JPS61176162A - Field-effect semiconductor device and manufacture thereof - Google Patents

Field-effect semiconductor device and manufacture thereof

Info

Publication number
JPS61176162A
JPS61176162A JP1804585A JP1804585A JPS61176162A JP S61176162 A JPS61176162 A JP S61176162A JP 1804585 A JP1804585 A JP 1804585A JP 1804585 A JP1804585 A JP 1804585A JP S61176162 A JPS61176162 A JP S61176162A
Authority
JP
Japan
Prior art keywords
gate electrode
film
width
window
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1804585A
Other languages
Japanese (ja)
Inventor
Kyoichi Ishii
恭一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1804585A priority Critical patent/JPS61176162A/en
Publication of JPS61176162A publication Critical patent/JPS61176162A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable to enhance the operating speed of an MOSFET or to enable the MOSFET to operate in a high frequency by a method wherein the structure thereof is made into a structure, wherein the MOSFET is provided with a Schottky gate electrode having a T-shaped section and both sides of the T-shaped vertical part thereof are embedded with an insulating film. CONSTITUTION:A high-impurity concentration region 18 is formed in the n-type active region excluding the channel part therein, and after that, a fifth SiO2 film 17 is removed and an etching is performed on a WSi film 13 from both sides thereof using a third SiO2 film 14 as a mask to make finer the lineal width thereof. The lineal width is processed finer into a lineal width of 0.3mum finer than the initial lineal width of 1mum. Then, after the SiO2 film 14 is removed, a sixth SiO2 film 19 is coated over the whole surface of the substrate in a thickness of 2,500Angstrom . Then, the WSi layer being left is removed by performing a dry etching and a window 20 is formed. A multilayer gate electrode 25 consisting of Ti, Pt and Au is formed in the window 20. By this way, the contact width (channel part) of the gate electrode 25 can be extremely lessened, and moreover, the resistivity Rg of the gate electrode can be brought into a sufficiently low value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マイクロ波領域において、多く用いられる電
界効果トランジスタ(FET)構造において、ショット
キー障壁をゲートとして用いた、所謂、MES  FE
Tの構造、および製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a so-called MES FE that uses a Schottky barrier as a gate in a field effect transistor (FET) structure that is often used in the microwave region.
The present invention relates to the structure and manufacturing method of T.

数GHz〜20GHz帯の周波数の領域での発振、増幅
にはGaAsを用い、金属と半導体とのショットキー障
壁を利用したME S (MEtal Sem1−co
nductor ) F E Tが広く用いられつつあ
るが、このようなトランジスタではその性能の向上のた
めに、チャンネル長を短(して、寄生容量、寄生抵抗を
減少させることが要望される。
MEtal Sem1-co uses GaAs for oscillation and amplification in the frequency range of several GHz to 20 GHz, and utilizes the Schottky barrier between metal and semiconductor.
FETs are becoming widely used, but in order to improve the performance of such transistors, it is desired that the channel length be shortened to reduce parasitic capacitance and parasitic resistance.

そのためにはパターンの微細化、高精度化が要求され、
またその製造にはセルファライン(自己整合)技術の適
用が重要視されて来ている。
To achieve this, finer patterns and higher precision are required.
In addition, the application of self-alignment (self-alignment) technology is becoming more important in their manufacturing.

〔従来の技術〕[Conventional technology]

従来の技術によるマイクロ波用GaAs MESFET
の構造を第2図に示す。その構造上の特徴は次のように
要約される。
GaAs MESFET for microwave using conventional technology
The structure of is shown in Figure 2. Its structural features can be summarized as follows.

(1)  ソース抵抗(Rs)3、ドレイン抵抗(Rd
 ”)4を減少させるために、チャンネル部以外のn型
GaAs層2を厚くした、所謂、リセス構造(ゲートお
よびチャネル部6が奥の引っ込んだ凹部に配置されてい
る構造)を採用したものが多い。
(1) Source resistance (Rs) 3, drain resistance (Rd
) 4, the n-type GaAs layer 2 other than the channel part is made thicker, and a so-called recessed structure (a structure in which the gate and channel part 6 are arranged in a deep recessed part) is adopted. many.

(2)  ショットキーゲート電極5は帯状のアルミニ
ウムで、リセス構造の底に配置されている。
(2) The Schottky gate electrode 5 is made of aluminum strip and is placed at the bottom of the recess structure.

(3)  ソースとドレインのオーミックコンタクト電
極7.8はAuGe−Auでn型GaAs層の一番高い
ところに配置されている。
(3) The source and drain ohmic contact electrodes 7.8 are made of AuGe-Au and are arranged at the highest point of the n-type GaAs layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記に述べた、従来の技術による方法では、次に述べる
ごとき種々の欠陥を生ずる。
The prior art methods described above result in various deficiencies as described below.

(1)ゲート電極はチャンネル長lを短くし、そのショ
ットキー接合容量を減少させるために細くしなければな
らないが、溝の底に形成しなければならず微細加工が難
しく、制御性、再現性が悪く、従って歩留りを低下させ
る。
(1) The gate electrode must be made thinner in order to shorten the channel length l and reduce its Schottky junction capacitance, but it must be formed at the bottom of the groove, making microfabrication difficult, making controllability and reproducibility difficult. is poor, thus reducing yield.

(2)更に、ゲート電極の断面形状は矩形であるためチ
ャンネル長を短くすると、加工上その厚さも薄くしなけ
ればならないので、ゲート抵抗R,が急激に増大する。
(2) Furthermore, since the cross-sectional shape of the gate electrode is rectangular, if the channel length is shortened, the thickness must also be reduced for processing purposes, so that the gate resistance R rapidly increases.

(3)  ゲート電極にアルミニウムを使っているので
、耐熱性、エレクトロマイグレーシラン等の観点から信
鯨性が高いとは言えない。
(3) Since aluminum is used for the gate electrode, it cannot be said that reliability is high in terms of heat resistance, electromigration silane, etc.

(4)  リセス構造は、マスク合わせパターンニング
において本質的に精度の点で不利であり、またゲート電
極5にアルミニウム材料、ソース、ドレイン電極7,8
には金糸統の材料を採用していることより、微細加工を
要望される半導体装置の加工にはなじまない点が多い。
(4) The recessed structure is inherently disadvantageous in terms of precision in mask alignment patterning, and the gate electrode 5 is made of aluminum material, the source and drain electrodes 7 and 8
Because it uses gold thread material, it is not suitable for processing semiconductor devices that require microfabrication.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、丁字形の断面を有するショットキーゲー
ト電極を備え、この丁字形の垂直部の下端は半導体基板
に接してショットキー接合部を形成する。また丁字形の
垂直部の両サイドは、高不純物濃度のソースおよびドレ
イン領域上に形成された絶縁膜によって埋め込まれた構
造を備えた電界効果半導体装置の構造によって解決され
る。
The above-mentioned problem includes a Schottky gate electrode having a T-shaped cross section, and the lower end of the vertical portion of the T-shape contacts the semiconductor substrate to form a Schottky junction. Further, both sides of the vertical portion of the T-shape are solved by a structure of a field effect semiconductor device having a structure buried by an insulating film formed on the source and drain regions with high impurity concentration.

また、このような電界効果半導体装置の製造は下記の方
法により解決される。
Further, manufacturing of such a field effect semiconductor device is solved by the following method.

即ち、化合物半導体基板の一導電形素子形成領域上に高
耐熱材料膜、次いで絶縁膜の二層を積層し、この二層を
帯状パターンを残してエツチング除去する。
That is, two layers of a high heat resistant material film and then an insulating film are laminated on a region of one conductivity type element of a compound semiconductor substrate, and these two layers are etched away leaving a strip pattern.

次いで、帯状パターンをマスクとして半導体基板に一導
電形不純物を導入した後、前記帯状パターンの高耐熱材
料膜をサイドエツチングによりパターン幅を狭くする。
Next, impurities of one conductivity type are introduced into the semiconductor substrate using the strip pattern as a mask, and then the high heat resistant material film of the strip pattern is side-etched to narrow the pattern width.

次いで、素子形成部全面に絶縁膜を被着した後、前記サ
イドエツチングされた高耐熱材料膜を除去してショット
キー接合窓を形成する工程が含まれた電界効果半導体装
置の製造方法によって解決される。
The problem is solved by a method for manufacturing a field effect semiconductor device, which includes a step of depositing an insulating film over the entire surface of the element forming area and then removing the side-etched high heat-resistant material film to form a Schottky junction window. Ru.

〔作用〕[Effect]

本発明では、半絶縁性の化合物半導体基板上に高融点金
属の硅化物をマスクとして゛、ソースコンタクト領域、
ドレインコンタクト領域を形成するための高濃度イオン
注入、アニールを行い、ソース抵抗Rs、ドレイン抵抗
Rdを低減する。
In the present invention, a source contact region,
High concentration ion implantation and annealing are performed to form a drain contact region, and the source resistance Rs and drain resistance Rd are reduced.

また、この高融点金属の硅化物をサイドエツチングによ
りサブミクロン幅のゲ°−ト窓をソースコンタクト領域
とドレインコンタクト領域に対して自己整合的に形成し
、ゲート電極はその形状を丁字形にして、ゲート抵抗R
gを大幅に低減する。
In addition, by side-etching this refractory metal silicide, submicron-width gate windows are formed in self-alignment with the source and drain contact regions, and the gate electrode is shaped like a T-shape. , gate resistance R
Significantly reduce g.

更に、ゲート電極は高信顛性のTi−Pt−Au構成の
金糸の多層電極を採用すると共に、T形ゲート電極は絶
縁物スペーサで支えられているので熱サイクル、機械的
振動、衝撃に対しても丈夫である。
Furthermore, the gate electrode adopts a multilayer electrode made of gold thread with a highly reliable Ti-Pt-Au composition, and the T-shaped gate electrode is supported by an insulating spacer, so it is resistant to thermal cycles, mechanical vibrations, and shocks. However, it is durable.

〔実施例〕〔Example〕

以下、本発明の一実施例について、その構造および製造
方法を詳細説明する。
Hereinafter, the structure and manufacturing method of an embodiment of the present invention will be described in detail.

第1図(a)に示すごとく、クローム(Cr)が添加さ
れたGaAsの半絶縁性基板1が準備され、その一方の
主面に第1の二酸化シリコン(Stow)膜9が形成さ
れる。次いでSiO□膜は素子形成部としての窓10が
選択的に除去される。
As shown in FIG. 1(a), a semi-insulating substrate 1 of GaAs doped with chromium (Cr) is prepared, and a first silicon dioxide (Stow) film 9 is formed on one main surface thereof. Next, the window 10 of the SiO□ film is selectively removed as an element forming portion.

S i Oz膜はCVD法あるいはスパッタリング法等
によって形成され、SiO□の選択的な除去は通常のフ
ォトリソグラフィ法を適用することが出来る。次いで、
窓10の開口したSiO□膜9をマスクとして、前記半
絶縁性基板にシリコンSt”がイオン注入される。
The SiOz film is formed by a CVD method or a sputtering method, and a normal photolithography method can be applied to selectively remove SiO□. Then,
Using the SiO□ film 9 with the window 10 as a mask, silicon St'' is ion-implanted into the semi-insulating substrate.

シリコンのイオン注入は、175KeV、ドーズ量2.
6×101!al−2で行われる。
Silicon ion implantation was performed at 175 KeV and at a dose of 2.
6×101! carried out in al-2.

次いで、化学的エツチング法によりSiO!膜9の除去
を行い、新たに第2の5iO−膜11を同様の方法で約
1000人波着する。しかる後、基板を窒素ガス中にて
約850℃、15分のアニールを行うことによりn型活
性領域12を形成する。これを第1図(ト))に示す。
Next, SiO! is formed using a chemical etching method. The film 9 is removed, and a second 5iO- film 11 is deposited in a similar manner by about 1,000 people. Thereafter, the substrate is annealed in nitrogen gas at about 850° C. for 15 minutes to form an n-type active region 12. This is shown in Figure 1 (g)).

次いで、第1図(C)に示すごとく、S i Oz膜1
1の除去を行い、半絶縁性基板1上に厚さ5ooo人程
度の高融点金属硅化物、例えばタングステンシリサイド
(WSi)層13と、第3のSiO□膜14を2000
人被着人被。
Next, as shown in FIG. 1(C), a SiOz film 1
1, and a layer 13 of a refractory metal silicide, for example, tungsten silicide (WSi) with a thickness of approximately 500 mm, and a third SiO□ film 14 of 2000 mm thick are formed on the semi-insulating substrate 1.
person-covered person-covered.

上記、WSiの形成は、真空蒸着、あるいはスパッタリ
ング法で容易に積層される。
The above-mentioned WSi is easily deposited by vacuum evaporation or sputtering.

次いで、ゲート部分を残してSiO□膜14をフォトリ
ソグラフィ法により選択的に除去し、更に、S i O
z膜をマスクとして、WSi層をCF aと0□の混合
ガスを用いて、ドライエツチングを行なうことによって
、第1図(dlに示す形状が得られる。
Next, the SiO□ film 14 is selectively removed by photolithography, leaving the gate portion, and then SiO
Using the z film as a mask, the WSi layer is dry etched using a mixed gas of CF a and 0□ to obtain the shape shown in FIG. 1 (dl).

次いで、第1図+8)に示すごとく、基板の主表面上に
再び第4の5iCh膜15を厚さ6000人程度被着し
、エツチングによりn型領域12より若干広い面積の窓
領域16を選択的に開口する。
Next, as shown in FIG. 1+8), a fourth 5iCh film 15 is again deposited on the main surface of the substrate to a thickness of about 6,000 layers, and a window region 16 having an area slightly larger than the n-type region 12 is selected by etching. open to the public.

次いで、Sing膜15とWSi膜13をマスクとして
、シリコンイオンを175 K e V 、ドーズ量は
1.7XIO”am−”にて打ち込みを行う。これを第
1図(f)に示す。
Next, using the Sing film 15 and the WSi film 13 as masks, silicon ions are implanted at 175 K e V and at a dose of 1.7XIO "am-". This is shown in FIG. 1(f).

次いで、全面を第5の5tot膜17を約1000人波
着する。しかる後、基板を窒素ガス中にて約850℃、
15分のアニールを行うことによりn型活性領域12内
にチャンネル部を除いて高不純物濃度領域18が形成さ
れる。これ第1図(幻に示す。
Next, a fifth 5-tot film 17 is applied over the entire surface by approximately 1,000 coats. After that, the substrate was heated at about 850°C in nitrogen gas.
By performing annealing for 15 minutes, a high impurity concentration region 18 is formed in the n-type active region 12 except for the channel portion. This is shown in Figure 1 (phantom).

上記、二つのn3型高不純物領域18は、それぞれソー
スコンタクト、およびドレインコンタクト領域を構成す
る。
The two n3 type high impurity regions 18 constitute a source contact region and a drain contact region, respectively.

次いで、第5のSiO□膜17が除去された後、第3の
Sin、膜14をマスクとして、CF、と02の混合ガ
スを用いたドライエツチングにより、前記WStのサイ
ドエツチングを両側より行って、その線幅を細くする。
Next, after the fifth SiO□ film 17 is removed, side etching of the WSt is performed from both sides by dry etching using a mixed gas of CF and 02 using the third Sin film 14 as a mask. , make the line width thinner.

サイドエツチングは両側より均等に行われ、線幅は当初
の1μmより0.3μmに細く加工される。これを第1
図011に示す。
Side etching is performed evenly from both sides, and the line width is reduced from the original 1 μm to 0.3 μm. This is the first
It is shown in FIG.

次いで、上記WSi層の上に残っているSlO!膜14
を除去した後、基板の全面にわたって第6のS i O
を膜19を2500人被着人被、これを第1図(1)ニ
示す。
Then, the remaining SlO! on top of the WSi layer! membrane 14
After removing the sixth SiO
The membrane 19 was applied to 2,500 people, as shown in FIG.

次いで、残されているWSi層をCF4と0.の混合ガ
スを用いたドライエツチングにより除去すると第1図0
)に示すごとく、幅0.3μmの窓20が形成されてn
型領域が露出する。
The remaining WSi layer is then coated with CF4 and 0. When removed by dry etching using a mixed gas of
), a window 20 with a width of 0.3 μm is formed.
The mold area is exposed.

この窓20は第1図(J)に示すごとく、両側のn。This window 20 has n on both sides as shown in FIG.

型ソースおよびドレインコンタクト領域から等距離で、
しかもWSiのサイドエツチングによって決まる微小間
隙にて自己整合的に形成されている。
equidistant from the type source and drain contact regions,
Moreover, it is formed in a self-aligned manner with a minute gap determined by side etching of WSi.

この窓20はゲートショットキー接合を作るための窓と
なる。
This window 20 becomes a window for creating a gate Schottky junction.

次いで、n0型コンタク) 81域18上の5iOd9
が選択的に除去されて、ソースコンタクト領域21、お
よびドレインコンタクト領域22が露出する。
Then, n0 type contact) 5iOd9 on 81 area 18
is selectively removed to expose source contact region 21 and drain contact region 22.

ソース、ドレインコンタクト領域には、それぞれAuG
e−Au構成の電極を通常のリフトオフ法を用いて、そ
れぞれソース電極23、ドレイン電極24を形成する。
AuG is used in the source and drain contact regions, respectively.
A source electrode 23 and a drain electrode 24 are formed from the electrodes having an e-Au structure using a normal lift-off method, respectively.

また、ゲート電極部には窓20にTi−Pt−Au構成
の多層ゲート電極25が形成される。この場合Tiがシ
ョットキー障壁のメタルとなる。この状態を第1図体)
に示す。
Further, a multilayer gate electrode 25 having a Ti-Pt-Au configuration is formed in the window 20 in the gate electrode portion. In this case, Ti becomes the Schottky barrier metal. This state is the first figure)
Shown below.

以上のごとき製造工程で作られたGaAs電界効果トラ
ンジスタはn型領域に接するゲート電極の接触幅(チャ
ンネル長)を極めて小さくすることが可能であり、しか
もゲート電極の抵抗値Rgを充分低い値とすることが出
来る。
In the GaAs field effect transistor manufactured through the manufacturing process described above, the contact width (channel length) of the gate electrode in contact with the n-type region can be made extremely small, and the resistance value Rg of the gate electrode can be kept to a sufficiently low value. You can.

以上の説明でゲート窓形成に用いた材料の高融点金属の
硅化物はWSiに限られるものではなく、高温熱処理に
耐え、GaAs基板に悪影響を与えず、SiO2等の絶
縁膜とエツチング特性の異なる高融点金属の硅化物でも
構わない。
In the above explanation, the high-melting point metal silicide used to form the gate window is not limited to WSi, but it can withstand high-temperature heat treatment, does not adversely affect the GaAs substrate, and has etching characteristics different from insulating films such as SiO2. A silicide of a high melting point metal may also be used.

また、絶縁膜としては、5t3Na 、A 1zC)3
、あるいはAIN等も適用可能である。
In addition, as an insulating film, 5t3Na, A1zC)3
, AIN, etc. are also applicable.

また、本発明はは単一のゲートFETのみならず、複数
のゲートを持つFET、あるいはこのような構造のFE
Tを含む集積回路にも適用可能である。
Furthermore, the present invention is applicable not only to a single gate FET but also to an FET with multiple gates or an FE with such a structure.
It is also applicable to integrated circuits containing T.

〔発明の効果〕〔Effect of the invention〕

以上に説明せるごとく、本発明の構造、および製造方法
を適用することにより、MES  FEToのより高速
化、あるいはより高い周波数・での動作が可能となった
As explained above, by applying the structure and manufacturing method of the present invention, it has become possible to operate the MES FETo at higher speeds or at higher frequencies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜伽)は本発明にかかわる電界効果半導体
装置を製造装置を工程順に示す断面図、第2図は従来の
方法による電界効果半導体装置の断面図を示す。 図面において 1はGaAs基板、   2はn型Gaps s3はソ
ース抵抗、    4はドレイン抵抗、5はゲート電極
、    6はチャンネル部、7はソース電極、   
 8はドレイン電極、9 、11.14.15.17.
19はS i Oを膜、10は素子形成部窓、  12
はn型活性領域、13はWSi層、    16はn″
″領域用窓、18はn“領域、    20はゲート用
窓、21はソースコンタクト 22はドレインコンタク
トM域、         領域、 23はソース電極、   24はドレイン電極、25は
ゲート電極、 をそれぞれ示す。 第1図 第1図
FIGS. 1(a) to 1) are cross-sectional views illustrating an apparatus for manufacturing a field-effect semiconductor device according to the present invention in the order of steps, and FIG. 2 is a cross-sectional view of a field-effect semiconductor device manufactured by a conventional method. In the drawing, 1 is a GaAs substrate, 2 is an n-type gap, s3 is a source resistance, 4 is a drain resistance, 5 is a gate electrode, 6 is a channel part, 7 is a source electrode,
8 is a drain electrode, 9, 11.14.15.17.
19 is a SiO film, 10 is an element forming part window, 12
is an n-type active region, 13 is a WSi layer, and 16 is n″
20 is a gate window, 21 is a source contact, 22 is a drain contact M region, 23 is a source electrode, 24 is a drain electrode, and 25 is a gate electrode. Figure 1Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)T字形の断面を有するショットキーゲート電極、
該T字形の垂直部の下端は基板に接してショットキー接
合部を形成し、該T字形の垂直部の両サイドは、高不純
物濃度のソースおよびドレイン領域上に形成された絶縁
膜によって埋め込まれた構造を特徴とする電界効果半導
体装置。
(1) Schottky gate electrode with a T-shaped cross section;
The lower end of the vertical portion of the T-shape is in contact with the substrate to form a Schottky junction, and both sides of the vertical portion of the T-shape are buried with an insulating film formed on the source and drain regions with high impurity concentration. A field-effect semiconductor device characterized by a structure.
(2)化合物半導体基板の一導電形素子形成領域上に高
耐熱材料膜、次いで絶縁膜の二層を積層する工程、該二
層を帯状パターンを残してエッチング除去する工程、該
帯状パターンをマスクとして半導体基板に一導電形不純
物を導入する工程、前記帯状パターンの高耐熱材料膜を
サイドエッチングによりパターン幅を狭くする工程、素
子形成部全面に絶縁膜を被着する工程、前記サイドエッ
チングされた高耐熱材料膜を除去してショットキー接合
窓を形成する工程を含むことを特徴とする電界効果半導
体装置の製造方法。
(2) A step of laminating two layers of a high heat resistant material film and then an insulating film on a one conductivity type element formation region of a compound semiconductor substrate, a step of etching away the two layers leaving a band-shaped pattern, and a masking of the band-shaped pattern. a step of introducing an impurity of one conductivity type into the semiconductor substrate as a step, a step of narrowing the pattern width of the high heat resistant material film of the strip pattern by side etching, a step of depositing an insulating film on the entire surface of the element forming area, a step of applying the side etched A method for manufacturing a field effect semiconductor device, comprising the step of removing a high heat resistant material film to form a Schottky junction window.
JP1804585A 1985-01-31 1985-01-31 Field-effect semiconductor device and manufacture thereof Pending JPS61176162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1804585A JPS61176162A (en) 1985-01-31 1985-01-31 Field-effect semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1804585A JPS61176162A (en) 1985-01-31 1985-01-31 Field-effect semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61176162A true JPS61176162A (en) 1986-08-07

Family

ID=11960714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1804585A Pending JPS61176162A (en) 1985-01-31 1985-01-31 Field-effect semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61176162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455871A (en) * 1987-08-26 1989-03-02 Sumitomo Electric Industries Manufacture of self-alignment type gate electrode
JPH02192733A (en) * 1989-01-20 1990-07-30 Sumitomo Electric Ind Ltd Manufacture of field-effect transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935479A (en) * 1982-08-24 1984-02-27 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935479A (en) * 1982-08-24 1984-02-27 Fujitsu Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455871A (en) * 1987-08-26 1989-03-02 Sumitomo Electric Industries Manufacture of self-alignment type gate electrode
JPH02192733A (en) * 1989-01-20 1990-07-30 Sumitomo Electric Ind Ltd Manufacture of field-effect transistor

Similar Documents

Publication Publication Date Title
KR900008277B1 (en) Method manufacturing a field effect transistor
JPH0354464B2 (en)
JPS6310589B2 (en)
JPH0260217B2 (en)
JPH022142A (en) Field effect transistor and its manufacture
JPH02271538A (en) Manufacture of semiconductor device
JPH0156534B2 (en)
JPS61176162A (en) Field-effect semiconductor device and manufacture thereof
JPS616871A (en) Manufacture of field-effect transistor
JPH022639A (en) Manufacture of field effect transistor
KR0163741B1 (en) Method for fabricating the ohmic contact electrode of semiconductor devices
JPS6112079A (en) Manufacture of semiconductor element
JP3342260B2 (en) Semiconductor device and method of manufacturing the same
JPS616867A (en) Manufacture of semiconductor device
JPS6260269A (en) Manufacture of field effect transistor
JPS616870A (en) Manufacture of field-effect transistor
JPH06151467A (en) Manufacture of field effect transistor
JPS6284566A (en) Field-effect transistor and manufacture thereof
KR930017165A (en) Thin film transistor and its manufacturing method
JPS6272175A (en) Manufacture of semiconductor device
JPH05275455A (en) Semiconductor device and its manufacture
JPH02285645A (en) Manufacture of semiconductor device
JPS61166080A (en) Field-effect transistor and manufacture thereof
JPS6292478A (en) Manufacture of semiconductor device
JPS6221275A (en) Manufacture of mis type semiconductor element