at a predetermined position on the first insulating film.
forming an overhanging second insulating film using a different etching material from the insulating film; selectively introducing predetermined impurities into the semiconductor substrate surface using the second insulating film as a mask; A portion of the surface of the first insulating film is exposed without depositing a third insulating film made of a different etching material from both the first and second insulating films on the side wall portion of the second insulating film. a step of removing the second insulating film to expose the surface of the first insulating film; and a step of selectively removing the first insulating film extending inside the opening. , and forming a gate electrode by selectively depositing a predetermined conductive material on the exposed surface of the semiconductor substrate.

Tel  発明の実施例 以下本発明の一実施例として、GaAs  MESFE
Tを製作する例を、第1図〜第9図を用いて製造工程の
順に説明する。
Tel Embodiments of the Invention Below, as an embodiment of the present invention, GaAs MESFE
An example of manufacturing a T will be explained in the order of manufacturing steps using FIGS. 1 to 9.

〔第1図参照〕 半絶縁性のGaAs基板I上に、所定のパターンに従っ
てレジスト膜2を選択的に形成し、このレジスト膜2を
マスクとして、イオン注入法により例えばシリコン(S
i)を、注入エネルギ凡そ145〔keV)I  ドー
ズ量凡そ2.4X 1012(1012(にて注入し、
イオン注入層3を形成する。
[See Figure 1] A resist film 2 is selectively formed on a semi-insulating GaAs substrate I according to a predetermined pattern, and using this resist film 2 as a mask, silicon (S), for example, is implanted by ion implantation.
i) was implanted at an implantation energy of approximately 145 [keV] I and a dose of approximately 2.4X 1012 (1012),
An ion implantation layer 3 is formed.

〔第2図参照〕 上記マスクとして用いたレジスト膜2を除去した後、ス
バンタ法等により窒化アルミニウム(AIN)膜4を凡
そ50(nm)の厚さに形成し、その上に化学気相成長
法(CVD法)等により二酸化シリコン(5i02 )
膜5とその上に窒化シリコン(Si3 N4 )膜6を
、それぞれ凡そ300(nm)の厚さに形成する。なお
上記AIN膜4はGaAs基板1の表面を保護するため
のもので第1の絶縁膜、また5i02膜5及びS33 
N4膜6は1&述する如くオーバーハング状の第2の絶
縁膜を形成するためのものである。
[See Figure 2] After removing the resist film 2 used as the mask, an aluminum nitride (AIN) film 4 is formed to a thickness of approximately 50 (nm) by the Svanta method, and then chemical vapor deposition is performed on the aluminum nitride (AIN) film 4. silicon dioxide (5i02) by method (CVD method) etc.
A film 5 and a silicon nitride (Si3 N4) film 6 are formed thereon, each having a thickness of about 300 (nm). Note that the AIN film 4 is used to protect the surface of the GaAs substrate 1, and serves as a first insulating film, as well as the 5i02 film 5 and S33.
The N4 film 6 is for forming an overhang-shaped second insulating film as described in 1&.

〔第3図参照〕 次いでまず、例えば四弗化炭素(CFa )と水素(H
2)との混合ガスを反応ガスとするドライエツチング法
により上記Si3 N4膜6を選択的に除去して、所定
のパターンを有するSi3 N4198を形成し、更に
これをマスクとしてその下層の5f02膜5を緩衝弗酸
(バッファHF)溶液を用いて選択的に除去する。上記
緩衝弗酸溶液は等方性エツチング液であるため、残留せ
る5i02膜7はサイドエツチングされて、図示した如
く、上層の残留せるSi3N4膜8より僅かに小さい横
方向寸法を有するパターンに形成される。
[See Figure 3] Next, first, for example, carbon tetrafluoride (CFa) and hydrogen (H
The Si3 N4 film 6 is selectively removed by a dry etching method using a mixed gas with 2) as a reactive gas to form Si3 N4198 having a predetermined pattern, and using this as a mask, the underlying 5f02 film 5 is removed. is selectively removed using a buffered hydrofluoric acid (buffer HF) solution. Since the buffered hydrofluoric acid solution is an isotropic etching solution, the remaining 5i02 film 7 is side-etched and is formed into a pattern having a slightly smaller lateral dimension than the remaining Si3N4 film 8 of the upper layer, as shown in the figure. Ru.

上記5i02膜7は本実施例においてゲートパターンを
定めるものであり、Si3 N a lt’ 8はソー
ス及びドレイン領域を定めるものである。このように材
質の異なる、従ってエツチング材料の異なる2つの絶縁
膜を用い、選択エツチングを行なってまず上層の絶縁膜
を所定のパターンに形成し、次いでこれをマスクとして
その下層の絶縁膜を等方性エツチング液により処理する
ことにより、自己整合法により両者の相互位置関係を決
定し、且つ下層のパターンを上層のパターンより僅かに
小さく形成し得る。そして後述する如く、このようにオ
ーバーハング状に形成した2層の絶縁膜よりなる第2の
絶縁膜を以後の工程のマスクとして、ソ−ス及びドレイ
ン領域、並びにゲート電極を自己整合させて形成する。
The 5i02 film 7 defines the gate pattern in this embodiment, and the Si3N alt' 8 defines the source and drain regions. In this way, using two insulating films made of different materials, and thus different etching materials, selective etching is first performed to form the upper insulating film into a predetermined pattern, and then using this as a mask, the underlying insulating film is etched isotropically. By processing with a chemical etching solution, the mutual positional relationship between the two can be determined by a self-alignment method, and the pattern in the lower layer can be formed to be slightly smaller than the pattern in the upper layer. Then, as described later, the second insulating film made of the two-layer insulating film formed in an overhang shape is used as a mask for the subsequent process, and the source and drain regions and the gate electrode are formed by self-aligning. do.

〔第4図参照〕 次いで上記5i02膜7とその上のSi3N4膜8より
なる第2の絶縁膜をマスクとしてイオン注入法により、
Stを注入エネルギ凡そ350 (k eV) 。
[See FIG. 4] Next, using the 5i02 film 7 and the second insulating film made of the Si3N4 film 8 thereon as a mask, ion implantation was performed.
St was implanted at an energy of approximately 350 (keV).

ドーズ量凡そ1×1014〔cm−2〕にて注入し、2
つの高濃度領域(ドレイン領域及びソース領域)9及び
10を形成する。
Injected at a dose of approximately 1 x 1014 [cm-2],
Two high concentration regions (drain region and source region) 9 and 10 are formed.

ここで形成された2つの高濃度領域9及び10の間隔、
即ちイオン注入層3の長さは、マスクとして用いた第2
の絶縁膜の上層部9Si3N4膜8の寸法と略等しい。
The distance between the two high concentration regions 9 and 10 formed here,
That is, the length of the ion-implanted layer 3 is determined by the length of the second layer used as a mask.
The dimensions of the upper layer portion 9 of the insulating film 9 are approximately equal to the dimensions of the Si3N4 film 8.

次いで加熱処理を施して上記イオン注入層3及び高濃度
領域9.IOに注入されたイオンを活性化する。
Next, heat treatment is performed to form the ion-implanted layer 3 and the high concentration region 9. Activates the ions implanted into the IO.

〔第5図参照〕 次いでプラズマCVD法により、上記第2の絶縁膜(S
i3 N41*8及び5i02模7 )上を含むGaA
s基板上全面にSi3 N4膜(第3の絶縁膜)11を
被着せしめる。本工程において、第2の絶縁膜の上層の
5i3N4N!l!8のひさし部の下にも、新たに形成
されたSi3N4膜11は被着する。但しその厚さは図
示した如(5i02膜7 (第2の絶縁膜の基部)に近
づく程薄くなり、その形状はテーパ状となって隙間12
が形成されるが、イオン注入層3と高濃度領域9及び1
0との境界の上部は、この5t3N4膜11により被覆
される。
[See Figure 5] Next, the second insulating film (S
i3 N41*8 and 5i02 model 7) GaA including above
A Si3 N4 film (third insulating film) 11 is deposited on the entire surface of the s-substrate. In this step, the upper layer of the second insulating film is 5i3N4N! l! The newly formed Si3N4 film 11 is also deposited under the eaves 8. However, as shown in the figure, the thickness becomes thinner as it approaches the 5i02 film 7 (base of the second insulating film), and its shape becomes tapered to close the gap 12.
is formed, but the ion implantation layer 3 and high concentration regions 9 and 1
The upper part of the boundary with 0 is covered with this 5t3N4 film 11.

〔第6図参照〕 次いで上記SiO3膜7を、Si3N4膜11は侵さな
いエツチング液2例えば緩衝弗酸溶液を用いてエツチン
グを行う。前述の如(5i02膜7の側壁部には隙間1
2が存在するので、5i02膜7は側壁部より緩衝弗酸
溶液により順次エツチングされる。
[See FIG. 6] Next, the SiO3 film 7 is etched using an etching solution 2 that does not attack the Si3N4 film 11, such as a buffered hydrofluoric acid solution. As mentioned above (there is a gap 1 on the side wall of the 5i02 film 7).
2 is present, the 5i02 film 7 is sequentially etched from the side wall portion by the buffered hydrofluoric acid solution.

このように5i02膜7を選択的に除去することにより
、開口13を形成する。このとき5io2膜7上に被着
せるSi3 N4膜8及びその上に被着せるプラズマ5
i3Na m1ttも同時に除去される。
By selectively removing the 5i02 film 7 in this manner, the opening 13 is formed. At this time, the Si3N4 film 8 to be deposited on the 5io2 film 7 and the plasma 5 to be deposited thereon.
i3Na m1tt is also removed at the same time.

本工程において形成された開口13の寸法は、除去した
5i02膜8の寸法と略等しく、従ってイオン注入層3
と高濃度領域9及びIOとの境界部は露出しない。
The dimensions of the opening 13 formed in this step are approximately equal to the dimensions of the removed 5i02 film 8, and therefore the ion-implanted layer 3
The boundary between the high concentration region 9 and IO is not exposed.

なお、前記第4図の説明中に述べた加熱処理工程は、上
記第5図の工程または第6図の工程のあとに施しても良
い。
The heat treatment step described in the explanation of FIG. 4 may be performed after the step of FIG. 5 or the step of FIG. 6.

〔第7図参照〕 次いで上記開口13部で表面を露出せるAIN膜6を、
苛性カリ (KOH)のようなアルカリ溶液を用いて選
択的に除去し、イオン注入層3表面を露呈せしめる。
[See FIG. 7] Next, the AIN film 6 whose surface is exposed at the opening 13 is
The surface of the ion-implanted layer 3 is exposed by selectively removing it using an alkaline solution such as caustic potash (KOH).

〔第8図参照〕 次いで蒸着法等により上記開口13部にアルミニウム(
八1)を選択的に被着せしめ、露出せるイオン注入N3
表面とショットキ接触するゲート電極14を形成する。
[See Figure 8] Next, aluminum (
81) Ion implantation N3 to selectively deposit and expose
A gate electrode 14 is formed in Schottky contact with the surface.

このように上記ゲート電極14を第2の絶縁膜の除去跡
に形成するので、ゲート電極14はイオン注入層3と高
濃度領域9及び10との境界部とは離隔し、しかもその
相互位置関係は自己整合して形成される。
Since the gate electrode 14 is formed on the area where the second insulating film has been removed, the gate electrode 14 is separated from the boundary between the ion implantation layer 3 and the high concentration regions 9 and 10, and the mutual positional relationship between the gate electrode 14 and the ion implantation layer 3 is maintained. is formed in a self-aligned manner.

〔第9図参照〕 この後上記5t3N4膜11及びAIN膜3を選択的に
除去して高濃度領域9及び10表面に開口を設け、次い
で金・ゲルマニウム/金(AuGe/ Au)を選択的
に被着せしめて、ドレイン電極15及びシース電極16
を形成し、本実施例によるGaAs  MES  FE
Tが完成する。
[See Figure 9] After that, the 5t3N4 film 11 and the AIN film 3 are selectively removed to form openings on the surfaces of the high concentration regions 9 and 10, and then gold/germanium/gold (AuGe/Au) is selectively removed. The drain electrode 15 and the sheath electrode 16 are then deposited.
and GaAs MES FE according to this example.
T is completed.

このようにして本実施例により得られたショットキ・ゲ
ート型MES  FETは、ゲート電極14が高濃度領
域であるドレイン領域及びソース領域と接触しないので
、従来のセルフアライメント方式により製作した場合の
ようなゲート耐圧の低下を招くことがなく、しかもゲー
ト電極、並びにドレイン領域9及びソース領域10の各
部の位置を、総て自己整合して決定するセルフアライメ
ント方式の特徴をいささかも損なうことはない。
In the Schottky gate type MES FET thus obtained in this example, since the gate electrode 14 does not come into contact with the drain region and source region, which are high concentration regions, the Schottky gate type MES FET obtained in this example does not come into contact with the drain region and the source region, which are highly doped regions. This does not cause a decrease in gate breakdown voltage, and does not impair the characteristics of the self-alignment method in which the positions of the gate electrode, drain region 9, and source region 10 are all determined by self-alignment.

なお本発明は上記一実施例に限定されることなく、種々
変形して実施し得る。
Note that the present invention is not limited to the above-mentioned embodiment, and can be implemented with various modifications.

例えば、上記一実施例においてはオーバーハング状の絶
縁膜をエツチング材料の異なる2種類の絶縁膜を以て構
成し、このエソチン材料の異なることを利用して選択エ
ツチングを施すことにより下層の絶縁膜を上層より小さ
く形成した。
For example, in the embodiment described above, the overhang-shaped insulating film is composed of two types of insulating films made of different etching materials, and by performing selective etching using the different etching materials, the lower insulating film is etched into the upper layer. Made smaller.

しかしこのオーバーハング状の絶縁膜は上記一実施例の
如く上層にひさしを形成した2N構造に変えて、第10
図に示す如(上部を広く下部を狭くした逆台形状20と
しても良い。この場合には1層構造とすることも可能で
ある。
However, this overhang-shaped insulating film is changed to a 2N structure with an eaves formed on the upper layer as in the above-mentioned embodiment.
As shown in the figure, it may be an inverted trapezoidal shape 20 with a wide upper part and a narrow lower part. In this case, it is also possible to have a one-layer structure.

また半導体材料は、GaAs等化合物半導体に限定され
る必要はなく、シリコン(Si)であっても良い。
Further, the semiconductor material is not limited to a compound semiconductor such as GaAs, and may be silicon (Si).

更に半導体基板表面を保護するための保護するための第
1の絶縁膜及びオーバーハング状の第2の絶縁膜の材質
も、前記一実施例に限定されるものではなく、要はそれ
ぞれエツチング材料が異なり、選択エツチング可能な材
料の組合せであれば良い。
Furthermore, the materials of the first insulating film for protecting the surface of the semiconductor substrate and the overhanging second insulating film are not limited to the above-mentioned embodiment, and in short, the materials of each of the etching materials Any combination of materials that can be selectively etched may be used.

([1発明の詳細 な説明した如く本発明により、電界効果型半導体装置の
ゲート耐圧を十分に高くすることの出来る、セルフアラ
イメント方式の半導体装置の製造方法が提供される。
([1] Detailed Description of the Invention As described above, the present invention provides a self-alignment semiconductor device manufacturing method that can sufficiently increase the gate breakdown voltage of a field-effect semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第9図は本発明の一実施例を製造工程の順に示
す要部断面図、第10図は本発明の変形例を示す要部断
面図である。 図において、1は半導体基板、3はイオン注入層、4は
第1の絶縁膜、5は5i02膜、6はSi3N4膜、7
及び8はオーバーハング状の第2の絶縁膜を構成する5
i02膜及びSi3 N4膜、9及びlOは高濃度領域
でそれぞれドレイン領域及びソース領域、11は第3の
絶縁膜、12は隙間、13は開口、14はゲート電極、
15及び16はドレイン電極及びソース電極を示す。 、         N        0怯    
  味     法 E            r ぐ            の 法          味 区         8          〆ω  
        さ          の味    
    法         法ヒ         
 E の           0 味         涯
1 to 9 are sectional views of essential parts showing an embodiment of the present invention in the order of manufacturing steps, and FIG. 10 is a sectional view of essential parts showing a modification of the invention. In the figure, 1 is a semiconductor substrate, 3 is an ion implantation layer, 4 is a first insulating film, 5 is a 5i02 film, 6 is a Si3N4 film, and 7
and 8 constitutes an overhang-shaped second insulating film 5
i02 film and Si3 N4 film, 9 and lO are high concentration regions, drain region and source region, respectively, 11 is a third insulating film, 12 is a gap, 13 is an opening, 14 is a gate electrode,
15 and 16 indicate a drain electrode and a source electrode. , N0 fear
Taste law E rgu no law Ajiku 8 〆ω
taste of sa
law law
E's 0 taste life

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に第1の絶縁膜を形成する工程と、該第
1の絶縁膜上の所定の位置に前記第1の絶縁膜とはエツ
チング材料の異なる第2の絶縁膜をオーバーハング状に
形成する工程と、該第2の絶縁膜をマスクとして前記半
導体基板表面に所定の不純物を選択的に導入する工程と
、前記第1及び第2の絶縁膜のいずれともエツチング材
料の異なる第3の絶縁膜を前記第2の絶縁膜の側壁部に
ぼ被着せしめることなく前記第1の絶縁膜の表面の露呈
せる部分に被着せしめる工程と、前記第2の絶縁膜を除
去して前記第1の絶縁膜表面を露呈せしめる工程と、該
開口内に露呈せる第1の絶縁膜を選択的に除去する工程
と、表出された半導体基板表面に所定の導電材料を選択
的に被着してゲート電極を形成する工程とを含むことを
特徴とする半導体装置の製造方法。
forming a first insulating film on the surface of the semiconductor substrate, and forming a second insulating film using a different etching material from the first insulating film at a predetermined position on the first insulating film in an overhang shape; a step of selectively introducing a predetermined impurity into the surface of the semiconductor substrate using the second insulating film as a mask; and a step of etching a third insulating film using a different etching material from both the first and second insulating films. a step of depositing a film on an exposed portion of the surface of the first insulating film without overly covering the side wall portion of the second insulating film; and removing the second insulating film to remove the first insulating film. a step of exposing the surface of the insulating film, a step of selectively removing the first insulating film exposed in the opening, and a step of selectively depositing a predetermined conductive material on the exposed surface of the semiconductor substrate. 1. A method for manufacturing a semiconductor device, comprising the step of forming a gate electrode.
JP14737882A 1982-08-24 1982-08-24 Manufacture of semiconductor device Pending JPS5935479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14737882A JPS5935479A (en) 1982-08-24 1982-08-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14737882A JPS5935479A (en) 1982-08-24 1982-08-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5935479A true JPS5935479A (en) 1984-02-27

Family

ID=15428882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14737882A Pending JPS5935479A (en) 1982-08-24 1982-08-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5935479A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176162A (en) * 1985-01-31 1986-08-07 Fujitsu Ltd Field-effect semiconductor device and manufacture thereof
JPS62254470A (en) * 1986-04-28 1987-11-06 Seiko Instr & Electronics Ltd Manufacture of junction type thin film transistor
JPS63263770A (en) * 1987-04-20 1988-10-31 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Gaas mesfet and manufacture of the same
JPH01244666A (en) * 1988-03-25 1989-09-29 Nec Corp Manufacture of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860574A (en) * 1981-10-06 1983-04-11 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor
JPS58130575A (en) * 1982-01-29 1983-08-04 Hitachi Ltd Manufacture of field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860574A (en) * 1981-10-06 1983-04-11 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor
JPS58130575A (en) * 1982-01-29 1983-08-04 Hitachi Ltd Manufacture of field effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176162A (en) * 1985-01-31 1986-08-07 Fujitsu Ltd Field-effect semiconductor device and manufacture thereof
JPS62254470A (en) * 1986-04-28 1987-11-06 Seiko Instr & Electronics Ltd Manufacture of junction type thin film transistor
JPS63263770A (en) * 1987-04-20 1988-10-31 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Gaas mesfet and manufacture of the same
JPH01244666A (en) * 1988-03-25 1989-09-29 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
KR920002090B1 (en) Method of manufacturing field effect transistor
US4997779A (en) Method of making asymmetrical gate field effect transistor
JPH05206451A (en) Mosfet and its manufacture
JP2553699B2 (en) Method for manufacturing semiconductor device
US5322806A (en) Method of producing a semiconductor device using electron cyclotron resonance plasma CVD and substrate biasing
US4908683A (en) Technique for elimination of polysilicon stringers in direct moat field oxide structure
US4702000A (en) Technique for elimination of polysilicon stringers in direct moat field oxide structure
JPS5935479A (en) Manufacture of semiconductor device
JPH05198796A (en) Semiconductor device and manufacture thereof
CA1167981A (en) Low capacitance self-aligned semiconductor electrode structure and method of fabrication
JPS6323669B2 (en)
US6537899B2 (en) Semiconductor device and a method of fabricating the same
JPS6112079A (en) Manufacture of semiconductor element
JPS6323366A (en) Manufacture of field-effect transistor
JPS62291070A (en) Manufacture of semiconductor device
JPH06177161A (en) Manufacture of metal schottky junction field-effect transistor
JPS616870A (en) Manufacture of field-effect transistor
JPS62190773A (en) Field-effect transistor and manufacture thereof
JPH0529624A (en) Thin film transistor and manufacture thereof
JPS6445156A (en) Manufacture of semiconductor device
JPH0684951A (en) Manufacture of semiconductor device
JPH05129343A (en) Manufacture of schottky-gate field-effect transistor
JPS61158157A (en) Manufacture of semiconductor device
JPH01187862A (en) Manufacture of semiconductor device