JPS6038883A - Manufacture of schottky gate type field effect transistor - Google Patents

Manufacture of schottky gate type field effect transistor

Info

Publication number
JPS6038883A
JPS6038883A JP14632083A JP14632083A JPS6038883A JP S6038883 A JPS6038883 A JP S6038883A JP 14632083 A JP14632083 A JP 14632083A JP 14632083 A JP14632083 A JP 14632083A JP S6038883 A JPS6038883 A JP S6038883A
Authority
JP
Japan
Prior art keywords
lift
material layer
gate
semiconductor layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14632083A
Other languages
Japanese (ja)
Other versions
JPH0439773B2 (en
Inventor
Hideyuki Hosoe
細江 英之
Hirotaka Nishizawa
裕孝 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14632083A priority Critical patent/JPS6038883A/en
Publication of JPS6038883A publication Critical patent/JPS6038883A/en
Publication of JPH0439773B2 publication Critical patent/JPH0439773B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To form the intervals among a gate and a source and a drain by self- alignment on the semiconductor layer formed on a plane of an insulating substrate by utilizing a difference in depth of ion implantation utilizing the lift-off material layer for forming a wiring by lift-off treatment also as a mask for ion implantation. CONSTITUTION:On a plane of the insulating substrate 1 consisting of sapphire and etc., the semiconductor layer 2 consisting of GaAs single crystal thin film is formed, on which the lift-off material layer 3 consisting of an SiO2 film 31 and an Si nitride film 32 is depositred over the whole surce. Next, the part to form the gate of the lift-off material layer 3 is selectively removed. After forming the partial lift-off material layer 3, N type impurity, e.g. Si is introduced into the whole semiconductor layer 2 of the substrate 1 by ion implantation. At this time, by controlling an implantation energy mainly, the part 21 of the semiconductor layer 2 under the lift-off material layer 3 is made to be an N<+> type high-concentration region and the exposed part 22 to form the gate is made to be an N<-> type low concentration region.

Description

【発明の詳細な説明】 [技術分野] この発明は、ショットキゲート型F L!: T (M
 JESFET)の製造技術、特に、セルフアライメン
ト構造のガリウムひ素M E S l? E Tの製造
に利用して有効な技術に関するものである。
[Detailed Description of the Invention] [Technical Field] This invention relates to a Schottky gate type F L! : T (M
JESFET) manufacturing technology, especially self-aligned structure gallium arsenide M E S I? This article relates to effective technology that can be used to manufacture ET.

[背景技術] ガリウムひ素(GaAs)はシリコンに代わる次世代の
半導体材料であるといわれている。それは、GaAsの
電子移動度がシリコンに比べて大きく、しかもGaAs
自体が半絶縁性で素子間分離が容易であるなどという材
料面での利点を有しているからである。
[Background Art] Gallium arsenide (GaAs) is said to be a next-generation semiconductor material that will replace silicon. This is because GaAs has higher electron mobility than silicon, and GaAs
This is because it has material advantages such as being semi-insulating and easy to isolate between elements.

GaAsを基板とした集積回路においては、MESFE
T構造が主どして用いられる。高速なME S F E
 Tを得ようとする場合、ゲー1〜・ソース間およびゲ
ート・ドレイン間の寄生直列抵抗が問題となる。
In integrated circuits using GaAs as a substrate, MESFE
The T structure is mainly used. Fast ME S F E
When trying to obtain T, parasitic series resistance between gate and source and between gate and drain becomes a problem.

この寄生直列抵抗を低減しFETを高速化するには、ゲ
ー1−とソースおよびドレインとの間を自己整合的に形
成することが有効である(以上、たとえば、「日経エレ
クトロニクスJ 、1982年11月8日号、p105
−127、特ニp120〜122参照)。
In order to reduce this parasitic series resistance and speed up the FET, it is effective to form the gate 1- and the source and drain in a self-aligned manner. Monthly 8th issue, p105
-127, special page 120-122).

[発明の目的コ この発明の目的は、MESFETにおけるゲーi〜とソ
ースおよびドレインとの間を自己整合的に形成しうるセ
ルファライン技術を提供することにある。
[Object of the Invention] An object of the present invention is to provide a self-line technology that can form self-alignment between the gate i and the source and drain in a MESFET.

この発明の他の目的は、絶縁基板の一面に形成された半
導体層に、イオン打込みによる打込み深さの差を利用す
ることによって、低濃度領域と高濃度領域とを形成する
ようにした技術を提供することにある。
Another object of the present invention is to provide a technique for forming a low concentration region and a high concentration region in a semiconductor layer formed on one surface of an insulating substrate by utilizing the difference in implantation depth due to ion implantation. It is about providing.

この発明の前記ならびにそのほかの目的と新規な特徴は
、この明細書の記述および添付図面から明らかになるで
あろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[発明の概要] この出願において開示される発明のうち代表的なものの
概要を簡単に説明すれば、下記のとおりである。
[Summary of the Invention] A brief overview of typical inventions disclosed in this application is as follows.

すなわち、この発明の代表例では、配線をリフトオフ処
理によって形成するが、そのためのリフ1−オフ材料層
をイオン打込みに対するマスクとしても利用し、絶縁基
板の一面に形成されたG aA s半導体層に対し、ソ
ースおよびドレインとなる高濃度領域と、ゲート下の低
濃度領域とを形成するようにしている。それによって、
ゲー1−とソースおよびドレインとの間を自己整合的に
形成するという目的を達成するものである。
That is, in a typical example of the present invention, wiring is formed by lift-off processing, and the lift-off material layer for this purpose is also used as a mask for ion implantation, and a GaAs semiconductor layer formed on one surface of an insulating substrate is On the other hand, a high concentration region serving as a source and a drain, and a low concentration region under the gate are formed. Thereby,
This achieves the purpose of forming the gate 1- and the source and drain in a self-aligned manner.

[実施例コ 以下、この発明の内容を第1図〜第5図に示した実施例
に基づいて具体的に説明する。
[Example 7] Hereinafter, the content of the present invention will be specifically explained based on the example shown in FIGS. 1 to 5.

(第1図を参照して) まず、サファイヤなどの絶縁基板1の一面にGa As
単結晶薄膜からなる半導体層2を形成し、その上に二酸
化シリコン膜31およびシリコンナイトライド膜32か
らなるリフトオフ材料層3を全体的に堆積する。リフト
オフ材料層3の主体は下層の二酸化シリコン膜31であ
り、その膜31−の厚さはリフトオフの必要上かなり厚
い。しかし、リフトオフ材料M3は、それを通して下層
の半導体層2にイオン打込みが可能な厚さをもっている
ことも必要であり、それら両者の兼ね合いからその厚さ
が定まる。
(Refer to Figure 1) First, GaAs is deposited on one surface of an insulating substrate 1 made of sapphire or the like.
A semiconductor layer 2 made of a single crystal thin film is formed, and a lift-off material layer 3 made of a silicon dioxide film 31 and a silicon nitride film 32 is entirely deposited thereon. The main body of the lift-off material layer 3 is the underlying silicon dioxide film 31, and the thickness of the film 31- is quite thick due to the necessity of lift-off. However, the lift-off material M3 also needs to have a thickness that allows ions to be implanted into the underlying semiconductor layer 2 through it, and its thickness is determined by the balance between these two factors.

(第2図を参照して) ついで、通常のホトエツチングによって、リフトオフ材
料層3のうち、ゲートを形成すべき部分を選択的に除去
する。この場合、上層の膜32をマスクとして下層の膜
31をサイドエッチすることにより、エツチング端部に
ひさし構造4を形成する。このひさし構造4は、後で行
なうリフトオフを容易にし、またゲー1〜とソースおよ
びドレインとの間の電気的ショー1〜を確実に防止する
という好ましい機能を有するものである。
(See FIG. 2) Next, the portion of the lift-off material layer 3 where the gate is to be formed is selectively removed by normal photoetching. In this case, by side-etching the lower film 31 using the upper film 32 as a mask, the canopy structure 4 is formed at the etched end. This canopy structure 4 has the desirable function of facilitating lift-off performed later and reliably preventing electrical shorts 1~ between the gates 1~ and the source and drain.

(第3図を参照して) 部分的なリフトオフ材料層3の形成後、基板1上の半導
体層2に対し、N型不純物たとえばシリコンを全体的に
イオン打込み法によって導入する。
(See FIG. 3) After the formation of the partial lift-off material layer 3, an N-type impurity, such as silicon, is entirely introduced into the semiconductor layer 2 on the substrate 1 by ion implantation.

この際、主として打込みエネルギーを制御することによ
って、打込みイオンが、グー1〜部では大部分が下地の
絶縁基板1に達するようにするとともに、ゲート以外の
その他の場所では半導体層2中になるようにする。した
がって、このようなイオン打込みおよびそれに続くアニ
ール処理により、リフトオフ材料層3下の半導体層2の
部分21がN+型の高濃度領域、露出しているゲー1〜
を形成すべき部分22がN−型の低濃度領域とそれぞれ
なすことができる。
At this time, mainly by controlling the implantation energy, the implanted ions are made to reach the underlying insulating substrate 1 in most of the regions 1 to 1, and to be in the semiconductor layer 2 in other locations other than the gate. Make it. Therefore, by such ion implantation and subsequent annealing treatment, the portion 21 of the semiconductor layer 2 under the lift-off material layer 3 becomes an N+ type high concentration region, and the exposed gates 1 to
The portions 22 to be formed can be respectively formed as N-type low concentration regions.

(第4図を参照して) 次に、スパッタリング法などのような高指向性の堆積方
法によってグー1−用金属材料(たとえば。
(See FIG. 4) Next, a metal material for goo 1 (for example) is deposited by a highly directional deposition method such as a sputtering method.

白金あるいは白金シリサイド)を堆積すると、前記ひさ
し構造4によりゲート用金属材Ml 5は段切れを伴な
って形成される。したがって、リフトオフ材料層3をエ
ツチングすることによって、ゲート用金属材料5のうち
、層3上に付着していた部分を層3とともに除去(リフ
トオフ)し、N−型の領域22上にのみグー1〜用金属
材料5を残すことができる。この部分的なものがゲーI
−金属膜51となる。
When platinum (platinum or platinum silicide) is deposited, the gate metal material Ml 5 is formed with steps due to the eaves structure 4. Therefore, by etching the lift-off material layer 3, the portion of the gate metal material 5 that was attached to the layer 3 is removed (lifted off) together with the layer 3, and the goo 1 is formed only on the N-type region 22. The metal material 5 for ~ can be left behind. This partial thing is game I
- Becomes a metal film 51.

(第5図を参照して) その後、ホトエツチングにより素子以外の部分のN+型
の領域21を選択的に除去した後、全面にCVD法によ
って二酸化シリコンなどからなるパシベーション膜6を
形成する。そして、膜6に接続用の穴7をあけてから、
公知の真空蒸着およびホトエツチングの各技術によって
ソース電極811、ドレイン電極82およびゲート引出
し電極(図示せず)、ならびに素子間の配線(図示せず
)を形成し、Ga As’ MESFETを完成する。
(Refer to FIG. 5) After that, the N+ type region 21 other than the element is selectively removed by photoetching, and then a passivation film 6 made of silicon dioxide or the like is formed on the entire surface by CVD. Then, after making a connection hole 7 in the membrane 6,
A source electrode 811, a drain electrode 82, a gate lead electrode (not shown), and interconnections between elements (not shown) are formed by known vacuum evaporation and photoetching techniques to complete the GaAs' MESFET.

[効果] MESFETのゲートとソースおよびドレインとの間を
セルファライン化しているので、前記寄生直列抵抗を低
減してデバイスを高速化することカテキル。そして、特
に配線形成のためのリフトオフ材料層をイオン打込みに
苅するマスクどしても利用しているので、比較的に簡易
なプロセスとなるという効果が得られる。
[Effects] Since the gate, source, and drain of the MESFET are formed into a self-aligned line, the parasitic series resistance can be reduced and the device speed can be increased. In particular, since the lift-off material layer for wiring formation is also used as a mask for ion implantation, the process is relatively simple.

以上この発明者によってなさ汎だ発明を実施例に基づき
具体的に説明したが、この発明はそれに限定されるもの
ではなく、その要旨を逸脱しない範囲で種々変更可能で
あることはいうまでもない。
Although the general invention made by this inventor has been specifically explained based on examples, it goes without saying that this invention is not limited thereto and can be modified in various ways without departing from the gist thereof. .

たとえば、ゲート材料としてはタングステンまたはタン
グステンシリサイド等を用いてもよい。また、N型不純
物としてイオン打込みするものはシリコン以外のものを
用いてもよい。
For example, tungsten, tungsten silicide, or the like may be used as the gate material. Furthermore, the N-type impurity to be ion-implanted may be other than silicon.

[利用分野] この発明は、G a A sデバイスに限らずMESF
ETのセルファライン技術とし−C広範に利用すること
ができる。なお、この発明ば〜10sFETへの適用も
可能である。
[Field of Application] This invention is applicable not only to GaAs devices but also to MESF devices.
ET's self-line technology can be widely used. Note that this invention can also be applied to a 10s FET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図はこの発明の一実施例をコニ程順に示す
断面図である。 1・・・絶縁基板、2・・・半導体層、 3・・・リフ
トオフ材料層、4・・・ひさし構造、5・・・グー1〜
用金属材料、51・・・グー1〜金属膜、6・・・パシ
ベーション膜、7・・・穴、81・・・ソース電極、8
2・・・ドレイン電極。 代理人 弁理士 高 橋 明 夫 435 第 1 図 3 第 2 図 第 314 第 4 図 z 第5図
FIGS. 1 to 5 are cross-sectional views showing one embodiment of the present invention in order of height. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Semiconductor layer, 3... Lift-off material layer, 4... Eaves structure, 5... Goo 1~
metal material for use, 51... goo 1 to metal film, 6... passivation film, 7... hole, 81... source electrode, 8
2...Drain electrode. Agent Patent Attorney Akio Takahashi 435 Figure 1 Figure 3 Figure 2 Figure 314 Figure 4 z Figure 5

Claims (1)

【特許請求の範囲】 1、次の各工程からなる、ショットキゲート型FETの
製造方法。 (A)絶縁基板の一面に形成された半導体層の表面上、
ゲー1−を、形成ずべき部分以外をリフトオフ材料層で
被う工程。 (B)イオン打込みによる打込み深さの差を利用するこ
とによって、前記リフトオフ材料層下の半導体層の部分
を高濃度領域、ゲー1〜を形成すべき部分の半導体層の
部分を低濃度領域とそれぞれなす工程。 (C)(B)工程後、グー1−用金属材料の堆積および
前記リフ1〜オフ材料層を用いたリフ1〜オフ処理によ
って、前記低濃度領域の部分にのみゲート用金属材料を
残す工程。 (D)(C)工程で部分的に残したグー1−用金属材料
をグー1−金属膜、その両側に位置する前記高濃度領域
の各部分をソースJ′?よびトレーrンどして電極およ
び配線を形成する工程。 2、前記リフトオフ材料層は、」二下二層膜からなり、
上層の膜が下層の膜のサイドエッチ処理に対するマスク
となりうる特許請求の範囲第1項に記載のショットキゲ
ート型FETの製造方法。
[Claims] 1. A method for manufacturing a Schottky gate FET, comprising the following steps. (A) On the surface of the semiconductor layer formed on one surface of the insulating substrate,
A process of covering the gate 1- with a layer of lift-off material except for the areas to be formed. (B) By utilizing the difference in implantation depth due to ion implantation, the portion of the semiconductor layer under the lift-off material layer is made into a high concentration region, and the portion of the semiconductor layer where the gates 1~ are to be formed is made into a low concentration region. Each process. (C) After the step (B), a step of leaving the gate metal material only in the low concentration region by depositing the goo 1 metal material and performing a riff 1 off process using the riff 1 off material layer. . (D) The Goo 1 metal material partially left in the step (C) is used as the Goo 1 metal film, and each part of the high concentration region located on both sides thereof is used as the source J'? and a process of forming electrodes and wiring. 2. The lift-off material layer is composed of "two lower two-layer films,"
2. The method of manufacturing a Schottky gate FET according to claim 1, wherein the upper layer film can serve as a mask for side etching of the lower layer film.
JP14632083A 1983-08-12 1983-08-12 Manufacture of schottky gate type field effect transistor Granted JPS6038883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14632083A JPS6038883A (en) 1983-08-12 1983-08-12 Manufacture of schottky gate type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14632083A JPS6038883A (en) 1983-08-12 1983-08-12 Manufacture of schottky gate type field effect transistor

Publications (2)

Publication Number Publication Date
JPS6038883A true JPS6038883A (en) 1985-02-28
JPH0439773B2 JPH0439773B2 (en) 1992-06-30

Family

ID=15404998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14632083A Granted JPS6038883A (en) 1983-08-12 1983-08-12 Manufacture of schottky gate type field effect transistor

Country Status (1)

Country Link
JP (1) JPS6038883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337701A (en) * 1986-07-31 1988-02-18 Nippon Dengiyou Kosaku Kk Composite band stop filter
WO2007072247A2 (en) * 2005-12-22 2007-06-28 Koninklijke Philips Electronics N.V. An improved lift-off technique suitable for nanometer-scale patterning of metal layers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337701A (en) * 1986-07-31 1988-02-18 Nippon Dengiyou Kosaku Kk Composite band stop filter
WO2007072247A2 (en) * 2005-12-22 2007-06-28 Koninklijke Philips Electronics N.V. An improved lift-off technique suitable for nanometer-scale patterning of metal layers
WO2007072247A3 (en) * 2005-12-22 2007-10-25 Koninkl Philips Electronics Nv An improved lift-off technique suitable for nanometer-scale patterning of metal layers

Also Published As

Publication number Publication date
JPH0439773B2 (en) 1992-06-30

Similar Documents

Publication Publication Date Title
JP3229012B2 (en) Method for manufacturing semiconductor device
KR920002090B1 (en) Method of manufacturing field effect transistor
JPH0260217B2 (en)
JPH03151645A (en) Manufacture of compound semiconductor device
JPS6038883A (en) Manufacture of schottky gate type field effect transistor
JPS59188978A (en) Manufacture of schottky gate type field effect transistor
JPH0758785B2 (en) Method for manufacturing vertical field effect transistor
JPH0219622B2 (en)
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JPH0622247B2 (en) Field effect semiconductor device
JPS6155967A (en) Manufacture of field-effect transistor
JP2796303B2 (en) Method for manufacturing semiconductor integrated circuit
JP2889240B2 (en) Compound semiconductor device and method of manufacturing the same
JPH02201932A (en) Mos field-effect transistor with high withstand voltage
JP2726730B2 (en) Manufacturing method of field effect transistor
JPS6086871A (en) Manufacture of field effect transistor
JPS5893290A (en) Manufacture of schottky barrier field effect transistor
JPS6037176A (en) Manufacture of field effect transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JP2003163225A (en) Semiconductor device and manufacturing method therefor
JPS59193070A (en) Manufacture of schottky gate field effect transistor
JPH03283627A (en) Manufacture of field-effect semiconductor device
JPS6170764A (en) Gaas field-effect transistor
JPS63142872A (en) Manufacture of self-alignment type field-effect transistor
JPH0666336B2 (en) Method for manufacturing field effect transistor