JPS6281763A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6281763A
JPS6281763A JP22184285A JP22184285A JPS6281763A JP S6281763 A JPS6281763 A JP S6281763A JP 22184285 A JP22184285 A JP 22184285A JP 22184285 A JP22184285 A JP 22184285A JP S6281763 A JPS6281763 A JP S6281763A
Authority
JP
Japan
Prior art keywords
film
substrate
mask
source
mask film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22184285A
Other languages
Japanese (ja)
Inventor
Osamu Suga
治 須賀
Yasuo Wada
恭雄 和田
Shoji Yadori
章二 宿利
Fumio Murai
二三夫 村井
Shinji Okazaki
信次 岡崎
Takeshi Kimura
剛 木村
Akira Sato
朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22184285A priority Critical patent/JPS6281763A/en
Publication of JPS6281763A publication Critical patent/JPS6281763A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform highly accurate position alignment and to suppress dispersion in threshold voltage of an MOSFET, by forming a high concentration impurity layer at the center between a source and a drain by a self-aligning method. CONSTITUTION:On a silicon substrate 1, a Cr film 10 is deposited. A resist gate pattern 11 is formed. Etching of the Cr film 10 is performed to the surface of the substrate 10. Over-etching of 200% is carried out in the lateral direction, and the Cr film is side-etched. A thin Cr wire 10 is formed at the center of the lower surface of the resist pattern 11. Thereafter, with the resist gate pattern 11 as a mask, as ions are implanted in the silicon substrate 1. A source region 4 and a drain region 5 are formed. The resist gate pattern 11 is removed, and annealing is performed. An SiO2 film 12 is deposited, and the surface is flattened. Back etching is performed until the surface of the thin Cr wire 10 is exposed. The thin Cr wire 10 is removed, and a minute hole 13 is formed in the SiO2 film 12. B ions are implanted through a hole 14, and a high concentration impurity layer 6 is formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規なMO8IE界効果トランジスタ(以下、
MOSFETと称する)および複数個のMOSFETか
らなるMOS集積回路(以下。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a novel MO8IE field effect transistor (hereinafter referred to as
MOSFET) and a MOS integrated circuit (hereinafter referred to as MOSFET) consisting of a plurality of MOSFETs.

MOSLSIと称する)の製造方法に係り、特に微小チ
ャネル長をもつMOSFET、MOSLSIに好適な製
造方法に関する。
The present invention relates to a manufacturing method for MOSLSI (referred to as MOSLSI), and particularly to a manufacturing method suitable for MOSFET and MOSLSI having a minute channel length.

〔発明の背景〕[Background of the invention]

MOSFETの重要な性能の一つにトランジスタのゲイ
ン定数βがある。これは電界効果移動度μFE、ゲート
酸化膜容量COX、チャネル幅W a t f、チャネ
ル長り。ffにより一般に次式で表わされ、β=μFt
coxWeff/ Leff    +・・・・・(1
)この値が大きければ大きい程、高速のスイッチング動
作が可能となる。
One of the important performances of MOSFET is the gain constant β of the transistor. These are field effect mobility μFE, gate oxide film capacitance COX, channel width W a t f, and channel length. ff is generally expressed by the following formula, β=μFt
coxWeff/ Leff +・・・・・・(1
) The larger this value is, the faster the switching operation becomes possible.

したがって、ゲイン定数βを増大してMOSFETを高
性能化するためには、(1)式がられがるよう−に、μ
FE、Cox、 Weff をそれぞれ大きくとり、L
eff を小さくすればよいことがわかる。
Therefore, in order to increase the gain constant β and improve the performance of the MOSFET, μ
Increase FE, Cox, and Weff, and L
It can be seen that it is sufficient to reduce eff.

μFEはチャネル領域の不純物濃度により、また、CO
Xはゲート酸化膜の膜厚により、各々決定される。そこ
で、βをより大きくするためには、Leff を小さく
し、welff を大きくしなければならない。これら
り。ff、 WeffはいずれもMOSFETの構造定
数であって、設計上決まる量であるから、素子性能向上
を図るためには、従来構造のMOSFETの構造自体を
設計変更する必要がある。
μFE depends on the impurity concentration in the channel region, and also due to the CO
X is determined depending on the thickness of the gate oxide film. Therefore, in order to increase β, Leff must be decreased and welf must be increased. These. Both ff and Weff are structural constants of the MOSFET, and are determined by design. Therefore, in order to improve device performance, it is necessary to change the design of the conventional MOSFET structure itself.

所で、第4図は従来の一般的なMOSFETの要部構造
を示す図であり、1は例えばp形Si基板、2は熱酸化
等により形成したゲート酸化膜、3は例えばPを含む多
結晶SLからなるゲート電極、4および5はそれぞれゲ
ート酸化膜2およびゲート電極3をマスクとして不純物
の乾式拡散又は不純物イオン打込みとその後の熱アニー
ルによって形成したソースおよびドレインである。この
構造のMOSFETにおいて、構造定数のうちのLef
fは図示のように、ソース4とドレイン5との間隔で定
義されるチャネル長であり、ゲート長をL9.ソース4
およびドレイン両不純物領域の横方向広がりをX党とす
れば、 Laff=L5 2Xa       ・・−(2)で
表わされる。
By the way, FIG. 4 is a diagram showing the main part structure of a conventional general MOSFET, in which 1 is a p-type Si substrate, 2 is a gate oxide film formed by thermal oxidation, etc., and 3 is a polyurethane film containing, for example, P. Gate electrodes 4 and 5 made of crystalline SL are a source and a drain formed by dry impurity diffusion or impurity ion implantation using gate oxide film 2 and gate electrode 3 as masks, respectively, and subsequent thermal annealing. In a MOSFET with this structure, Lef of the structure constants is
As shown in the figure, f is the channel length defined by the distance between the source 4 and the drain 5, and the gate length is L9. source 4
Letting the lateral extent of both the drain and drain impurity regions be X, it is expressed as Laff=L5 2Xa . . . -(2).

すなわち、MOSFETの性能を決める重要なパラメー
タであるチャネル長Laffはゲート電極の加工および
横方向拡散という2つのパラメータによって決まること
がわかる。したがって、ある性能のMOSFETを得よ
うとする時に、それに要求されるLaffはゲート電極
の加工水準および不純物拡散領域の横方向広がり具合に
よって制限されるため、素子の大きさは自ずと決まって
しまう。その結果、この性能を維持したまま、より一層
の素子の微細化、高集積化を図ることは上記構造のMO
SFETにおいては不可能であった。
That is, it can be seen that the channel length Laff, which is an important parameter that determines the performance of the MOSFET, is determined by two parameters: the processing of the gate electrode and the lateral diffusion. Therefore, when trying to obtain a MOSFET with a certain performance, the required Laff is limited by the processing level of the gate electrode and the lateral extent of the impurity diffusion region, so the size of the element is naturally determined. As a result, it is important to achieve further miniaturization and higher integration of elements while maintaining this performance.
This was not possible with SFET.

このような問題点を解消するMOSFETが特開昭59
−61965号公報において提案されている。
A MOSFET that solves these problems was developed in Japanese Patent Application Laid-open No. 1983.
This is proposed in the publication No.-61965.

これは上記のようなMOSFETのチャネル部分に集束
イオンビームを用いて部分的に不純物を高濃度に導入す
ることにより、前記パラメータに依存せずに、実質的な
チャネル長Laff を短かくし、高いゲイン定数βを
もったMOSFETを得ようとするものである。
This is achieved by partially introducing impurities into the channel portion of the MOSFET at a high concentration using a focused ion beam, thereby shortening the effective channel length Laff and achieving high gain, regardless of the above parameters. The purpose is to obtain a MOSFET with a constant β.

第5図は上記のMOSFETの要部構成の代表例を示し
た断面図である。これは、例えば、p形Si基板1内に
設けられたAs拡散層からなるソース4、ドレイン5の
間に集束イオン線を用いて、高濃度不純物層(この場合
、例えば0.1−幅の高濃度B打込み層)6を付加した
ものである。この高濃度不純物層6を付加することかに
より、前記チャネル長Laffは実質的に該高濃度不純
物層6の幅と等しくなるため、前述のゲート長L9に比
較して、チャネル長Leff をはるかに短かくするこ
とができる。この理由は、従来のようにゲート加工や、
ソース、ドレインの横方向拡散によってチャネル長を決
める代りに、径0.17m以下の集束イオン線を走査す
ることによって、0.1−幅という微細な幅の不純物濃
度領域が制御できることによる。
FIG. 5 is a sectional view showing a typical example of the configuration of the main parts of the above MOSFET. For example, a focused ion beam is used between the source 4 and drain 5, which are made of an As diffusion layer provided in the p-type Si substrate 1, to form a highly concentrated impurity layer (in this case, for example, A high-concentration B implantation layer) 6 is added. By adding this high-concentration impurity layer 6, the channel length Laff becomes substantially equal to the width of the high-concentration impurity layer 6, so that the channel length Leff is much longer than the gate length L9 described above. Can be shortened. The reason for this is that conventional gate processing,
This is because, instead of determining the channel length by lateral diffusion of the source and drain, by scanning a focused ion beam with a diameter of 0.17 m or less, an impurity concentration region with a minute width of 0.1-width can be controlled.

ところが、MOSFETの重要な性能の−っであるしき
い値電圧Vthの上記集束イオン線による高濃度不純物
層位置依存性を実験的に調べてみたところ、第6図に示
す結果が得られた。実験は加速電圧20 K e V、
イオンビーム径0.2庫の集束Bイオン線を、ゲート酸
化膜厚20nm、Le、ff O,84のMOSFET
のチャネル領域に走査して行なった。第3図によれば、
集束イオン線の走査位置が±0.151M以上変動する
と、しきい値電圧V t hは±0.1V以上ばらつく
ことがわかる。しかしながら、集束イオン線における位
置合わせ方法、イオン線を走査する時の偏向歪み等から
考えて、集束イオン線の走査位置変動を±0.15岬以
内に制御することは極めて困難である。その結果、素子
のしきい値電圧V t hのばらつきは実際には±0.
3Vにも及んだ。
However, when we experimentally investigated the dependence of the threshold voltage Vth, which is an important factor in the performance of a MOSFET, on the position of the highly concentrated impurity layer using the focused ion beam, we obtained the results shown in FIG. The experiment was conducted at an accelerating voltage of 20 K e V.
A focused B ion beam with an ion beam diameter of 0.2 is connected to a MOSFET with a gate oxide film thickness of 20 nm, Le, ff O, 84
This was done by scanning the channel region. According to Figure 3,
It can be seen that when the scanning position of the focused ion beam fluctuates by ±0.151M or more, the threshold voltage V th fluctuates by ±0.1V or more. However, in view of the positioning method of the focused ion beam, deflection distortion when scanning the ion beam, etc., it is extremely difficult to control the scanning position fluctuation of the focused ion beam within ±0.15 cape. As a result, the variation in the threshold voltage V th of the device is actually ±0.
It reached as high as 3V.

以上述べたように、第5図に示した新規な構造をもった
MOSFETは、第4図に示した従来の一般的な構造を
もったMOSFETの特性が構造定数によって決定され
るという欠点を解消でき。
As mentioned above, the MOSFET with the new structure shown in Figure 5 overcomes the drawback that the characteristics of the conventional MOSFET with the general structure shown in Figure 4 are determined by the structural constants. I can do it.

高性能化、高集積化を可能とする反面、MOSFETの
しきい値電圧V t hのばらつきを制御しにくいとい
うMO8LSIを構成する上で致命的となる問題点があ
った。
Although high performance and high integration are possible, there is a problem that it is difficult to control variations in the threshold voltage V th of the MOSFET, which is a fatal problem in constructing MO8LSI.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した第5図に示すような構造を有
する従来のMOSFETのしきい値電圧Vthのバラツ
キを抑制した高性能なMOSFETを簡便に製造、実現
し得る半導体装置の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device that can easily manufacture and realize a high-performance MOSFET that suppresses variations in the threshold voltage Vth of the conventional MOSFET having the structure shown in FIG. It is about providing.

〔発明の概要〕[Summary of the invention]

本発明の半導体装置の製造方法は、上記の目的を達成す
るために、第5図に示した構造を有するMOSFETの
チャネル領域に形成すべき微細な幅の高濃度不純物層6
をソース4とドレイン5間の中央にサイドエツチング技
術とイオン打込み技術を用いて自己整合的に形成するよ
うにしたものである。
In order to achieve the above object, the method for manufacturing a semiconductor device of the present invention provides a highly concentrated impurity layer 6 with a fine width to be formed in the channel region of a MOSFET having the structure shown in FIG.
is formed in a self-aligned manner at the center between the source 4 and drain 5 using side etching technology and ion implantation technology.

以下、図面により詳細に説明する。A detailed explanation will be given below with reference to the drawings.

第1図は本発明の半導体装置の製造方法の主要工程構成
の代表的−例を示した図である。以下、第1図を用いて
本発明の半導体装置の製造方法を順を追って説明する。
FIG. 1 is a diagram showing a typical example of the main process configuration of the method for manufacturing a semiconductor device according to the present invention. Hereinafter, the method for manufacturing a semiconductor device of the present invention will be explained step by step with reference to FIG.

第1図(a)は、シリコン基板1上に導電体あるいは絶
縁物被膜7を堆積し、該被膜7の所定の位置に、MOS
FETのゲート部に相当するパターンを後の工程で行な
うイオン打込みのマスクとなり得る材料を用い、第1の
マスク膜8として形成した状態を示す。
In FIG. 1(a), a conductive or insulating film 7 is deposited on a silicon substrate 1, and MOS
A state in which a pattern corresponding to the gate portion of the FET is formed as a first mask film 8 using a material that can be used as a mask for ion implantation to be performed in a later step is shown.

つぎに、第1図(b)に示すように、異方性ドライエツ
チングを用いて、前記導電体あるいは絶縁物被膜7をエ
ツチングし、前記第1のマスク膜8の下面中央部下のみ
に所定幅の該被膜7が残るところまでサイドエツチング
する。
Next, as shown in FIG. 1(b), the conductor or insulator film 7 is etched using anisotropic dry etching, and a predetermined width is etched only under the center of the lower surface of the first mask film 8. Side etching is performed until the coating 7 remains.

その後、第1図(c)に示すように、前記第1のマスク
膜8をマスクとして基板1と反対導電形のイオン打込み
を行ない、基板1内にソース領域4、ドレイン領域5を
形成する。
Thereafter, as shown in FIG. 1C, ions of a conductivity type opposite to that of the substrate 1 are implanted using the first mask film 8 as a mask to form a source region 4 and a drain region 5 in the substrate 1.

ついで、前記第1のマスク膜8を除去した後、後の工程
でイオン打込みのマスクとなり得る第2のマスク膜9を
堆積させ、これをエツチングして平坦化し、前記導電体
あるいは絶縁物被膜7の上面を露出させたのが第1図(
d)である。
Next, after removing the first mask film 8, a second mask film 9 that can serve as a mask for ion implantation in a later step is deposited, and this is etched and planarized to form the conductor or insulator film 7. Figure 1 shows the exposed top surface of the
d).

その後、第1図(e)に示すように、前記導電体あるい
は絶縁物層7を除去し、前記第2のマスク膜9に開孔部
13を形成した後、この開孔部13を介して前記基板1
に該基板と同一導電形のイオン打込みを行ない前記開孔
部13の下の前記基板1内に高濃度不純物層6を形成す
る。
Thereafter, as shown in FIG. 1(e), the conductor or insulator layer 7 is removed and an opening 13 is formed in the second mask film 9. Said substrate 1
Then, ions of the same conductivity type as the substrate are implanted to form a high concentration impurity layer 6 in the substrate 1 below the opening 13.

最後に、シリコン基板1上の前記第2のマスク膜9を除
去した状態が第1図(f)である。この上にゲート酸化
膜、ゲート電極、ソース電極、ドレイン電極等を形成す
れば1本発明による半導体装置が得られる。
Finally, the state in which the second mask film 9 on the silicon substrate 1 is removed is shown in FIG. 1(f). A semiconductor device according to the present invention can be obtained by forming a gate oxide film, a gate electrode, a source electrode, a drain electrode, etc. thereon.

以上述べた本発明によれば、第5図に示した高性能MO
8FETの製造において、高濃度不純物層6をソース4
とドレイン5との中央に自己整合的に形成することが可
能となる。その結果、集束イオンビームを用いた従来の
製造方法では実現の困難であった高濃度不純物層6のソ
ース4、ドレイン5間の高精度位置合せが可能となり、
従来の問題であったMOSFETのしきい値電圧Vth
のバラツキを十分に制御でき、MOSFETの製造に適
用することが可能となる。
According to the present invention described above, the high-performance MO shown in FIG.
In manufacturing the 8FET, the high concentration impurity layer 6 is used as the source 4.
It is possible to form it in a self-aligned manner at the center of the drain 5 and the drain 5. As a result, it is possible to achieve highly accurate alignment between the source 4 and drain 5 of the highly concentrated impurity layer 6, which was difficult to achieve with conventional manufacturing methods using focused ion beams.
The threshold voltage Vth of MOSFET was a problem in the past.
It is possible to sufficiently control the variation in , making it possible to apply it to the manufacture of MOSFETs.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 1 第2図は本発明の半導体装置の製造方法の一実施例を示
す図であり、順を追って各工程ごとに説明する。
Embodiment 1 FIG. 2 is a diagram showing an embodiment of the method for manufacturing a semiconductor device of the present invention, and each step will be explained in order.

第2図(a)は、p形、(100)面、10ΩGのシリ
コン基板1上に膜厚500人のCr膜10を堆積させ、
さらにその上にネガ型レジストRD−200ON (日
立化成社商品名)を0.5−の厚さに塗布した後、電子
線リソグラフィにより、ゲート長0.3−のレジストゲ
ートパターン11を形成した状態を示している。
In FIG. 2(a), a Cr film 10 with a thickness of 500 nm is deposited on a p-type, (100) plane, 10ΩG silicon substrate 1.
Furthermore, after applying a negative resist RD-200ON (trade name of Hitachi Chemical Co., Ltd.) to a thickness of 0.5 mm, a resist gate pattern 11 with a gate length of 0.3 mm was formed by electron beam lithography. It shows.

つぎに、第2図(b)に示すように、異方性ドライエツ
チングにより、Cr膜10を基板1の表面までエツチン
グし、さらに横方向に200%のオーバーエツチングを
行なうことによってCr膜をサイドエッチし、上記レジ
ストゲートパターン11の下面中央に線幅0.1umの
Cr細線10を形成する。
Next, as shown in FIG. 2(b), the Cr film 10 is etched to the surface of the substrate 1 by anisotropic dry etching, and the Cr film is etched on the side by over-etching by 200% in the lateral direction. Etching is performed to form a thin Cr line 10 with a line width of 0.1 um at the center of the lower surface of the resist gate pattern 11.

その後、上記レジストゲートパターン11をマスクとし
て、シリコン基板1にAsイオンを加速電圧50KeV
、打込み量2 X 10” am−” (7)条件で打
込み、ソース4、ドレイン5の両頭域を形成した状態を
第2図(Q)に示す。
Thereafter, using the resist gate pattern 11 as a mask, As ions are applied to the silicon substrate 1 at an acceleration voltage of 50 KeV.
, the implantation amount is 2×10"am-" (7), and the double-headed region of the source 4 and drain 5 is formed, as shown in FIG. 2(Q).

ついで、第2図(d)は、上記レジストゲートパターン
11を除去し、900℃、30分間のアニールを行なっ
た後、バイアススパッタ法により、厚さ1虜にS io
2膜1膜製2積して表面を平坦化し、全面をドライエツ
チングによりCr細線10の表面が露出するまでバック
エツチングした状態を示す。
Next, as shown in FIG. 2(d), after removing the resist gate pattern 11 and performing annealing at 900° C. for 30 minutes, a bias sputtering method is used to deposit Sio to a uniform thickness.
The surface is flattened by stacking two films and one film, and the entire surface is back-etched by dry etching until the surface of the thin Cr wire 10 is exposed.

つぎに、第2図(e)に示すように、混酸5N2(関東
化学社商品名)によりCr細線10をエツチングして除
去し、SiO□膜12膜幅2.14の微小開孔部13を
形成する。引き続き該開孔部14を介してシリコン基板
1にBイオンを加速電圧40KeV、打込み量8X10
”■−2の条件で打込み幅0.1虜、 −深さ0.15
7ffiの高濃度不純物層6を形成する。
Next, as shown in FIG. 2(e), the Cr thin wire 10 is etched and removed using mixed acid 5N2 (trade name of Kanto Kagaku Co., Ltd.), and a minute opening 13 with a film width of 2.14 mm is formed in the SiO□ film 12. Form. Subsequently, B ions are implanted into the silicon substrate 1 through the opening 14 at an acceleration voltage of 40 KeV and an implantation amount of 8×10.
”■-2 conditions, driving width 0.1, -depth 0.15
A high concentration impurity layer 6 of 7ffi is formed.

最後に、上記5in2膜12を除去した後、ドライ酸化
により、厚さ20niのゲート酸化膜2を成長させ、ゲ
ート電極材料の多結晶シリコン膜3を厚さ0.3−に被
着し、リンを導入後、フォトリソグラフィあるいは電子
線リングラフィによってゲート加工を行ない、MOSF
ETを完成させた状態を第2図(f)に示す。
Finally, after removing the 5in2 film 12, a gate oxide film 2 with a thickness of 20 ni is grown by dry oxidation, a polycrystalline silicon film 3 of the gate electrode material is deposited to a thickness of 0.3 - After introducing the MOSFET, gate processing is performed using photolithography or electron beam phosphorography.
FIG. 2(f) shows the completed ET.

上記工程で完成したMOSFETのしきい値電圧Vth
のバラツキは、設定値の0.5vから±0.05Vの範
囲におさめることができ、従来の集束イオンビームを用
いた製造方法によるものと比較して、そのバラツキは1
/6になった。しかも、高濃度不純物層の無い、従来構
造のMC)SFETに比べてゲイン定数は約2倍、ドレ
イン耐圧は約1.5倍に向上しており1本発明の半導体
装置の製造方法によっても第5図に示した構造のMOS
FETの特徴は叫なわれないことがわかった。
Threshold voltage Vth of MOSFET completed in the above process
The variation in can be kept within the range of ±0.05V from the set value of 0.5V, and compared to the conventional manufacturing method using a focused ion beam, the variation is 1
It became /6. Furthermore, the gain constant is approximately twice as high and the drain breakdown voltage is approximately 1.5 times as high as that of a conventionally structured MCSFET without a high-concentration impurity layer. MOS with the structure shown in Figure 5
It turns out that the characteristics of FETs are not obvious.

実施例 2 第3図は本発明の他の実施例を示す図であり、各工程ご
とに順を追って説明する。
Embodiment 2 FIG. 3 is a diagram showing another embodiment of the present invention, and each step will be explained in order.

まず、p形、(100)面、10Ω■のシリコン基板1
の表面に1000℃、20分間のドライ酸化により厚さ
20nmのゲート酸化膜2を成長させ、その上にゲート
電極材料である多結晶Si膜3を0.31Mの厚さに被
着し、これにPOCI!3を拡散源としてPを拡散する
。その後、膜厚500人のCr膜10を被着し、該Cr
膜10の上に電子線リングラフィによりゲート長に相当
した幅0.37ffiのレジストパターン11を形成し
た状態が第3図(a)である。
First, p-type, (100) plane, 10Ω■ silicon substrate 1
A gate oxide film 2 with a thickness of 20 nm is grown on the surface of the gate electrode by dry oxidation at 1000° C. for 20 minutes, and a polycrystalline Si film 3 of 0.31 M as the gate electrode material is deposited thereon. niPOCI! P is diffused using 3 as a diffusion source. Thereafter, a Cr film 10 with a thickness of 500 layers was deposited, and the Cr film 10 was deposited.
FIG. 3(a) shows a state in which a resist pattern 11 having a width of 0.37ffi corresponding to the gate length is formed on the film 10 by electron beam phosphorography.

つぎに、第3図(b)に示すように、実施例1と同様の
工程で、前記レジストパターン11をマスクとして異方
性ドライエツチングにより下地Cr膜10をエツチング
し、さらに200%のオーバーエツチングを行なうこと
によって、上記レジストパターン11の中央に線幅0.
1−のCr細線10を形成する。
Next, as shown in FIG. 3(b), in the same process as in Example 1, the base Cr film 10 is etched by anisotropic dry etching using the resist pattern 11 as a mask, and further over-etched by 200%. By performing this, a line width of 0.
1- Cr thin wire 10 is formed.

つづいて、上記レジストパターン11をマスクとして異
方性ドライエツチングにより下地多結晶Si膜3および
ゲート酸化膜2を該レジストパターン11と同形に加工
して前記基板1の表面を露出させた後、全面にAsイオ
ンを加速電圧50KeV、打込み量2 X 10” a
pr−2の条件で打込み、ソース4およびドレイン5の
領域をシリコン基板1内に形成した状態を第3図(c)
に示す。
Next, using the resist pattern 11 as a mask, the base polycrystalline Si film 3 and gate oxide film 2 are processed into the same shape as the resist pattern 11 by anisotropic dry etching to expose the surface of the substrate 1, and then the entire surface is etched. As ions were accelerated at an acceleration voltage of 50 KeV and an implantation amount of 2 x 10”a.
Figure 3(c) shows the state in which the source 4 and drain 5 regions are formed in the silicon substrate 1 by implantation under pr-2 conditions.
Shown below.

つぎに、第3図(d)は上記レジストパターン11を除
去し、900℃、30分間のアニールを行なった後、バ
イアススパッタ法によって全面にSiO□膜12を1虜
の厚さに堆積して表面を平坦化し、ドライエツチングに
よってCrJllI線10の上線動0出するまで該S 
i O2膜12をバックエツチングした状態を示す。
Next, in FIG. 3(d), the resist pattern 11 is removed, annealed at 900° C. for 30 minutes, and then a SiO□ film 12 is deposited to a thickness of one inch over the entire surface by bias sputtering. The surface is flattened and the S
i The state in which the O2 film 12 has been back-etched is shown.

ついで、第3図(e)に示すように、混酸5N2(関東
化学社製)によりCr細線10をエツチング除去し、S
in、膜12内に幅0.IIMの微小開孔部13を形成
し、引き続いて、該開孔部13を介してシリコン基板1
にBイオンを加速電圧150KeV、打込み量8 X 
10” arr−”の打込み条件で打込み、基板1内に
高濃度不純物領域6を形成する。
Next, as shown in FIG. 3(e), the Cr thin wire 10 is etched away using mixed acid 5N2 (manufactured by Kanto Kagaku Co., Ltd.), and S
in, width 0. A micro opening 13 of the IIM is formed, and subsequently, the silicon substrate 1 is inserted through the opening 13.
B ions were accelerated at a voltage of 150 KeV and an implantation amount of 8
A high concentration impurity region 6 is formed in the substrate 1 by implantation under the implantation condition of 10''arr-''.

最後に、上記SiO2膜12を除去し、MOSFETを
完成させた状態を第6図(f)に示す。
Finally, the SiO2 film 12 is removed, and the completed MOSFET is shown in FIG. 6(f).

上記工程で完成させたMOSFETに関しても実施例1
の場合と同程度のしきい値電圧vthのバラツキ、ゲー
ト定数、ドレイン耐圧などの結果を得た。
Example 1 regarding the MOSFET completed in the above steps
Results were obtained regarding the variation in threshold voltage vth, gate constant, drain breakdown voltage, etc., which were comparable to those obtained in the case of .

〔発明の効果〕〔Effect of the invention〕

以上の実施例に示したように、本発明によれば、MOS
FETのチャネル部において、ソースとドレインの間の
中央に自己整合的に高濃度不純物層を形成できるので、
従来の集束イオン線によるイオン打込みでは困難であっ
た高精度の位置合わせが可能となった。その結果、MO
SFETのしきい値電圧Vthのバラツキを実用に耐え
得る程度に小さく抑制して、本構造のMO8FET本来
の高性能を実現できるようになった。従って、従来に比
較して、MO5LSHの高密度化、窩信頼性化が可能に
なるため、その技術的効果は非常に大きい。
As shown in the above embodiments, according to the present invention, a MOS
In the channel part of the FET, a highly concentrated impurity layer can be formed in a self-aligned manner at the center between the source and drain.
High-precision alignment, which was difficult with conventional ion implantation using focused ion beams, has become possible. As a result, M.O.
By suppressing the variation in the threshold voltage Vth of the SFET to a level that can withstand practical use, it has become possible to realize the inherent high performance of the MO8FET of this structure. Therefore, compared to the conventional method, it is possible to increase the density of MO5LSH and improve the reliability of the cavity, so the technical effects thereof are very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置の製造方法の概念を説明す
る図、第2図、第3図は本発明の実施例を示す工程図、
第4図は従来の一般的MO8FETの要部構造説明図、
第5図は本発明の対象とする従来の高性能MO8FET
の要部構造の代表的−例を示す断面図、第6図は第5図
に示した構造のMOSFETの問題点を説明するための
図である。 図において、 110.基板       2・・・ゲート酸化膜3・
・・ゲート電極    4・・・ソース5・・・トレイ
ン     6・・・高濃度不純物層7・・・導電体あ
るいは絶縁物膜 8.9・・・イオン打込みマスク用材料層10・・・ク
ロム膜     11・・・レジストパターン12・・
・シリコン酸化膜
FIG. 1 is a diagram explaining the concept of the method for manufacturing a semiconductor device of the present invention, FIGS. 2 and 3 are process diagrams showing an embodiment of the present invention,
Figure 4 is an explanatory diagram of the main part structure of a conventional general MO8FET,
Figure 5 shows a conventional high-performance MO8FET that is the object of the present invention.
FIG. 6 is a cross-sectional view showing a typical example of the main structure of the MOSFET, and FIG. 6 is a diagram for explaining the problems of the MOSFET having the structure shown in FIG. In the figure, 110. Substrate 2... Gate oxide film 3...
...Gate electrode 4...Source 5...Train 6...High concentration impurity layer 7...Conductor or insulator film 8.9...Ion implantation mask material layer 10...Chromium film 11...Resist pattern 12...
・Silicon oxide film

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも一導電型の半導体基板の所定領域に該
基板結晶と逆導電型の不純物をイオン打込みしてソース
、ドレイン領域を形成する工程と、上記ソース、ドレイ
ン領域間のチャネル領域に該ソース、ドレイン領域と接
することがなく、かつ上記基板結晶と同一導電型で、少
なくとも該基板結晶よりも高濃度の不純物領域を設ける
工程とを含む半導体装置の製造方法において、前記基板
の前記ソース、ドレイン領域側の表面上に次工程で形成
する第1のマスク膜と前記基板に対して選択的にエッチ
ングすることが可能な材料からなる第1の被膜を形成す
る工程と、上記第1の被膜上のゲートに相当する領域上
にイオン打込みに対してマスクとなり得る材料からなる
第1のマスク膜を形成する工程と、上記第1のマスク膜
をマスクとして上記第1の被膜のみを該被膜の膜厚方向
にエッチングすると共にさらに横方向にサイドエッチン
グし、該第1のマスク膜下の中央にのみ所定幅の該第1
の被膜を残す工程と、少なくとも上記第1のマスク膜を
含む前記基板領域全面にイオン打込みをしてソース、ド
レイン領域を形成する工程と、上記第1のマスク膜を除
去した後、イオン打込みに対してマスクとなり得る材料
からなり、かつ前記第1の被膜を選択的にエッチングす
ることが可能な第2のマスク膜により該基板上に残存す
る前記第1の被膜以外の該基板領域上を覆う工程と、上
記第1の被膜を除去し、上記第2のマスク膜に開孔部を
設ける工程と、少なくとも上記開孔部を含む上記第2の
マスク膜全面にイオン打込みを行ない、該開孔部を介し
て前記基板内に前記高濃度不純物層を形成する工程とを
含むことを特徴とする半導体装置の製造方法。
(1) forming source and drain regions by ion-implanting impurities of a conductivity type opposite to that of the substrate crystal into a predetermined region of a semiconductor substrate of at least one conductivity type, and forming the source and drain regions into a channel region between the source and drain regions; and providing an impurity region that does not contact the drain region, has the same conductivity type as the substrate crystal, and has at least a higher concentration than the substrate crystal, wherein the source and drain regions of the substrate forming a first mask film to be formed in the next step on the surface of the region and a first film made of a material that can be selectively etched with respect to the substrate; and on the first film. forming a first mask film made of a material that can serve as a mask for ion implantation on a region corresponding to the gate of the ion implantation; Etching is performed in the thickness direction and side etching is further performed in the lateral direction, so that the first mask film having a predetermined width is etched only in the center under the first mask film.
a step of leaving a film on the substrate, a step of performing ion implantation on the entire surface of the substrate region including at least the first mask film to form source and drain regions, and a step of removing the first mask film and then performing ion implantation. On the other hand, a second mask film made of a material that can be used as a mask and capable of selectively etching the first film covers an area of the substrate other than the first film remaining on the substrate. a step of removing the first film and providing an opening in the second mask film; and performing ion implantation on the entire surface of the second mask film including at least the opening, and forming an opening in the second mask film. forming the high concentration impurity layer in the substrate through the substrate.
JP22184285A 1985-10-07 1985-10-07 Manufacture of semiconductor device Pending JPS6281763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22184285A JPS6281763A (en) 1985-10-07 1985-10-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22184285A JPS6281763A (en) 1985-10-07 1985-10-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6281763A true JPS6281763A (en) 1987-04-15

Family

ID=16773044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22184285A Pending JPS6281763A (en) 1985-10-07 1985-10-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6281763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049456A (en) * 2009-08-28 2011-03-10 Tokai Rika Co Ltd High breakdown-voltage semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049456A (en) * 2009-08-28 2011-03-10 Tokai Rika Co Ltd High breakdown-voltage semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3521246B2 (en) Field effect transistor and method of manufacturing the same
JP2707977B2 (en) MOS type semiconductor device and method of manufacturing the same
JPS6310589B2 (en)
JPH0846215A (en) Manufacture of thin film transistor
JPH02228041A (en) Manufacture of semiconductor device
JPH0529329A (en) Manufacture of semiconductor device
JPH06349856A (en) Thin-film transistor and its manufacture
JPS6281763A (en) Manufacture of semiconductor device
WO2004021445A1 (en) Double-gate type mos field effect transistor and production method therefor
KR0141197B1 (en) Method of contact hole in semiconductor device
JPH03142841A (en) Manufacture of semiconductor device
JPH01251668A (en) Manufacture of field effect transistor
JP3146636B2 (en) Method for manufacturing thin film transistor having low concentration impurity introduction region
JPH0529613A (en) Manufacture of quantum fine line element
JPH08321607A (en) Method of manufacturing semiconductor device
JPS63308382A (en) Manufacture of transistor with ldd structure
JPS63305566A (en) Semiconductor device and manufacture thereof
JPH07153940A (en) Manufacture of field-effect transistor
JPH05110071A (en) Semiconductor device
JP3597458B2 (en) Method for manufacturing semiconductor device
JPH01251667A (en) Manufacture of field effect transistor
KR100250686B1 (en) Manufacturing method of a semiconductor device
JPH1012871A (en) Manufacture of semiconductor device
JPS6384161A (en) Manufacture of semiconductor device
JPH0290628A (en) Manufacture of semiconductor device