JPS6323366A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPS6323366A
JPS6323366A JP7583486A JP7583486A JPS6323366A JP S6323366 A JPS6323366 A JP S6323366A JP 7583486 A JP7583486 A JP 7583486A JP 7583486 A JP7583486 A JP 7583486A JP S6323366 A JPS6323366 A JP S6323366A
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor layer
forming
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7583486A
Other languages
Japanese (ja)
Inventor
Yuuki Imai
祐記 今井
Kuniki Owada
大和田 ▲くに▼樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7583486A priority Critical patent/JPS6323366A/en
Publication of JPS6323366A publication Critical patent/JPS6323366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28581Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Abstract

PURPOSE:To obtain an FET having a short gate length and low gate resistance and source resistance by a method wherein the second insulating film, having L-shaped cross-section, is formed on the opposing side walls of the first insulating film and a semiconductor layer and the exposed surface of a semiconductor. CONSTITUTION:The semiconductor layer 15, consisting of an N-type semiconductor layer 16 and a high density N-type semiconductor layer 17, is formed on the high resistance semiconductor substrate 15 consisting of GaAs and the like. Then, the insulating film 21, consisting of two layers of a silicon nitride film 19 and a silicon oxide film 20, is formed on the whole surface of the semiconductor, and then an insulating film 21 having an aperture part is formed using a photoresist layer. Then, the high density N-type semiconductor layer 17 is removed using the insulating film 21 as a mask, and the N-type semiconductor layer 16 is etched until the threshold voltage of an FET reaches the prescribed value. Subsequently, an SiO2 film 22 is formed on the whole surface as the second insulating film, an Si3N4 film 23 is formed on the whole surface as the third insulating layer, the Si3N4 film 23 is etched by performing an RIE, and the SiO2 film 22 is etched using an Si3N4 film 24 as a mask. The SiO2 film 25 left on the part directly below the Si3N4 film 24 is formed into an L-shaped cross-section.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、電界効果トランジスタに関するものであり、
具体的には超高周波応用に適した電界効果トランジスタ
の製造方法に関するものでおる。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a field effect transistor,
Specifically, it relates to a method for manufacturing field effect transistors suitable for ultra-high frequency applications.

〔従来の技術〕[Conventional technology]

超高周波用の電界効果トランジスタ(以下、FET略す
)では、デート長のサブミクロン化が重要であるため、
F、B露光等の微細露光技術が用いられている。第4図
は従来のこの種の電界効果トランジスタの製造方法の一
例を示したものである。第4図の製造方法ではたとえば
CraAsからなる高抵抗半導体基板1の上にたとえば
イオン注入法によりFgTの能動層となるn形半導体M
2と寄生抵抗の削減のための高濃度n形半導体層3から
なる半導層4を形成する(第4図(a))。次にソース
電極5、ドレイン電極6を公知の方法により形成しく第
4図fb) ) 、α5μm以下の開孔部7をもつスト
ライプ状のフォトレジストパタン8を18g光等の露光
技術にニジ形成し、このフォトレジストバタン8をマス
クとして前記高濃度n形半尋体層3及びn形半導体層2
を等方向エツチング特性をもつエツチング方法により除
去し、適当な能動層厚み9とサイドエツチング10を与
え、次にゲート金属11を蒸着しく第4図(6) ) 
、レジストを溶剤により除去しゲート電極13を形成す
る(第4図(d))。
In ultra-high frequency field effect transistors (hereinafter referred to as FETs), it is important to reduce the date length to submicron.
Fine exposure techniques such as F and B exposure are used. FIG. 4 shows an example of a conventional method for manufacturing this type of field effect transistor. In the manufacturing method shown in FIG. 4, an n-type semiconductor M, which becomes an active layer of FgT, is implanted into a high-resistance semiconductor substrate 1 made of CraAs, for example, by ion implantation.
A semiconductor layer 4 consisting of a high concentration n-type semiconductor layer 3 for reducing parasitic resistance is formed (FIG. 4(a)). Next, a source electrode 5 and a drain electrode 6 are formed by a known method (FIG. 4fb)), and a striped photoresist pattern 8 having an opening 7 of α5 μm or less is formed using an exposure technique such as 18g light. , using this photoresist batten 8 as a mask, the high concentration n-type semiconducting layer 3 and the n-type semiconductor layer 2 are formed.
is removed by an etching method with isodirectional etching characteristics to provide an appropriate active layer thickness 9 and side etching 10, and then a gate metal 11 is deposited (see FIG. 4(6)).
Then, the resist is removed using a solvent to form the gate electrode 13 (FIG. 4(d)).

以上説明した従来の製造法は種々の欠点をもつ。The conventional manufacturing methods described above have various drawbacks.

まずゲート長の短縮はEBjli光等の露光技術の進展
に依存しており、現在のところα3μm以下のゲート長
を歩留りよく実現することは困難であることがあげられ
る。次に高周波特性に対してゲート長と同様に影響があ
るゲート抵抗は、ゲート長々(第4図(d))とゲート
電極の厚みり、(第4図(d))の積が大きい程小さく
なり、これにより高周波特性が改善される。しかし第4
図(e)に示したように、ゲート金属蒸着時にゲート金
属11 の横方向成長12が起きるため、この横方向成
長により開孔部7が閉じてしまう。このためこの開孔部
7が閉じる蒸着量でゲート電極の厚みhgが決まり、又
断面形状も第4図(c)の様に三角形の形状となる。こ
のためゲート長tgの短縮とともに厚みhgが小さくな
り又、三角形の形状となるため、短ゲート長でゲート抵
抗力極めて大きくなるという欠点をもつ。
First, the shortening of the gate length depends on the progress of exposure technology such as EBJI light, and it is currently difficult to realize a gate length of α3 μm or less with a good yield. Next, gate resistance, which has the same effect as gate length on high-frequency characteristics, increases as the product of gate length (Figure 4 (d)) and gate electrode thickness (Figure 4 (d)) increases. This improves high frequency characteristics. But the fourth
As shown in Figure (e), lateral growth 12 of the gate metal 11 occurs during gate metal deposition, and this lateral growth closes the opening 7. Therefore, the thickness hg of the gate electrode is determined by the amount of evaporation that closes the opening 7, and the cross-sectional shape is triangular as shown in FIG. 4(c). Therefore, as the gate length tg is shortened, the thickness hg becomes smaller, and the gate becomes triangular in shape, which has the disadvantage that the gate resistance becomes extremely large with a short gate length.

更に高周波特性向上のためには、ソース・ゲート電極間
隔1.14 (第4図(d) )の短縮によるソース抵
抗の低減が重要であるが、この間隔の制御は露光技術の
合わせ精度に依存し°Cおす0.5μm以下の短縮は困
難であるという欠点をもつ。
Furthermore, in order to improve high frequency characteristics, it is important to reduce the source resistance by shortening the source-gate electrode spacing of 1.14 mm (Figure 4 (d)), but controlling this spacing depends on the alignment accuracy of the exposure technology. It has the disadvantage that it is difficult to shorten the length to 0.5 μm or less at °C.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述のような従来のFEETの製造方
法の欠点を解決し、露光技術によらずゲート長を小さク
シ、ゲートの断面形状を丁字形としてゲート長に関係な
く、ゲート抵抗を低減し、又ソース・ゲート電極間隔を
小さくしソース抵抗を低減し、更にドレイン耐圧を増加
させ高周波特性。
The purpose of the present invention is to solve the drawbacks of the conventional FEET manufacturing method as described above, and to reduce the gate resistance by making the gate length small and making the cross-sectional shape of the gate T-shaped, regardless of the gate length. In addition, the distance between the source and gate electrodes is reduced to reduce source resistance, and the drain breakdown voltage is increased to achieve high frequency characteristics.

高出力特性を改善したF’ETの製造方法を提供するこ
とにある。
An object of the present invention is to provide a method for manufacturing an F'ET with improved high output characteristics.

〔発明の構成〕[Structure of the invention]

本発明は第1の絶縁膜と半導体層の対向する側壁及び半
導体露出表面の一部に形成した断面形状がL字形の第2
の絶縁膜によ)、ゲート長の短縮とソース・ゲート電極
間隔、ソース側の高濃度半導体層とゲート電極の間隔の
制御と、ゲート電極の断面形状を丁字形とすることを可
能とし、更にドレイン1!極とゲート電極間の高濃度半
導体層を選択的に除去することを可能とすることを最も
主要な特徴とする。
The present invention provides a second insulating film having an L-shaped cross section formed on opposing side walls of the first insulating film and the semiconductor layer and a part of the exposed surface of the semiconductor.
), it is possible to shorten the gate length, control the distance between the source and gate electrodes, the distance between the high-concentration semiconductor layer on the source side and the gate electrode, and make the cross-sectional shape of the gate electrode T-shaped. Drain 1! The most important feature is that the highly doped semiconductor layer between the electrode and the gate electrode can be selectively removed.

従来の技術とは、露光技術に依らずゲート長の短縮とソ
ース・ゲート電極間隔、ソース側の高濃度n形半導体層
とゲート電極の微細な制御が可能であり、又、ゲート抵
抗をゲート長に関係なく低減でき、更にドレイン耐圧を
向上出来る点が異な〔実施例〕 第1図は本発明にLるFETの製造方法の第一の実施例
を示したもので、GaAsなどの尚抵抗半導体基板15
の上にたとえばイオン注入法、気相成長法によりFET
の能動層となるたとえばキャリア濃度10〜10cm、
厚みCLl 〜CL311m程度のn形半導体TA16
とFETのソース抵抗の削減のためのたとえばキャリア
濃度10 crs  以上で厚さα1〜Q2μm程度の
高濃度n形半導体層17からなる半導体層18を形成す
る(第1図(耐)。次に半導体の表面の全面に第1の絶
縁膜としてたとえばプラズマCvD法にエリ厚さCL3
〜0.8μmの窒化シリコン膜19(以下Si、N、膜
と略す)、及び厚さα1〜Q、2μmの酸化シリコン膜
20(以下s lQ、膜と略す)の二層からなる絶縁膜
21を形成し、次に7オトレジスト層を全面に塗布し、
公知の方法に:り開孔したバタンを形成し、このフォト
レジスト層をマスクとして前記SiO2膜20 r 5
f3N4膜19をたとえばCF4等のフロン系ガスの反
応性イオンエツチング(以下RIEと略す)によりエツ
チングした後フォトレジストを除去し、開孔部分をもつ
絶縁膜21を形成する(第1図(b))。次にこの絶縁
膜21 をマスクとして、露出した半導体層を異方的エ
ツチング方法をもつエツチング法たとえばBCLa等の
塩素系ガスの反応性イオンビームエツチング(以下RI
BEと略す)により高濃度n形半導体層17を除去し、
更にn形判導体層16をFETの閾値電圧が所定の値た
とえば一1v〜−3vになる厚み(α05〜Q、15μ
m程度)までエツチングする(第1図(C))。
Conventional technology allows shortening of gate length and fine control of source-gate electrode spacing, high-concentration n-type semiconductor layer on the source side, and gate electrode without relying on exposure technology. [Embodiment] Fig. 1 shows a first embodiment of the method for manufacturing an FET according to the present invention, in which a resistive semiconductor such as GaAs is used. Substrate 15
FETs are formed on the top using, for example, ion implantation or vapor phase growth.
For example, a carrier concentration of 10 to 10 cm, which becomes the active layer of
N-type semiconductor TA16 with a thickness of about CLl ~ CL311m
In order to reduce the source resistance of the FET, a semiconductor layer 18 consisting of a highly doped n-type semiconductor layer 17 with a carrier concentration of 10 crs or more and a thickness of approximately α1 to Q2 μm is formed (see FIG. 1 (resistance)). For example, as a first insulating film on the entire surface of the
An insulating film 21 consisting of two layers: a silicon nitride film 19 (hereinafter abbreviated as Si, N, film) of ~0.8 μm and a silicon oxide film 20 (hereinafter abbreviated as slQ, film) with a thickness α1~Q of 2 μm. , then apply 7 otresist layers to the entire surface,
A well-known method is used to form a perforated batten, and using this photoresist layer as a mask, the SiO2 film 20 r 5 is removed.
After etching the f3N4 film 19 by reactive ion etching (hereinafter abbreviated as RIE) using a fluorocarbon gas such as CF4, the photoresist is removed to form an insulating film 21 having openings (FIG. 1(b)). ). Next, using this insulating film 21 as a mask, the exposed semiconductor layer is etched using an anisotropic etching method such as reactive ion beam etching (hereinafter referred to as RI) using a chlorine-based gas such as BCLa.
(abbreviated as BE) to remove the high concentration n-type semiconductor layer 17,
Furthermore, the n-type conductor layer 16 is made to have a thickness (α05 to Q, 15 μ
(Fig. 1(C)).

次に第二の絶縁膜としてたとえばプラズマCVD法によ
るS10!膜22をたとえば厚みα1〜α5μm程度全
面に形成しく第1図(d) ) 、更に第三の絶、Th
i膜としてたとえばプラス・V CVD法によるSi、
N、膜25をたとえば厚みα1〜α5μm程度全面に形
成しく第1図(e) ) 、次に異方的エツチング特性
をもつエツチング法、たとえばCF、を用いたRIEに
より、この5ijN4膜23をエツチングする。この時
側壁に付着したSi、N、膜の深さ方向の厚みがその他
の部分に比べて厚いのでこの側壁に付着した5ixN+
M 24のみが残る(第1図(f))。次に異方的エツ
チング特性をもつエツチング法、たとえばCF4とH!
の混合ガスを用いたRIgKエリ、St、N、膜24を
マスクとしてSt O,膜22をエツチングする。この
時半導体層18、絶縁膜21の側壁に付着した810!
膜の深さ方向の厚みがその他の部分に比べて厚いためこ
の側壁に付着したsio、膜と前記エッチ:/グのマス
クと次にたとえばCF、を用いたプラズマエツチングに
より311N4膜24を選択的にエツチングし除去する
(第1図(h))。この時残った5lot膜25はL字
形の断面形状となり、その長さ2.はα1〜05μm1
高さり、はα7〜1,6μmとなる。次に前記n形半導
体層16 とショットキー接触をなす金属を最下層とす
る一層あるいは多層膜、たとえばショットキー接触をな
す金属をアルミニウムとし・C1アルミニウムー層する
いはアルミニウム、ニッケルの二層あるいはアルミニウ
ム、Sin、膜の二層等の膜26をたとえばスパッタ法
等により溝27が平坦化される程度の十分な厚みα5〜
1.5μm程度堆積しく第1図111 ) 、次に異方
的エツチング特性をもつエツチング法たとえばArイオ
ンを用いたイオンミーリング等のエツチング法により前
記の膜26をエツチングする。この時前記の溝27 と
堆積した膜の深さ方向の厚みが他の部分に比べ°C厚い
のでこの部分のみが残り、ゲート電極28が形成される
(第1図(j) ) 、次に前記絶縁膜21をたとえば
CF、を用いたRIEとプラズマエツチングを用いて除
去し高濃度n形半導体層17を露出させる(第1図(k
))。次にこの高濃度n形半導体層17とオーミック接
触をなす金属たとえば金ゲルマニウム合金とニッケルの
二層あるいは金ゲルマニウム合金、ニッケル、ブタン、
金の四層等の金属膜29をたとえば厚み0.1〜α3μ
m程度たとえば真空蒸着法等により付着する(第1図(
4)。次にフォトレジスト層30をその表面が平坦化さ
れる程度の厚みたとえば1.0〜5.0 、ljm程度
塗布し、加熱乾燥する(第1図&n))。次にこのフォ
トレジスト層30を異方的エツチング特性をもつエツチ
ング法、たとえば0!を用いたRIEによりエツチング
し前記81 ox膜25及びゲート電極28の上に付着
した金属膜31を露出させる(第1図(n))。次にた
とえばArイオンを用いたイオンミーリング等によりこ
の金属膜31 を除去し、更に残ったフォトレジストa
60を溶剤等により除去しソース電極62.ドレイン電
極36を形成する(第1図(p))。
Next, as a second insulating film, S10! is formed by, for example, a plasma CVD method. The film 22 is formed over the entire surface to a thickness of, for example, α1 to α5 μm (FIG. 1(d)), and a third layer, Th.
For example, as an i-film, Si made by the plus V CVD method,
A N4 film 25 is formed on the entire surface to a thickness of, for example, α1 to α5 μm (FIG. 1(e)), and then this 5ijN4 film 23 is etched by RIE using an etching method having anisotropic etching characteristics, such as CF. do. At this time, Si and N attached to the side wall, and 5ixN+ attached to this side wall because the thickness of the film in the depth direction is thicker than other parts.
Only M24 remains (Fig. 1(f)). Next, etching methods with anisotropic etching characteristics, such as CF4 and H!
The St 2 O film 22 is etched using a mixed gas of RIgK, St, N, and the film 24 as a mask. At this time, 810! attached to the side walls of the semiconductor layer 18 and the insulating film 21!
Since the thickness of the film in the depth direction is thicker than other parts, the 311N4 film 24 is selectively etched by plasma etching using, for example, CF, using a mask for etching the sio film attached to this side wall. It is etched and removed (Fig. 1(h)). At this time, the remaining 5 lots of film 25 have an L-shaped cross section, and the length is 2. is α1~05μm1
The height is α7 to 1.6 μm. Next, a single layer or a multilayer film is formed with a metal that makes Schottky contact with the n-type semiconductor layer 16 as the bottom layer, for example, the metal that makes Schottky contact is aluminum, a C1 aluminum layer, or a double layer of aluminum and nickel, or a layer of aluminum and nickel. The film 26, such as a double layer of aluminum, sin, or the like, is formed to have a sufficient thickness α5 to the extent that the groove 27 is flattened by, for example, sputtering.
The film 26 is then etched to a thickness of about 1.5 .mu.m (FIG. 111), and then the film 26 is etched by an etching method having anisotropic etching characteristics, such as ion milling using Ar ions. At this time, since the thickness of the groove 27 and the deposited film in the depth direction is 10°C thicker than other parts, only this part remains, and the gate electrode 28 is formed (Fig. 1 (j)). The insulating film 21 is removed using, for example, RIE using CF and plasma etching to expose the high concentration n-type semiconductor layer 17 (see FIG. 1(k)).
)). Next, a metal that makes ohmic contact with this high concentration n-type semiconductor layer 17, such as a double layer of gold germanium alloy and nickel, or a gold germanium alloy, nickel, butane, etc.
The metal film 29, such as four layers of gold, has a thickness of 0.1 to α3μ, for example.
It is attached by vacuum evaporation method etc. (Fig. 1(
4). Next, a photoresist layer 30 is applied to a thickness of, for example, about 1.0 to 5.0 ljm so that the surface thereof is flattened, and dried by heating (FIG. 1&n)). Next, this photoresist layer 30 is etched using an etching method having anisotropic etching characteristics, for example, 0! The metal film 31 deposited on the 81 ox film 25 and the gate electrode 28 is exposed by RIE using etching (FIG. 1(n)). Next, this metal film 31 is removed by, for example, ion milling using Ar ions, and the remaining photoresist a is removed.
60 is removed using a solvent or the like, and the source electrode 62. A drain electrode 36 is formed (FIG. 1(p)).

以上説明した第一の実施例のFETIA造方法では、第
1図(p)に示したようにゲート長tgは露光技術によ
り決まる寸法りに対しC,Sin、膜25の長さtlの
2倍分縮小されるため極めて短かいゲート長を露光技術
によらず得ることが出来る。たとえばtを通常の露光技
術で十分実現可能な1.0μm程度とすると上述の実施
例ではt3はl11μm以下から08μm程度となる。
In the FETIA manufacturing method of the first embodiment described above, as shown in FIG. 1(p), the gate length tg is C, Sin, twice the length tl of the film 25, with respect to the dimension determined by the exposure technology. Therefore, an extremely short gate length can be obtained without using exposure technology. For example, if t is about 1.0 .mu.m, which can be fully realized by ordinary exposure technology, then t3 in the above embodiment is from 111 .mu.m or less to about 0.08 .mu.m.

父、ケート電極30の断面形状は第1図(p)のように
Xを厚くした丁字形となりゲート電極の上部の長さtm
は、ゲート長tgによらず大きくできかつゲート抵抗を
ゲート長に依存せず低減することが可能である。寸法の
実例としてLを1.0μm程度とすると最大α9μm程
度とすることができた。更に、ソース・ゲート電極間隔
及びソース電極側の高濃度n形半導体層とゲート電極の
間隔は第1図(plのように810.膜25の長さt、
により決“まり露光技術に依らず短かく出来るためソー
ス抵抗を下げることが可能である。
The cross-sectional shape of the gate electrode 30 is T-shaped with thicker X as shown in FIG. 1(p), and the length of the upper part of the gate electrode is tm.
can be made large regardless of the gate length tg, and the gate resistance can be reduced regardless of the gate length. As an example of the dimensions, when L is about 1.0 μm, the maximum value α can be about 9 μm. Furthermore, the distance between the source and gate electrodes and the distance between the high concentration n-type semiconductor layer on the source electrode side and the gate electrode are 810 as shown in FIG.
Therefore, the source resistance can be lowered because it can be made shorter regardless of the exposure technology.

第2図は本発明によるFEINTの製造方法の第二の実
施例を示したもので、図中の番号は第1図の対応する番
号と同じものを示している。父、工程も第−の実施例の
第1図(ml−(k)まで同一でありここでは簡単のた
め以降の工程のみ示した。従って第2図(j) 、 (
klは第1図(j) 、 (klと同じでおり、ゲート
電極28を形成した後(第2図(j) ) 、絶縁膜2
1を除去し、高濃度n形半導体層17を露出させる(第
2図(k))。次にこの高濃度n形半導体層17 とオ
ーミック接触をなす金属膜29を方向性をも・りた膜形
成技術たとえば真空蒸着法により垂直に対し°Cたとえ
ば30°〜80″傾けた矢印34の方向から蒸着物質が
到達する配置にてたとえばα1〜α3μm付着する。こ
の時、sio、膜25の影となる領域35には金属膜は
付着せずこの領域の長さt!はα1〜1.0μm程度と
なる。(第2図(4)。次に第1図−9(n) 、 (
p)と同様にしてソース電極32.ドレイン電極36を
形成する(第2図−、(n) 、 (pi )。次にソ
ース電極32.ドレイン電極33.ゲート電極30 、
8in!膜25をマスクとして、異方的エツチング特性
をもつエツチング法、たとえばBCl、を用いたRIB
Eにより露出部分35の半導体層18を少なくとも高濃
度n形半導体層17が除去されるまでエツチングしドレ
イン側の掘り込み11936を形成する(第2図(q)
)。
FIG. 2 shows a second embodiment of the method for manufacturing FEINT according to the present invention, and the numbers in the figure are the same as the corresponding numbers in FIG. The steps are also the same as in the second embodiment up to FIG. 1 (ml-(k)), and only the subsequent steps are shown for simplicity.
kl is the same as kl in FIG. 1(j), and after forming the gate electrode 28 (FIG. 2(j)),
1 is removed to expose the highly doped n-type semiconductor layer 17 (FIG. 2(k)). Next, a metal film 29 making ohmic contact with this high concentration n-type semiconductor layer 17 is formed using a film forming technique with directionality, such as a vacuum evaporation method, to form an arrow 34 which is inclined by 30° to 80" with respect to the vertical direction. For example, the metal film is deposited by α1 to α3 μm in an arrangement where the deposition material reaches from the direction.At this time, the metal film does not adhere to the region 35 that is in the shadow of the film 25, and the length t! of this region is α1 to α3 μm. It is about 0 μm (Figure 2 (4). Next, Figure 1-9 (n), (
Source electrode 32.p) in the same manner as in p). A drain electrode 36 is formed (Fig. 2-, (n), (pi)). Next, a source electrode 32, a drain electrode 33, a gate electrode 30,
8in! RIB using an etching method having anisotropic etching characteristics, such as BCl, using the film 25 as a mask.
The exposed portion 35 of the semiconductor layer 18 is etched using E until at least the high concentration n-type semiconductor layer 17 is removed to form a recess 11936 on the drain side (FIG. 2(q)).
).

以上説明した第二の実施例のFzT!!造方法では、第
一の実施例に比べて第2図(q)に示したようにドレイ
ン・ゲート電極間隔及びドレイン側の高濃度n形半導体
層とゲート電極の間隔を、ソース・ゲート電極間隔及び
ソース側の高濃度n形半導体層とゲート電極の間隔t、
に対して1.だけ増やし2゜+ 1.とすることが可能
である点が異なる。これにより、FgTのドレイン耐圧
を増加することが可能であり、高出力化することが出来
る。又、ゲート電極とドレイン電極の間の容量を低減が
可能である。
FzT! of the second embodiment explained above! ! In the manufacturing method, as shown in FIG. 2(q), compared to the first embodiment, the distance between the drain and gate electrodes and the distance between the high concentration n-type semiconductor layer on the drain side and the gate electrode were changed by changing the distance between the source and gate electrodes. and the distance t between the high concentration n-type semiconductor layer on the source side and the gate electrode,
For 1. Increase by 2゜+1. The difference is that it is possible to Thereby, the drain breakdown voltage of the FgT can be increased, and the output can be increased. Furthermore, it is possible to reduce the capacitance between the gate electrode and the drain electrode.

又、第3図は本発明によるFETの製造方法の第三の実
施例である。工程は第一の実施例と第1図(&)〜(k
)まで同一であり、ここでは簡単のため(j)以降の工
程を示した。従って第3図(j) 、 (k)は第1図
(j) 、 (k)と同一でありゲート’c4極28を
形成した後(第3図(j))、絶縁膜21を除去し、高
濃度n形半導体層17を露出させる(第3図(k))。
Further, FIG. 3 shows a third embodiment of the FET manufacturing method according to the present invention. The process is shown in the first embodiment and in Figures 1 (&) to (k
) are the same, and the steps after (j) are shown here for simplicity. Therefore, FIG. 3(j) and (k) are the same as FIG. 1(j) and (k), and after forming the gate 'c4 pole 28 (FIG. 3(j)), the insulating film 21 is removed. , exposing the highly doped n-type semiconductor layer 17 (FIG. 3(k)).

次に第二の実施例の第2図(4と同様に金属膜29を形
成する(第3図(a )。この時第二の実施例と同様に
、sio、膜25の影となる領域35には金属膜29は
付着しない。次にこの金属膜29をマスクとして異方的
エツチング特性をもつエツチング法、たとえばBOt、
を用いたRIBE IC工り露出部分55の半導体層1
8を少なくとも高濃度n形半導体層17が除去されるま
でエツチングしドレイン側に掘り込み溝36を形成する
(第3図(ロ))。次に第1図(ml、(n)。
Next, a metal film 29 is formed in the same manner as in FIG. 2 (4) of the second embodiment (FIG. 3(a)). The metal film 29 is not attached to 35. Next, using this metal film 29 as a mask, an etching method having anisotropic etching characteristics, such as BOt,
Semiconductor layer 1 of exposed portion 55 of RIBE IC processing using
8 is etched until at least the high concentration n-type semiconductor layer 17 is removed to form a trench 36 on the drain side (FIG. 3(b)). Next, Figure 1 (ml, (n).

(p)と同様にしてソース電極32.ドレイン電極36
を形成する(第3図tn) 、 fp) 、 (q) 
)。
Similarly to (p), the source electrode 32. drain electrode 36
(Fig. 3 tn), fp), (q)
).

以上説明した第三の実施例はドレイン側の掘り込み溝6
6を形成する工程を金属膜29形成後直ぐに行Yx ウ
点が、第二の実施例と異なるが、完成後のFgTの断面
構造(第3図(q))は第二の実施例(第2図(q))
と同一であり第二の実施例と同様な効榮を有する。
The third embodiment explained above is the dug groove 6 on the drain side.
Immediately after forming the metal film 29, the step of forming FgT 6 is carried out immediately after the formation of the metal film 29.Although the point Yx is different from that of the second embodiment, the cross-sectional structure of the completed FgT (FIG. 3(q)) is the same as that of the second embodiment (FIG. 3(q)). Figure 2 (q))
and has the same effect as the second embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によるFBTの製造方法によ
れば、ゲート長が短かく、ゲート抵抗、ソース抵抗が低
いFETを実現出来るためFETの高周波特性を向上す
ることが出来る。更にドレイン側に掘り込み溝を設けた
製造法ではFgTの高出力特性を向上することが出来る
As explained above, according to the method of manufacturing an FBT according to the present invention, it is possible to realize an FET with a short gate length and low gate resistance and source resistance, thereby improving the high frequency characteristics of the FET. Furthermore, a manufacturing method in which a trench is provided on the drain side can improve the high output characteristics of FgT.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(&)〜tp)は、本発明の第1実施例の製造工
程を示す。 第2図(jl〜fq+は、本発明の第2実施例の製造工
程を示す。たゾし、前記第1実施例と同一工程は省略し
て示す。 第5図(j)〜(q)は、本発明の第3実施例の製造工
程を示す。たゾし、前記第1実施例と同一工程は1・・
・高抵抗半導体基板、 2・・・n形半導体装置 3・・・高濃度n形半導体層 4・・・半導体層 5・・・ソース電極 6・・・ドレイン電極 7・・・開孔部 8・・・7オトレジストバタン 9・・・適当な能動層厚み 10・・・サイドエツテング 11・・・ゲート金属 12・・・横方向成長 13・・・ゲート電極 14・・・ソース・ゲート電極間隔 15・・・高抵抗半導体基板 16・・・n形半導体層 17・・・高蟲度n形半導体層 18・・・半導体層 19・・・Si、N4膜 20・・・StO鵞膜 21・・・絶縁膜 22 ・・・ S10鵞膜 23・・・3i3N4膜 24・・・側壁の5tlN4膜 25・・・stow膜 26・・・膜 27・・・溝 28・・・ゲート電極 29・・・金属膜 30・・・フォトレジスト 31・・・金属膜 32・・・ソース電極 33・・・ドレイン電極 64・・・矢印 35・・・露出部分
FIG. 1(&) to tp) show the manufacturing process of the first embodiment of the present invention. Fig. 2 (jl to fq+ show manufacturing steps of the second embodiment of the present invention. The same steps as those of the first embodiment are omitted. Fig. 5 (j) to (q) 1 shows the manufacturing process of the third embodiment of the present invention.The same steps as in the first embodiment are 1...
- High resistance semiconductor substrate, 2... N-type semiconductor device 3... High concentration n-type semiconductor layer 4... Semiconductor layer 5... Source electrode 6... Drain electrode 7... Opening part 8 ...7 Otoresist button 9...Appropriate active layer thickness 10...Side etching 11...Gate metal 12...Lateral growth 13...Gate electrode 14...Source/gate electrode Spacing 15... High resistance semiconductor substrate 16... N-type semiconductor layer 17... High-magneticity n-type semiconductor layer 18... Semiconductor layer 19... Si, N4 film 20... StO film 21 ... Insulating film 22 ... S10 film 23 ... 3i3N4 film 24 ... 5tlN4 film on side wall 25 ... Stow film 26 ... film 27 ... groove 28 ... gate electrode 29 ... ...Metal film 30...Photoresist 31...Metal film 32...Source electrode 33...Drain electrode 64...Arrow 35...Exposed portion

Claims (3)

【特許請求の範囲】[Claims] (1)高抵抗半導体基板の主表面に高キャリア濃度の半
導体層を最上層部とし、次層を半導体能動層とする少な
くとも二層以上の層からなる半導体層を形成する工程と
、この半導体層に開孔部分をもつ第一の絶縁膜を形成す
る工程と、この絶縁膜をマスクとして前記開孔部分の半
導体層をエッチングし、少なくとも前記高キャリア濃度
の半導体層を除去し、前記半導体能動層を露出させる工
程と、前記第一の絶縁膜及び半導体層の対向する側壁を
含む全表面に第二の絶縁膜を形成する工程と、前記第二
の絶縁膜の対向する面に第三の絶縁膜を形成する工程と
、第三の絶縁膜と第一の絶縁膜及び半導体層にはさまれ
た部分の第二の絶縁膜を残してその他の部分の第二の絶
縁膜を除去する工程と、第三の絶縁膜を除去する工程と
、露出した半導体能動層表面及びこの半導体能動層上の
前記第二の絶縁膜表面に半導体能動層とショットキー接
触をなす金属を形成し、ゲート電極を形成する工程と、
前記第一の絶縁膜を除去し前記高キャリア濃度半導体層
を露出させる工程と、この高キャリア濃度半導体層とオ
ーミック接触をなす金属を全面に付着する工程と、全面
に付着した金属のうち前記第二の絶縁膜及びゲート電極
の上部に付着した金属を除去し、ソース電極、ドレイン
電極を形成する工程を含むことを特徴とする電界効果ト
ランジスタの製造方法。
(1) A step of forming a semiconductor layer on the main surface of a high-resistance semiconductor substrate, consisting of at least two layers, including a semiconductor layer with a high carrier concentration as the top layer and the next layer as a semiconductor active layer, and this semiconductor layer. forming a first insulating film having an opening in the semiconductor active layer; using this insulating film as a mask, etching the semiconductor layer in the opening, removing at least the high carrier concentration semiconductor layer; forming a second insulating film on the entire surface including opposing sidewalls of the first insulating film and the semiconductor layer; and forming a third insulating film on the opposing side of the second insulating film. a step of forming a film; and a step of removing the second insulating film in other parts, leaving the second insulating film in the part sandwiched between the third insulating film, the first insulating film, and the semiconductor layer. , removing the third insulating film, forming a metal that makes Schottky contact with the semiconductor active layer on the exposed surface of the semiconductor active layer and the surface of the second insulating film on the semiconductor active layer, and forming a gate electrode. a step of forming;
a step of removing the first insulating film to expose the high carrier concentration semiconductor layer; a step of depositing a metal on the entire surface that makes ohmic contact with the high carrier concentration semiconductor layer; A method for manufacturing a field effect transistor, comprising the step of removing metal attached to the top of the second insulating film and gate electrode to form a source electrode and a drain electrode.
(2)高抵抗半導体基板の主表面に高キャリア濃度の半
導体層を最上層部とし、次層を半導体能動層とする少な
くとも二層以上の層からなる半導体層を形成する工程と
、この半導体層に開孔部分をもつ第一の絶縁膜を形成す
る工程と、この絶縁膜をマスクとして前記開孔部分の半
導体層をエッチングし、少なくとも前記高キャリア濃度
の半導体層を除去し、前記半導体能動層を露出させる工
程と、前記第一の絶縁膜及び半導体層の対向する側壁を
含む全表面に第二の絶縁膜を形成する工程と、前記第二
の絶縁膜の対向する面に第三の絶縁膜を形成する工程と
、第三の絶縁膜と第一の絶縁膜及び半導体層にはさまれ
た部分の第二の絶縁膜を残してその他の部分の第二の絶
縁膜を除去する工程と、第三の絶縁膜を除去する工程と
、露出した半導体能動層表面及びこの半導体能動層上の
前記第二の絶縁膜表面に半導体能動層とショットキー接
触をなす金属を形成し、ゲート電極を形成する工程と、
前記第一の絶縁膜を除去し前記高キャリア濃度半導体層
を露出させる工程と、この高キャリア濃度半導体層とオ
ーミック接触をなす金属を真空蒸着法等の方向性のある
膜形成法により、前記第二の絶縁膜に沿つた前記高キヤ
リア濃度半導体層の表面うち一方が影となる方向から付
着し、前記影となる領域以外の全面にオーミック接触を
なす金属を形成する工程と、付着した金属のうち前記第
二の絶縁膜及びゲート電極の上部に付着した金属を除去
し、ソース電極、ドレイン電極を形成する工程と、前記
第二の絶縁膜、ゲート電極、ソース電極、ドレイン電極
をマスクとして、前記影となる領域の露出した半導体層
をエッチングし、少なくとも前記高キャリア濃度半導体
層を除去する工程を含む電界効果トランジスタの製造方
法。
(2) A step of forming a semiconductor layer on the main surface of a high-resistance semiconductor substrate, consisting of at least two layers, with a semiconductor layer with a high carrier concentration as the top layer and the next layer as a semiconductor active layer, and this semiconductor layer. forming a first insulating film having an opening in the semiconductor active layer; using this insulating film as a mask, etching the semiconductor layer in the opening, removing at least the high carrier concentration semiconductor layer; forming a second insulating film on the entire surface including opposing sidewalls of the first insulating film and the semiconductor layer; and forming a third insulating film on the opposing side of the second insulating film. a step of forming a film; and a step of removing the second insulating film in other parts, leaving the second insulating film in the part sandwiched between the third insulating film, the first insulating film, and the semiconductor layer. , removing the third insulating film, forming a metal that makes Schottky contact with the semiconductor active layer on the exposed surface of the semiconductor active layer and the surface of the second insulating film on the semiconductor active layer, and forming a gate electrode. a step of forming;
The step of removing the first insulating film to expose the high carrier concentration semiconductor layer, and the step of forming a metal that makes ohmic contact with the high carrier concentration semiconductor layer using a directional film forming method such as a vacuum evaporation method, a step of attaching metal from a direction in which one of the surfaces of the high carrier concentration semiconductor layer along the second insulating film is shaded, and forming an ohmic contact on the entire surface other than the shaded area; A step of removing metal attached to the upper part of the second insulating film and the gate electrode to form a source electrode and a drain electrode, and using the second insulating film, the gate electrode, the source electrode, and the drain electrode as a mask, A method for manufacturing a field effect transistor, including a step of etching the exposed semiconductor layer in the shadow region and removing at least the high carrier concentration semiconductor layer.
(3)高抵抗半導体基板の主表面に高キャリア濃度の半
導体層を最上層部とし、次層を半導体能動層とする少な
くとも二層以上の層からなる半導体層を形成する工程と
、この半導体層に開孔部分をもつ第一の絶縁膜を形成す
る工程と、この絶縁膜をマスクとして前記開孔部分の半
導体層をエッチングし、少なくとも前記高キャリア濃度
の半導体層を除去し、前記半導体能動層を露出させる工
程と、前記第一の絶縁膜及び半導体層の対向する側壁を
含む全表面に第二の絶縁膜を形成する工程と、前記第二
の絶縁膜の対向する面に第三の絶縁膜を形成する工程と
、第三の絶縁膜と第一の絶縁膜及び半導体層にはさまれ
た部分の第二の絶縁膜を残してその他の部分の第二の絶
縁膜を除去する工程と、第三の絶縁膜を除去する工程と
、露出した半導体能動層表面及びこの半導体能動層上の
前記第二の絶縁膜表面に半導体能動層とショットキー接
触をなす金属を形成し、ゲート電極を形成する工程と、
前記第一の絶縁膜を除去し前記高キャリア濃度半導体層
を露出させる工程と、この高キャリア濃度半導体層とオ
ーミック接触をなす金属を真空蒸着法等の方向性のある
膜形成法により、前記第二の絶縁膜に沿つた前記高キヤ
リア濃度半導体層の表面うち一方が影となる方向から付
着し、前記影となる領域以外の全面にオーミック接触を
なす金属を形成する工程と、この金属をマスクとして前
記影となる領域の露出した半導体層をエッチングし、少
なくとも前記高キャリア濃度半導体層をエツチングする
工程と、前記付着した金属のうち前記第二の絶縁膜とゲ
ート電極の上部に付着した金属を除去し、ソース電極、
ドレイン電極を形成する工程を含む電界効果トランジス
タの製造方法。
(3) Forming a semiconductor layer on the main surface of a high-resistance semiconductor substrate, consisting of at least two or more layers, with a semiconductor layer with a high carrier concentration as the top layer and the next layer as a semiconductor active layer, and this semiconductor layer forming a first insulating film having an opening in the semiconductor active layer; using this insulating film as a mask, etching the semiconductor layer in the opening, removing at least the high carrier concentration semiconductor layer; forming a second insulating film on the entire surface including opposing sidewalls of the first insulating film and the semiconductor layer; and forming a third insulating film on the opposing side of the second insulating film. a step of forming a film; and a step of removing the second insulating film in other parts, leaving the second insulating film in the part sandwiched between the third insulating film, the first insulating film, and the semiconductor layer. , removing the third insulating film, forming a metal that makes Schottky contact with the semiconductor active layer on the exposed surface of the semiconductor active layer and the surface of the second insulating film on the semiconductor active layer, and forming a gate electrode. a step of forming;
The step of removing the first insulating film to expose the high carrier concentration semiconductor layer, and the step of forming a metal that makes ohmic contact with the high carrier concentration semiconductor layer using a directional film forming method such as a vacuum evaporation method, a step of forming a metal that is deposited from a direction in which one of the surfaces of the high carrier concentration semiconductor layer along the second insulating film is in the shadow, and making ohmic contact with the entire surface other than the region in the shadow; and masking this metal. etching the exposed semiconductor layer in the shaded region, etching at least the high carrier concentration semiconductor layer; Remove the source electrode,
A method for manufacturing a field effect transistor including a step of forming a drain electrode.
JP7583486A 1986-04-02 1986-04-02 Manufacture of field-effect transistor Pending JPS6323366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7583486A JPS6323366A (en) 1986-04-02 1986-04-02 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7583486A JPS6323366A (en) 1986-04-02 1986-04-02 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPS6323366A true JPS6323366A (en) 1988-01-30

Family

ID=13587614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7583486A Pending JPS6323366A (en) 1986-04-02 1986-04-02 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPS6323366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394590A2 (en) * 1989-04-27 1990-10-31 Mitsubishi Denki Kabushiki Kaisha Field effect transistors and method of making a field effect transistor
US5231040A (en) * 1989-04-27 1993-07-27 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor
US5391899A (en) * 1991-10-29 1995-02-21 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor device with a particular gate structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394590A2 (en) * 1989-04-27 1990-10-31 Mitsubishi Denki Kabushiki Kaisha Field effect transistors and method of making a field effect transistor
US5231040A (en) * 1989-04-27 1993-07-27 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor
US5391899A (en) * 1991-10-29 1995-02-21 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor device with a particular gate structure

Similar Documents

Publication Publication Date Title
JPS5950567A (en) Manufacture of field effect transistor
JPS59114871A (en) Manufacture of schottky gate type gallium arsenide field effect transistor
US5139968A (en) Method of producing a t-shaped gate electrode
JP2553699B2 (en) Method for manufacturing semiconductor device
JPH03151645A (en) Manufacture of compound semiconductor device
JPS6323366A (en) Manufacture of field-effect transistor
JPH065682B2 (en) Method for manufacturing semiconductor device
JPH02231731A (en) Semiconductor device and manufacture thereof
JPS6237890B2 (en)
JP3144089B2 (en) Method for manufacturing field effect transistor
JPS5935479A (en) Manufacture of semiconductor device
JPS6323669B2 (en)
JPS60776A (en) Manufacture of semiconductor device
JPH0240924A (en) Manufacture of semiconductor device
JP2726730B2 (en) Manufacturing method of field effect transistor
JPS6112079A (en) Manufacture of semiconductor element
JPS63137481A (en) Manufacture of semiconductor device
JPS62115782A (en) Manufacture of semiconductor device
JP3597458B2 (en) Method for manufacturing semiconductor device
JPH0571135B2 (en)
JPH04162635A (en) Manufacture of semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH03203246A (en) Method of manufacturing semiconductor device
JPH07120678B2 (en) Method of manufacturing Schottky barrier gate field effect transistor
JPS62190773A (en) Field-effect transistor and manufacture thereof