JPS63137481A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63137481A
JPS63137481A JP28476786A JP28476786A JPS63137481A JP S63137481 A JPS63137481 A JP S63137481A JP 28476786 A JP28476786 A JP 28476786A JP 28476786 A JP28476786 A JP 28476786A JP S63137481 A JPS63137481 A JP S63137481A
Authority
JP
Japan
Prior art keywords
gate
film
opening
etching
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28476786A
Other languages
Japanese (ja)
Inventor
Asamitsu Tosaka
浅光 東坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28476786A priority Critical patent/JPS63137481A/en
Publication of JPS63137481A publication Critical patent/JPS63137481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the projection of a gate electrode sufficiently by forming a gate opening section at two stages, minimizing parasitic capacitance while applying a fluid substance by using an upper opening and dry-etching a substrate from the vertical direction. CONSTITUTION:Si<+> ions are implanted selectively into a semi-insulating GaAs substrate 11 to shape a semiconductor active layer 12, and an Si3N4 film 13 in thickness of 2000Angstrom and an SiO2 film 14 in thickness of 3000Angstrom are applied onto the surface of the active layer 12 in succession. A photo-resist pattern 15 is formed into a region in which a gate electrode must be shaped, and the film 14 and the film 13 are etched successively to form an opening 52. A photo- resist is removed, and a gate metal 53 consisting of Ti-Pt-Au is evaporated. A photo-resist 16 is applied onto the whole surface, and the resist 16 and the gate metal 53 on the film 14 are removed from the direction vertical to a wafer to form a T-shaped gate 55. Source and drain electrodes 31, 32 are shaped. Accordingly, parasitic capacitance can be reduced while the upper projection of the gate 55 can be scaled down.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法〈関し、特に微細電極を
有する半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device having fine electrodes.

〔従来の技術〕[Conventional technology]

半導体装置の高性能化(高周波化、高速化)のためKは
、この半導体装[K設けられる電極の微細化が不可欠で
ある。この電極の微細化は、電子が電極下の半導体層中
を走行通過するに要する時間を短かくでき、いわゆる電
流遮断周波数f〒の向上を可能とする。このことを半絶
縁性砒化ガリウム(GaAs)基板上のG a A s
半導体層を動作層とするG a A sシ目ットキ障壁
ゲート型電界効果トランジスタ(GaAs MESFE
T)  にライて説明する。
In order to improve the performance of semiconductor devices (higher frequency, higher speed), it is essential to miniaturize the electrodes provided in this semiconductor device. This miniaturization of the electrode can shorten the time required for electrons to travel through the semiconductor layer under the electrode, making it possible to improve the so-called current cutoff frequency f〒. This can be explained using GaAs on a semi-insulating gallium arsenide (GaAs) substrate.
A GaAs barrier gate field effect transistor (GaAs MESFE) uses a semiconductor layer as an active layer.
T).

第3図は従来のGaAs MESFETの概略構造断面
図であう、ソース31、ビレ4フ320両電極間を流れ
る電流をゲート電極33への印加電圧によシ変調し、増
幅作用をもたせた装置である。
FIG. 3 is a schematic cross-sectional view of the structure of a conventional GaAs MESFET, which is a device in which the current flowing between the source 31 and fillet 320 electrodes is modulated by the voltage applied to the gate electrode 33 to provide an amplification effect. .

このGaAs MESFETの高性能化には、ゲート長
(Lc)の短縮がi要であシ、最近ではクォータ・ミク
ロン(α25μm)のゲートを有するG a A sM
ESF’ETも開発されるに至っている。このような短
ゲート化に伴う1つの問題としてゲート抵抗(RG)の
増大があけらる。
To improve the performance of GaAs MESFETs, it is necessary to shorten the gate length (Lc), and recently GaAs MESFETs with quarter micron (α25 μm) gates have been
ESF'ET has also been developed. One problem associated with such short gate lengths is an increase in gate resistance (RG).

このゲート電極を短縮してかつゲート抵抗を低減させる
方法として、第4図に示すような、T型ゲー)を極55
が提案されている。
As a method of shortening this gate electrode and reducing gate resistance, a T-type gate electrode as shown in FIG.
is proposed.

第5図(8)〜口は従来のT型ゲー)を極4成方法の一
例の概略工程を示す断面図である。まず、第5図囚にお
いて、半絶縁住基破11上にイオン注入法によ1)ni
GaAs半導体能動層を形成し、このn型G a A 
s半纏体層12上に、厚み0.5μmの8i0.膜51
が被着され、このSin、膜51上の所定の領域にゲー
ト電極を形成すべき開口(長さα25μm)52が通常
のホトリソグラフィ技術を援用した選択ドライエツチン
グ法によ多形成されている。続いて、第5図(均のよう
に、全面に、例えばTi(500A)−Pt(100O
A)Au(4000A)積層から成るゲート金属53が
真空蒸着法によシ被着され、続いて第5図(qに示すよ
うに、所定のホトレジストパターン54を形成し、この
ホトレジストパターン54をマスクとして不要なゲート
金属を除去すると、第5図pのようなT型ゲート55が
得られ、つづいてソース、ドレイン電極を形成すれば、
第4図のGaAs ME S F E Tが得られる。
FIG. 5(8) is a sectional view schematically illustrating an example of a method for forming a conventional T-shaped gate. First, in the case shown in Figure 5, 1) ni
A GaAs semiconductor active layer is formed, and this n-type GaA
8i0.s semi-coated layer 12 with a thickness of 0.5 μm. membrane 51
An opening (length α25 μm) 52 in which a gate electrode is to be formed is formed in a predetermined region on this Sin film 51 by selective dry etching using ordinary photolithography technology. Next, as shown in Fig. 5, for example, Ti(500A)-Pt(100O
A) A gate metal 53 consisting of a stack of Au (4000A) is deposited by vacuum evaporation, followed by forming a predetermined photoresist pattern 54 as shown in FIG. 5(q), and masking this photoresist pattern 54. By removing unnecessary gate metal as shown in FIG. 5, a T-type gate 55 as shown in FIG.
The GaAs MESFET shown in FIG. 4 is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように従来のT型ゲート形成方法においては、次の
ような2つの大きな欠点が有った。先ず第1は、第5図
(CIにおいて、T型ゲート形成用のホトレジストパタ
ーン54を位置合わせによ多形成する際、位置合わせマ
ージンを考慮するとその長さが極めて大きくなシ、T型
ゲートの張出し部と半導体層との間の寄生容量が大きく
なる点である。第2の欠点は、この寄生容量を低減させ
る為に8i01膜51を厚くすると、開口のアスペクト
比(開口深さ/開口長)が大きくな夛、開口へのゲート
金属の完全埋込みが困難となる点である。
As described above, the conventional T-type gate formation method has the following two major drawbacks. First, as shown in FIG. 5 (CI), when the photoresist pattern 54 for forming the T-type gate is formed in multiple layers for alignment, its length is extremely large considering the alignment margin. The parasitic capacitance between the overhang and the semiconductor layer increases.The second drawback is that when the 8i01 film 51 is made thicker to reduce this parasitic capacitance, the aspect ratio of the opening (opening depth/opening length) increases. ) is large, making it difficult to completely fill the opening with gate metal.

本発明の目的は、これらの問題点を解決し、寄生容量を
小さくすると共に、開口のアスペクト比を小さく抑えた
高性能の半導体装置を得ることの出来る半導体装置の製
造方法を提供することにある。
An object of the present invention is to solve these problems and provide a method for manufacturing a semiconductor device that can reduce parasitic capacitance and obtain a high-performance semiconductor device with a small opening aspect ratio. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法の構成は、半導体基板上
に半導体能動層を設けこの半導体能動層上に第1および
第2の誘電体膜を積層して形成する工程と、これら誘電
体膜上に所定のホトレジストパターンを形成する工程と
、前記ホトレジストパターンをマスクとして前記第2の
誘電体膜を等方的エッチングによりエツチングし前記第
1の誘電体膜表面を露出させ、さらに前記ホトレジスト
パターンをマスクとして異方性エツチングによシ前記第
1の誘電体膜をエツチングし前記半導体基板表面を露出
させて開口部を形成する工程と、前記ホトレジストパタ
ーンを除去した後その全面に電極金属を被着させる工程
と、前記電極金属を設けた全面に流動性物質を塗布し前
記半導体基板に対し垂直な方向から全面をドライエツチ
ングして前記第2の誘電体膜異面を露出させ前記開口部
にのみに前記電極金属を残す工程とを含むことを特徴と
する半導体装置の製造方法を特徴とする。
The structure of the method for manufacturing a semiconductor device of the present invention includes the steps of providing a semiconductor active layer on a semiconductor substrate and stacking first and second dielectric films on the semiconductor active layer; forming a predetermined photoresist pattern on the photoresist pattern, etching the second dielectric film by isotropic etching using the photoresist pattern as a mask to expose the surface of the first dielectric film, and further using the photoresist pattern as a mask. etching the first dielectric film by anisotropic etching to expose the surface of the semiconductor substrate and forming an opening; and after removing the photoresist pattern, depositing an electrode metal on the entire surface thereof. A flowable substance is applied to the entire surface on which the electrode metal is provided, and the entire surface is dry-etched in a direction perpendicular to the semiconductor substrate to expose a different surface of the second dielectric film and to apply a fluid material only to the opening. The method of manufacturing a semiconductor device is characterized by including the step of leaving the electrode metal.

〔実施例〕〔Example〕

予断面図である。まず、第1図(5)において、半絶縁
性G a A s基板11中1c、8i+イオンを選択
注入(50kev、lXl0LSイオy /cl )す
ることにより半導体能動層12を形成し、その表面に厚
み2000A O8i3N、膜13、更に厚み300 
o;、−の8i0.膜14を順次被着させる。次に1第
1図(B)のように、ゲート電極を形成しようとする領
域にホトレジストパターン15が設けられる。この場合
、開口部の長さは0.25μmとする。次に、第1図(
均のように、等方性エツチング、例えばHFを用いたつ
エ、トエ、チングによp、5i02膜14をエツチング
し、5isN+膜13を層比させる。この際のエツチン
グは必ずしもジャストエツチングでなくてもよく、若干
のオーバエ、チングは許される。続いて下層の5isN
、膜13をCF4ガスを用いたりアクティブイオンエツ
チングによシエ、チングし、開口52を形成する。
It is a preliminary sectional view. First, in FIG. 1 (5), the semiconductor active layer 12 is formed by selectively implanting 1c, 8i+ ions (50 kev, lXl0LS ions y /cl) into the semi-insulating GaAs substrate 11, and the semiconductor active layer 12 is formed on the surface thereof. Thickness 2000A O8i3N, film 13, further thickness 300A
o;, -8i0. Films 14 are deposited in sequence. Next, as shown in FIG. 1(B), a photoresist pattern 15 is provided in a region where a gate electrode is to be formed. In this case, the length of the opening is 0.25 μm. Next, Figure 1 (
The 5i02 film 14 is etched by isotropic etching, for example, etching using HF, as described above, and the 5isN+ film 13 is layered. The etching at this time does not necessarily have to be just etching, and slight over-etching and etching are allowed. Next, the lower layer 5isN
Then, the film 13 is etched using CF4 gas or active ion etching to form an opening 52.

次に、ホトレジストを除去し、全面に従来技術と同様の
T i −P t−Auのゲート金属53を蒸着する(
第1図(Q)。ここでxiな点はゲート電極用の開口部
52が2段になっておシ、全誘電体膜厚を500 OA
と保ったままで、開口の底部のアスペクト比を小さくし
ている点である。
Next, the photoresist is removed and a gate metal 53 of Ti-Pt-Au similar to the prior art is deposited on the entire surface (
Figure 1 (Q). The important point here is that the opening 52 for the gate electrode is in two stages, and the total dielectric film thickness is 500 OA.
The point is that the aspect ratio of the bottom of the opening is reduced while maintaining the same value.

次に、第1図鋤において、全面にホトレジスト16を塗
布し、続けてウェーハに対し垂直方向からそのホトレジ
スト16及び8i01膜14上のTi−Pt−Auゲー
ト金属53を除去すると、第1図(ト)に示すようなT
fiゲート55が得られる。ここで、T型ゲート電極の
上部張シ出し部分の大きさは、概略85N、の開口面積
に相轟するものであシ、十分小さくできる。次に、ソー
ス、ドレイン%L極31.32を各々通常の方法で形成
すれば、第1図(ト)のようなGaAsME8PE’l
rを得ることができる。
Next, a photoresist 16 is applied to the entire surface using a spade in FIG. T as shown in
A fi gate 55 is obtained. Here, the size of the upper protruding portion of the T-shaped gate electrode can be made sufficiently small as long as it corresponds to the opening area of approximately 85N. Next, if the source and drain %L poles 31 and 32 are formed using the usual method, a GaAsME8PE'l as shown in FIG.
We can obtain r.

第2図は本発明の第2の冥施例の製造工程j欽の断面図
である。まず、第2図(5)において、ゲート電極の開
口部を設ける工程までは、第1図の実施例と同様である
が、次に第2回出)に示すように、WSi高融点金)A
21を被着し、続いて第2図(CJに示すように、ホト
レジストを用いた工、テパ、り法によシ、底部のSi、
凡開口部にのみWSi膜を残し、つづいて第2図qのよ
うに、全面に’l’ 1(500^)−人u(5000
A)22を順次蒸着し、外反エッチバyl、法Kl)、
5i01開口部にT i −Au 膜を残している。こ
の方法によると、高信頼性のW8i金属の上部の冬にT
i−Auが帽子の如く載った構造になシ、信頼性の高い
GaAs MESFETの実現が可能である。
FIG. 2 is a sectional view of the manufacturing process of the second embodiment of the present invention. First, in FIG. 2 (5), the process up to the step of providing an opening for the gate electrode is the same as the embodiment shown in FIG. A
21, and then, as shown in Figure 2 (CJ), the bottom Si,
The WSi film was left only in the opening, and as shown in Figure 2q, 'l' 1 (500^) - u (5000
A) Sequentially evaporate 22, eclipse etch Bayl, method Kl),
The Ti-Au film is left in the 5i01 opening. According to this method, the upper part of the W8i metal with high reliability can be
It is possible to realize a highly reliable GaAs MESFET with a structure in which i-Au is placed like a hat.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明における半導体装置の製造
方法においては、ゲート開口部を2段として、底部開口
のアスペクト比を小さく保ちつつ、全誘電体膜の厚みを
厚くするので、寄生容量を低減できると同時に1上部開
口を用いて流動性物質による工、チバック法によfiT
型ゲートの上部張シ出し量を自動的に制御できるという
長所を有し、高性能な半導体装置を実現することが可能
となる。
As explained above, in the method for manufacturing a semiconductor device according to the present invention, the gate opening is formed in two stages, the aspect ratio of the bottom opening is kept small, and the thickness of the entire dielectric film is increased, thereby reducing the parasitic capacitance. At the same time as possible, fiT was applied using a fluid material using the top opening, and by the Chivac method.
This method has the advantage that the amount of upper protrusion of the mold gate can be automatically controlled, making it possible to realize a high-performance semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(8)〜■および第2図四〜のは本発明による半
導体装置の製造方法の第1および第2の実施例を工程順
に示した断面図、第3図乃至第5図は従来技術を示す断
面図である。 11・・・・・・半絶縁性基板、12・・・・・・半導
体能動層、13・・・・・・8i、N、膜、14,51
・・・・・・8iへ膜、15゜54・・・・・・ホトレ
ジストパターン、16・・・・・・ホトレジスト、21
 =−WS i膜、22−−−−−− T i P t
Au HK。 31・・・・・・ソース、32・・・・・・ドレイン、
33・・・・・・ゲート電極、52・・・・・・開口、
53・・・・・・ゲート金属、55・・・・・・T型ゲ
ート電極。 ¥Jj図 筋20
1 (8) to (8) and FIG. 2 (4) to (4) are cross-sectional views showing the first and second embodiments of the method for manufacturing a semiconductor device according to the present invention in the order of steps, and FIGS. 3 to 5 are sectional views of conventional FIG. 2 is a cross-sectional view showing the technique. 11...Semi-insulating substrate, 12...Semiconductor active layer, 13...8i, N, film, 14, 51
......Membrane to 8i, 15°54...Photoresist pattern, 16...Photoresist, 21
=-WS i film, 22-----T i P t
AuHK. 31... Source, 32... Drain,
33... Gate electrode, 52... Opening,
53...Gate metal, 55...T-type gate electrode. ¥Jj diagram 20

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に半導体能動層を設けこの半導体能動層上
に第1および第2の誘電体膜を積層して形成する工程と
、これら誘電体膜上に所定のホトレジストパターンを形
成する工程と、前記ホトレジストパターンをマスクとし
て前記第2の誘電体膜を等方的エッチングによりエッチ
ングし、前記第1の誘電体膜表面を露出させ、さらに前
記ホトレジストパターンをマスクとして異方性エッチン
グにより前記第1の誘電体膜をエッチングし前記半導体
基板表面を露出させて開口部を形成する工程と、前記ホ
トレジストパターンを除去した後その全面に電極金属を
被着させる工程と、前記電極金属を設けた全面に流動性
物質を塗布し前記半導体基板に対し垂直な方向から全面
をドライエッチングして前記第2の誘電体膜表面を露出
させ、前記開口部にのみに前記電極金属を残す工程とを
含むことを特徴とする半導体装置の製造方法。
a step of providing a semiconductor active layer on a semiconductor substrate and laminating first and second dielectric films on the semiconductor active layer; forming a predetermined photoresist pattern on these dielectric films; The second dielectric film is etched by isotropic etching using the photoresist pattern as a mask to expose the surface of the first dielectric film, and then the first dielectric film is etched by anisotropic etching using the photoresist pattern as a mask. a step of etching the body film to expose the surface of the semiconductor substrate to form an opening; a step of removing the photoresist pattern and then depositing an electrode metal on the entire surface; and a step of depositing an electrode metal on the entire surface on which the electrode metal is provided. The method further comprises a step of applying a substance and dry etching the entire surface in a direction perpendicular to the semiconductor substrate to expose the surface of the second dielectric film, leaving the electrode metal only in the opening. A method for manufacturing a semiconductor device.
JP28476786A 1986-11-28 1986-11-28 Manufacture of semiconductor device Pending JPS63137481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28476786A JPS63137481A (en) 1986-11-28 1986-11-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28476786A JPS63137481A (en) 1986-11-28 1986-11-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63137481A true JPS63137481A (en) 1988-06-09

Family

ID=17682744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28476786A Pending JPS63137481A (en) 1986-11-28 1986-11-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63137481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801418A2 (en) * 1996-04-10 1997-10-15 Murata Manufacturing Co., Ltd. Method for forming a T-shaped gate electrode in a semi-conductor device, and the T-shaped gate electrode
US6087256A (en) * 1996-12-18 2000-07-11 Nec Corporation Method for manufacturing modified T-shaped gate electrode
JP2007242652A (en) * 2006-03-06 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> Process for fabricating semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801418A2 (en) * 1996-04-10 1997-10-15 Murata Manufacturing Co., Ltd. Method for forming a T-shaped gate electrode in a semi-conductor device, and the T-shaped gate electrode
EP0801418A3 (en) * 1996-04-10 1998-07-29 Murata Manufacturing Co., Ltd. Method for forming a T-shaped gate electrode in a semi-conductor device, and the T-shaped gate electrode
US6087256A (en) * 1996-12-18 2000-07-11 Nec Corporation Method for manufacturing modified T-shaped gate electrode
JP2007242652A (en) * 2006-03-06 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> Process for fabricating semiconductor device

Similar Documents

Publication Publication Date Title
US5155053A (en) Method of forming t-gate structure on microelectronic device substrate
JPH05109761A (en) Semiconductor dev ice and manufacture of the same
JPS5950567A (en) Manufacture of field effect transistor
JP2007081371A (en) Method of manufacturing amorphous high electron mobility transistor
JPS59229876A (en) Manufacture of schottky gate type field effect transistor
JPS63137481A (en) Manufacture of semiconductor device
JPH03248439A (en) Manufacture of compound semiconductor device
JPH065682B2 (en) Method for manufacturing semiconductor device
JP3144089B2 (en) Method for manufacturing field effect transistor
JP2664527B2 (en) Semiconductor device
JP2523985B2 (en) Method for manufacturing semiconductor device
JPH02231731A (en) Semiconductor device and manufacture thereof
JPS63273363A (en) Manufacture of semiconductor device
KR100849926B1 (en) Methods for fabricating a pseudomorphic high electron mobility transistor
JPS6323366A (en) Manufacture of field-effect transistor
JPH0684950A (en) Manufacture of field effect transistor
JPH04162635A (en) Manufacture of semiconductor device
JP2884621B2 (en) Method for manufacturing semiconductor device
JP2503667B2 (en) Method for manufacturing semiconductor device
JP2798041B2 (en) Method for manufacturing semiconductor device
JPS6163063A (en) Manufacture of semiconductor device
JP2607310B2 (en) Method for manufacturing field effect transistor
JPH05275455A (en) Semiconductor device and its manufacture
JP2803641B2 (en) Method for manufacturing semiconductor device
JPH0653246A (en) Manufacture of field effect transistor