JPH04350945A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPH04350945A
JPH04350945A JP12395891A JP12395891A JPH04350945A JP H04350945 A JPH04350945 A JP H04350945A JP 12395891 A JP12395891 A JP 12395891A JP 12395891 A JP12395891 A JP 12395891A JP H04350945 A JPH04350945 A JP H04350945A
Authority
JP
Japan
Prior art keywords
film pattern
insulating film
active layer
side walls
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12395891A
Other languages
Japanese (ja)
Inventor
Toshiaki Kinosada
紀之定 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP12395891A priority Critical patent/JPH04350945A/en
Publication of JPH04350945A publication Critical patent/JPH04350945A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve uniformity and reproducibility by prescribing the gate length which requires microdimension with first and second side wall thicknesses. CONSTITUTION:After first side walls 1a, 15b made of a high melting point metal or a high melting point silicide are formed into an insulation film pattern 13, second side walls 16a, 16b made of an insulation film are formed into the insulation film pattern 13. Next, that side 15b of the first side walls 15a, 15b which does not serve as a gate electrode and a similar side 16b of the second side walls 16a, 16b are obliquely etched off. A thus obtained insulation film pattern 13 having first and second side walls 15a, 16a only on one side and a photoresist are used a mask for high concentration implantation of an impurity of the same conductivity type as that of an active layer 12 to form a high-doped region serving as source-drain regions 18a, 18b. This process provides high uniformity and reproducibility.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電界効果トランジスタに
関し、更に詳しくは低ソース抵抗と高ドレイン耐圧を有
する非対称n+構造の電界効果トランジスタの製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to field effect transistors, and more particularly to a method for manufacturing an asymmetric n+ structure field effect transistor having low source resistance and high drain breakdown voltage.

【0002】0002

【従来の技術】従来のこの種のトランジスタとしては、
図8に示すようなゲート電極23・ソース(n+)領域
26a間距離L1がゲート電極23・ドレイン(n+)
領域26b間距離L2より小さい非対称n+構造の電界
効果トランジスタ(FET)がある。これはL1=L2
の対称n+構造FETに比べると、低ソース抵抗、高ド
レイン耐圧を両立できる特長を有している。尚、図中、
21はGaAs半絶縁性基板、22はn型能動層、28
、29はそれぞれソース電極、ドレイン電極である。
[Prior Art] Conventional transistors of this type include:
The distance L1 between the gate electrode 23 and the source (n+) region 26a as shown in FIG.
There is a field effect transistor (FET) with an asymmetric n+ structure in which the distance between the regions 26b is smaller than the distance L2. This is L1=L2
Compared to the symmetric n+ structure FET, it has the advantage of being able to achieve both low source resistance and high drain breakdown voltage. In addition, in the figure,
21 is a GaAs semi-insulating substrate, 22 is an n-type active layer, 28
, 29 are a source electrode and a drain electrode, respectively.

【0003】図9、図10及び図11に従来の非対称n
+構造FETの製造方法を示す。図9に示すように、半
絶縁性GaAs基板21に選択的にSiイオン注入を行
って、n型能動層22を形成し、更にWSiやWN等の
高融点金属シリサイドを全面堆積後、RIE(反応性イ
オンエッチング)法によりゲート電極23を形成する。 次に図10に示すように、全面をSiN膜やSiO2膜
等の絶縁膜24で覆った後、フォトレジスト25をマス
クにしてSiイオン注入を行い、ソース領域26a、ド
レイン領域26bを形成する。次に図11に示すように
、絶縁膜24を除去した後、フォトレジスト27を用い
てオーミック金属AuGe/Ni/Auを蒸着し、リフ
トオフを行い、アイロを行う通常の方法でソース電極2
8、ドレイン電極29を形成して、図8のFETが得ら
れる。
FIGS. 9, 10 and 11 show conventional asymmetric n
A method for manufacturing a FET with a + structure is shown. As shown in FIG. 9, Si ions are selectively implanted into a semi-insulating GaAs substrate 21 to form an n-type active layer 22, and a refractory metal silicide such as WSi or WN is deposited on the entire surface, followed by RIE ( A gate electrode 23 is formed by a reactive ion etching method. Next, as shown in FIG. 10, after covering the entire surface with an insulating film 24 such as a SiN film or a SiO2 film, Si ions are implanted using the photoresist 25 as a mask to form a source region 26a and a drain region 26b. Next, as shown in FIG. 11, after removing the insulating film 24, ohmic metals AuGe/Ni/Au are deposited using a photoresist 27, lift-off is performed, and an ironing process is performed to form the source electrode 2.
8. Form the drain electrode 29 to obtain the FET shown in FIG.

【0004】0004

【発明が解決しようとする課題】上記従来法では、図1
0に示したようにゲート23とフォトレジスト25をう
まくアライメントさせることにより非対称構造を得てい
た。しかしながら、このようなL1、L2の制御をフォ
トリソ工程のアライメントに依っている従来製造法をゲ
ート長La≦0.1μm、L1〜0.1μm、L2=0
.2〜0.5μmの微細寸法が要求される超高周波FE
Tに適用することアライメント精度の点で無理があり、
高歩留、ウエハ面内高均一性及びウエハ間高均一性を得
ることは非常に困難である。
[Problem to be solved by the invention] In the above conventional method, FIG.
As shown in FIG. 0, an asymmetric structure was obtained by properly aligning the gate 23 and the photoresist 25. However, the conventional manufacturing method, which relies on alignment in the photolithography process to control L1 and L2, has a gate length La≦0.1 μm, L1 to 0.1 μm, and L2=0.
.. Ultra-high frequency FE that requires fine dimensions of 2 to 0.5 μm
It is unreasonable to apply it to T in terms of alignment accuracy,
It is very difficult to obtain high yield, high within-wafer uniformity, and high wafer-to-wafer uniformity.

【0005】本発明はこのような問題点に鑑みなされた
ものであり、La≦0.1μmのゲートを有する非対称
n+構造FETの製造法を提供することを目的とする。
The present invention was made in view of these problems, and an object of the present invention is to provide a method for manufacturing an asymmetric n+ structure FET having a gate with La≦0.1 μm.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
、本発明の電界効果トランジスタの製造法は、半導体基
板の主表面に能動層を形成するためのイオン注入を行い
、しかる後同一表面上にソース電極、ゲート電極、ドレ
イン電極を並置して電界効果トランジスタを形成する際
に、前記能動層上に絶縁膜パターンを形成する工程と、
該絶縁膜パターンに高融点金属又は高融点金属シリサイ
ドからなる第1の側壁を形成する工程と、該高融点金属
の第1の側壁を有する前記絶縁膜パターンに更に絶縁膜
からなる第2の側壁を形成する工程と、前記第1の側壁
の両側のうちゲート電極とならない側及び第2の側壁の
同じ側を斜めRIE(反応性イオンエッチング)法ない
しは斜めECR(電子サイクロトロン共鳴)エッチング
法にて除去する工程と、該工程により得られた片側のみ
前記第1の側壁及び第2の側壁を有する絶縁膜パターン
及びフォトレジストをマスクとして前記能動層と同一伝
導型となる不純物を高濃度にイオン注入してソース及び
ドレイン領域となる高濃度領域を形成する工程と、前記
能動層及び高濃度層領域を熱処理による活性化する工程
と、前記高濃度層領域上にソース及びドレイン電極を形
成する工程を含むことを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a field effect transistor of the present invention involves performing ion implantation to form an active layer on the main surface of a semiconductor substrate, and then implanting ions on the same surface. forming an insulating film pattern on the active layer when forming a field effect transistor by juxtaposing a source electrode, a gate electrode, and a drain electrode;
forming a first sidewall made of a high melting point metal or high melting point metal silicide on the insulating film pattern; and a second sidewall further made of an insulating film on the insulating film pattern having the first sidewall of the high melting point metal. and forming a side of both sides of the first side wall that does not become a gate electrode and the same side of the second side wall using an oblique RIE (reactive ion etching) method or an oblique ECR (electron cyclotron resonance) etching method. and ion implantation of an impurity having the same conductivity type as the active layer at a high concentration using the insulating film pattern and photoresist having the first sidewall and the second sidewall on one side obtained by this step as a mask. a step of forming a high concentration region to become a source and drain region; a step of activating the active layer and the high concentration layer region by heat treatment; and a step of forming source and drain electrodes on the high concentration layer region. It is characterized by containing.

【0007】[0007]

【作用】本発明のFET製造法では、微細寸法が要求さ
れるLa及びL1は第1及び第2の側壁の厚さでそれぞ
れ規定される。従って、これらの制御は、0.1μmレ
ベルでは制御困難なフォトリソ工程に依る従来製造法と
異なり、精密制御可能な側壁形成工程に依っている為、
容易に高い均一性、再現性が得られる。
[Operation] In the FET manufacturing method of the present invention, La and L1, which require minute dimensions, are defined by the thicknesses of the first and second side walls, respectively. Therefore, unlike the conventional manufacturing method that relies on a photolithography process that is difficult to control at the 0.1 μm level, these controls rely on a sidewall forming process that can be precisely controlled.
High uniformity and reproducibility can be easily obtained.

【0008】[0008]

【実施例】以下に本発明の実施例について説明する。図
1ないし図7は本発明の製造工程を説明するための図で
ある。まず、図1に示すように、半絶縁性GaAs基板
11上にフォトレジスト(図示せず)をマスクにしてS
iイオンを選択的に注入し、n型能動層12を形成する
。注入条件は、50KeV、2×1012cm−2とし
た。その後、SiO2膜を500nm全面堆積し、RI
Eに法より加工形成し、絶縁膜パターン13を得る。絶
縁膜パターンのソース・ドレイン方向の寸法(L2)は
0.3μmとした。RIE加工条件はCHF3ガス(3
0SCCM)、RFパワー100W、背圧10Pa、エ
ッチングレート30nm/minである。更にWN膜1
4を全面に100nm堆積させる。
[Examples] Examples of the present invention will be described below. 1 to 7 are diagrams for explaining the manufacturing process of the present invention. First, as shown in FIG. 1, a photoresist (not shown) is used as a mask on a semi-insulating GaAs substrate 11, and S
An n-type active layer 12 is formed by selectively implanting i ions. The implantation conditions were 50 KeV and 2 x 1012 cm-2. After that, a 500 nm SiO2 film was deposited on the entire surface and RI
The insulating film pattern 13 is obtained by processing and forming by the method E. The dimension (L2) of the insulating film pattern in the source/drain direction was 0.3 μm. The RIE processing conditions are CHF3 gas (3
0SCCM), RF power of 100 W, back pressure of 10 Pa, and etching rate of 30 nm/min. Furthermore, WN film 1
4 is deposited to a thickness of 100 nm over the entire surface.

【0009】次に、図2に示すように、RIE法にて第
1の側壁15a、15bを形成する。この際のRIE加
工条件はCF4(30SCCM)+O2(3SCCM)
混合ガス、RFパワー100W、背圧5Pa、エッチン
グレート50nm/minである。次に図3に示すよう
に、SiN膜を全面に100nm堆積させた後(図示せ
ず)、RIE法にて第2の側壁16a、16bを形成す
る。この際のRIE加工条件はCHF3(45SCCM
)+O2(5SCCM)混合ガス、RFパワー100W
、背圧2Pa、エッチングレート100nm/minで
ある。
Next, as shown in FIG. 2, first side walls 15a and 15b are formed by RIE. The RIE processing conditions at this time are CF4 (30SCCM) + O2 (3SCCM)
Mixed gas, RF power of 100 W, back pressure of 5 Pa, and etching rate of 50 nm/min. Next, as shown in FIG. 3, after depositing a SiN film to a thickness of 100 nm over the entire surface (not shown), second side walls 16a and 16b are formed by RIE. The RIE processing conditions at this time are CHF3 (45SCCM
)+O2 (5SCCM) mixed gas, RF power 100W
, a back pressure of 2 Pa, and an etching rate of 100 nm/min.

【0010】次に図4に示すように、斜めECR法にて
、片側の側壁15b、16bを除去する。
Next, as shown in FIG. 4, the side walls 15b and 16b on one side are removed using the oblique ECR method.

【0011】その際のECR加工条件はCF4(30S
CCM)+O2(3SCCM)混合ガス、RFパワー1
00W、背圧10Paである。エッチング時間は合計4
分であった。ECRガスの入射角度は基板表面から60
度と設定した。
[0011]The ECR processing conditions at that time were CF4 (30S
CCM) + O2 (3SCCM) mixed gas, RF power 1
00W, back pressure 10Pa. Total etching time is 4
It was a minute. The incident angle of ECR gas is 60 degrees from the substrate surface.
It was set as degree.

【0012】次に図5に示すように、フォトレジスト1
7、絶縁膜パターン13、第1の側壁15a及び第2の
側壁16aをマスクにしてSiイオン注入を行いソース
領域18a、ドレイン領域18bを形成する。注入条件
は、100KeV、2×1013cm−2とした。フォ
トレジスト17を除去した後、活性化熱処理を施す。熱
処理条件はRTA(急速アニール)法にて850°C、
5秒である。
Next, as shown in FIG.
7. Using the insulating film pattern 13, the first sidewall 15a, and the second sidewall 16a as a mask, Si ions are implanted to form a source region 18a and a drain region 18b. The implantation conditions were 100 KeV and 2×10 13 cm −2 . After removing the photoresist 17, activation heat treatment is performed. The heat treatment conditions were RTA (rapid annealing) at 850°C;
It is 5 seconds.

【0013】次に図6に示すように、フォトレジスト1
9を用いて、オーミック金属AuGe(130nm)/
Ni(30nm)/Au(200nm)を蒸着し、リフ
トオフし、ソース電極110a及びドレイン電極110
bを形成し、水素雰囲気中で440°C、1分のアロイ
を行って、図7の所望のFETを完成させる。
Next, as shown in FIG.
Ohmic metal AuGe (130 nm)/
Ni (30 nm)/Au (200 nm) is deposited and lifted off to form a source electrode 110a and a drain electrode 110.
b is formed, and alloying is performed at 440° C. for 1 minute in a hydrogen atmosphere to complete the desired FET shown in FIG.

【0014】本実施例の効果を調べるため、本実施例の
FETと同じL1(0.1μm)、L2(0.3μm)
及びLa(0.1μm)を有する従来製造法によるFE
Tを作成したところ、歩留では3割以上、均一性(ウエ
ハ面内、ウエハ間とも)では2割以上、本実施例の製造
法の方が優れていた。
In order to investigate the effect of this example, L1 (0.1 μm) and L2 (0.3 μm), which are the same as the FET of this example, were used.
and La (0.1 μm) by conventional manufacturing method.
When T was fabricated, the manufacturing method of this example was superior in terms of yield of 30% or more and uniformity (both within the wafer surface and between wafers) of 20% or more.

【0015】尚、本実施例では絶縁膜パターンはSiO
2膜、第2の側壁はSiN膜であったが、所望の加工形
状が得られるならば他種の絶縁膜でもかまわない。第1
の側壁も同様にWN膜以外でもかまわない。
In this embodiment, the insulating film pattern is made of SiO
Although the second film and the second side wall were made of a SiN film, other types of insulating films may be used as long as the desired processed shape can be obtained. 1st
Similarly, the side walls of the film may be made of other than WN film.

【0016】[0016]

【発明の効果】以上のことから明らかなように、本発明
に依れば、超高周波FETに好適な極短ゲートを有し、
且つ非対称n+構造のFETを高歩留、高均一に製造で
きる。
[Effects of the Invention] As is clear from the above, the present invention has an extremely short gate suitable for an ultra-high frequency FET,
In addition, FETs with an asymmetric n+ structure can be manufactured with high yield and high uniformity.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例による製造工程の第1ステ
ップを示す構成説明図である。
FIG. 1 is a configuration explanatory diagram showing a first step of a manufacturing process according to an embodiment of the present invention.

【図2】上記実施例における製造工程の第2ステップを
示す構成説明図である。
FIG. 2 is a configuration explanatory diagram showing the second step of the manufacturing process in the above embodiment.

【図3】上記実施例における製造工程の第3ステップを
示す構成説明図である。
FIG. 3 is a configuration explanatory diagram showing the third step of the manufacturing process in the above embodiment.

【図4】上記実施例における製造工程の第4ステップを
示す構成説明図である。
FIG. 4 is a configuration explanatory diagram showing the fourth step of the manufacturing process in the above embodiment.

【図5】上記実施例における製造工程の第5ステップを
示す構成説明図である。
FIG. 5 is a configuration explanatory diagram showing the fifth step of the manufacturing process in the above embodiment.

【図6】上記実施例における製造工程の第6ステップを
示す構成説明図である。
FIG. 6 is a configuration explanatory diagram showing the sixth step of the manufacturing process in the above embodiment.

【図7】上記実施例における製造工程の第7ステップを
示す構成説明図である。
FIG. 7 is a configuration explanatory diagram showing the seventh step of the manufacturing process in the above embodiment.

【図8】従来例を示す構成説明図であるFIG. 8 is a configuration explanatory diagram showing a conventional example.

【図9】従来例
の製造方法の第1ステップを示す構成説明図である。
FIG. 9 is a configuration explanatory diagram showing the first step of a conventional manufacturing method.

【図10】従来例の製造方法の第2ステップを示す構成
説明図である。
FIG. 10 is a configuration explanatory diagram showing the second step of the conventional manufacturing method.

【図11】従来例の製造方法の第3ステップを示す構成
説明図である。
FIG. 11 is a configuration explanatory diagram showing the third step of the conventional manufacturing method.

【符号の説明】[Explanation of symbols]

11    GaAs半絶縁性基盤 12    能動層 13    絶縁膜パターン 14    絶縁膜 15    ゲート電極 15a、15b    第1の側壁(ゲート電極)16
a、16b    第2の側壁 17、19    レジスト 18a    ソース領域 18b    ドレイン領域 110a    ソース電極 110b    ドレイン電極
11 GaAs semi-insulating substrate 12 Active layer 13 Insulating film pattern 14 Insulating film 15 Gate electrodes 15a, 15b First sidewall (gate electrode) 16
a, 16b Second sidewalls 17, 19 Resist 18a Source region 18b Drain region 110a Source electrode 110b Drain electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板の主表面に能動層を形成す
るためのイオン注入を行い、しかる後同一表面上にソー
ス電極、ゲート電極、ドレイン電極を並置して電界効果
トランジスタを形成する際に、前記能動層に絶縁膜パタ
ーンを形成する工程と、該絶縁膜パターンに高融点金属
又は高融点金属シリサイドからなる第1の側壁を形成す
る工程と、該高融点金属の第1の側壁を有する前記絶縁
膜パターンに更に絶縁膜からなる第2の側壁を形成する
工程と、前記第1の側壁の両側のうちゲート電極となら
ない側及び第2の側壁の同じ側を斜め反応性イオンエッ
チング法ないしは斜め電子サイクロトロン共鳴エッチン
グ法にて除去する工程と、該工程により得られた片側の
み前記第1の側壁及び第2の側壁を有する絶縁膜パター
ン及びフォトレジストをマスクとして前記能動層と同一
伝導型となる不純物を高濃度にイオン注入してソース及
びドレイン領域となる高濃度領域を形成する工程と、前
記能動層及び高濃度層領域を熱処理により活性化する工
程と、前記高濃度層領域上にソース及びドレイン電極を
形成する工程を含むことを特徴とする電界効果トランジ
スタの製造方法。
Claim 1: When ion implantation is performed to form an active layer on the main surface of a semiconductor substrate, and then a source electrode, a gate electrode, and a drain electrode are juxtaposed on the same surface to form a field effect transistor, forming an insulating film pattern on the active layer; forming a first sidewall made of a refractory metal or a refractory metal silicide on the insulating film pattern; A step of further forming a second sidewall made of an insulating film on the insulating film pattern, and etching the side of both sides of the first sidewall that does not become a gate electrode and the same side of the second sidewall using an oblique reactive ion etching method or an oblique process. A step of removing by electron cyclotron resonance etching method, and using the insulating film pattern and photoresist having the first side wall and the second side wall on one side obtained by this step as a mask, the pattern becomes the same conductivity type as the active layer. a step of ion-implanting impurities at a high concentration to form high concentration regions that will become source and drain regions; a step of activating the active layer and the high concentration layer region by heat treatment; A method for manufacturing a field effect transistor, comprising the step of forming a drain electrode.
JP12395891A 1991-05-28 1991-05-28 Manufacture of field effect transistor Pending JPH04350945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12395891A JPH04350945A (en) 1991-05-28 1991-05-28 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12395891A JPH04350945A (en) 1991-05-28 1991-05-28 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPH04350945A true JPH04350945A (en) 1992-12-04

Family

ID=14873556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12395891A Pending JPH04350945A (en) 1991-05-28 1991-05-28 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPH04350945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638801B2 (en) 2001-03-29 2003-10-28 Nec Corporation Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638801B2 (en) 2001-03-29 2003-10-28 Nec Corporation Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
KR920002090B1 (en) Method of manufacturing field effect transistor
JPH0212019B2 (en)
US5001077A (en) Method of producing an asymmetrically doped LDD MESFET
JPH0475351A (en) Manufacture of chemical compound semiconductor device
JPH04350945A (en) Manufacture of field effect transistor
JPH06349856A (en) Thin-film transistor and its manufacture
JPH05198796A (en) Semiconductor device and manufacture thereof
JPH04291732A (en) Manufacture of field-effect transistor
JPS6037173A (en) Manufacture of field effect transistor
JPS6258154B2 (en)
JPH01251667A (en) Manufacture of field effect transistor
JPS62291070A (en) Manufacture of semiconductor device
JPH06196694A (en) Semiconductor device and manufacture thereof
JPS6086871A (en) Manufacture of field effect transistor
JPH02161735A (en) Semiconductor device and manufacture thereof
JPH03289142A (en) Manufacture of compound semiconductor device
JPH02271540A (en) Manufacture of field-effect transistor
JPH08250518A (en) Semiconductor device and its manufacture
JPS6187378A (en) Manufacture of compound semiconductor device
JPS62105480A (en) Manufacture of semiconductor device
JPS6348868A (en) Manufacture of schottky gate type field effect transistor
JPS6037176A (en) Manufacture of field effect transistor
JPS6290979A (en) Manufacture of semiconductor device
JPS6281763A (en) Manufacture of semiconductor device
JPH03286538A (en) Manufacture of semiconductor device