JP2796303B2 - Method for manufacturing semiconductor integrated circuit - Google Patents

Method for manufacturing semiconductor integrated circuit

Info

Publication number
JP2796303B2
JP2796303B2 JP63112424A JP11242488A JP2796303B2 JP 2796303 B2 JP2796303 B2 JP 2796303B2 JP 63112424 A JP63112424 A JP 63112424A JP 11242488 A JP11242488 A JP 11242488A JP 2796303 B2 JP2796303 B2 JP 2796303B2
Authority
JP
Japan
Prior art keywords
film
gaas
layer
compound semiconductor
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63112424A
Other languages
Japanese (ja)
Other versions
JPH01283970A (en
Inventor
信敏 松永
勝 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63112424A priority Critical patent/JP2796303B2/en
Publication of JPH01283970A publication Critical patent/JPH01283970A/en
Application granted granted Critical
Publication of JP2796303B2 publication Critical patent/JP2796303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体MESFETに係り、特に高性能MESF
ETを集積した集積回路の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a compound semiconductor MESFET, and particularly to a high performance MESF
The present invention relates to a method for manufacturing an integrated circuit in which ET is integrated.

〔従来の技術〕[Conventional technology]

従来のGaAs FETは、ゲート・ソース間の直列抵抗を小
さくして性能を向上させるため、高耐熱ゲート(例えば
タングステン・シリサイド)を用いて、イオン打込み
n+,高温アニールによるセルフアライン構造が用いられ
ていた。このn+層形成には、選択成長法を用いることが
でき、文献にも記載されている。(例えば、ジヤパニー
ズ・ジヤーナル・オブ・アプライド・フイジツクス23,5
(1984年)L342からL345ページ(Japanese Journal of
Applied Physics Vol23,No.5(1984)p.L342−L345))
選択成長を用いると、イオン打込みで作つた場合に比
べ、高不純物濃度が得やすく、低抵抗層を得ることが
できる、高温アニールが必要ないためゲートシヨツト
キ接合の劣化が少ない。n+層がゲートより上部にある
ため短チヤネル効果が小さい、等の長所がある。
Conventional GaAs FETs use high heat-resistant gates (for example, tungsten silicide) to reduce the series resistance between the gate and source to improve performance.
A self-aligned structure by n + , high temperature annealing was used. For the formation of the n + layer, a selective growth method can be used, which is described in the literature. (For example, the Japanese Journal of Applied Physics 23,5
(1984) L342 to L345 pages (Japanese Journal of
Applied Physics Vol23, No.5 (1984) p.L342-L345))
When selective growth is used, a high impurity concentration can be easily obtained, a low-resistance layer can be obtained, and deterioration of the gate shot junction is small because high-temperature annealing is not required, as compared with a case where ion implantation is used. Since the n + layer is located above the gate, the short channel effect is small.

この方法は、単体FETの製造には有効であるが、これ
を集積回路に応用しようとするとき、大きな問題があ
る。それは、選択成長にパターン依存性があり、GaAs成
長層の厚さが孤立パターンでは厚く、密集パターンでは
薄くなるため、均一な成長層を得ることができず、LSI
に応用することが困難になるという点にある。
Although this method is effective for manufacturing a single FET, there is a major problem when it is applied to an integrated circuit. This is because the selective growth has a pattern dependence, and the thickness of the GaAs growth layer is thick in an isolated pattern and thin in a dense pattern, so that a uniform growth layer cannot be obtained.
It is difficult to apply to

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように、従来技術では、パターンの粗密依存性に
対する配慮がなされておらず、LSIの製造にそのまま応
用することはできなかつた。
As described above, in the prior art, no consideration is given to the pattern density dependence, and it cannot be applied to LSI manufacturing as it is.

第3図は成長速度のパターン依存性を避けるためにn+
層を全面に被着した従来例である。このようにすると、
図に示すように不要なn+層を除去した後に大きな段差が
残り、高集積ICに適用するには不適当であつた。
Figure 3 shows n + to avoid pattern dependence of growth rate.
This is a conventional example in which a layer is applied on the entire surface. This way,
As shown in the figure, a large step remains after removing an unnecessary n + layer, which is inappropriate for application to a highly integrated IC.

本発明の目的は、パターンの粗密如何にかかわらずに
均一な成長層を得、しかも平坦性を損うことで配線工程
に支障を生じないような製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method in which a uniform growth layer is obtained irrespective of the density of a pattern and the wiring process is not hindered by impairing flatness.

〔課題を解決するための手段〕[Means for solving the problem]

SiO2やWSi上以外のGaAs表面だけに選択的に成長させ
る技術は、通常有機金属気相成長法(MOCVD法)によつ
て行われる。ところが、この時、ウエハ表面には均一に
材料が輸送されるため、選択成長部の少ない部分ではウ
エハ表面で材料が余り、その結果その付近の成長部に大
量の材料が供給されて厚く成長することとなる。
The technique of selectively growing only on the GaAs surface other than on SiO 2 or WSi is usually performed by metal organic chemical vapor deposition (MOCVD). However, at this time, since the material is uniformly transported to the wafer surface, the material is excessively supplied on the wafer surface in a portion having a small number of selective growth portions, and as a result, a large amount of material is supplied to a growth portion in the vicinity thereof to grow thickly. It will be.

このようなパターン依存性をなくすためには、パター
ンの粗な部分で余分な材料が生じることのないように所
要パタン以外の部分にも結晶成長させ、その後不要部分
の結晶を除去する工程を用いればよい。ただし、LSIに
応用するためには、この時平坦性が損われてはならな
い。
In order to eliminate such pattern dependency, a process of growing crystals in portions other than the required pattern so as not to generate extra material in rough portions of the pattern, and then removing a crystal in unnecessary portions is used. I just need. However, for application to LSI, the flatness must not be impaired at this time.

そこで第1図に志江すようにWSiゲート2形成後に薄
い多結晶GaAs膜4をSiO23上に三温度蒸着法、あるいは
分子線エピタキシ法等にて被着する。この後絶縁膜SiO2
3の上のGaAs層をエツチング除去する。
Therefore, as shown in FIG. 1, after forming the WSi gate 2, a thin polycrystalline GaAs film 4 is deposited on the SiO 2 3 by a three-temperature evaporation method or a molecular beam epitaxy method. After this, the insulating film SiO 2
The GaAs layer above 3 is etched away.

以上要するに、上記目的は、単結晶III−V族化合物
半導体基板表面の一部に形成した絶縁膜表面に、多結晶
III−V族化合物半導体からなる第1の膜を形成した
後、第1の膜表面および化合物半導体基板表面上にIII
−V族化合物半導体膜を成長法により形成し、その後、
第1の膜表面上に成長した化合物半導体膜と第1の膜を
除去することにより達成できる。
In short, the above-described object is achieved by forming a polycrystalline silicon film on a part of the surface of an insulating film formed on a part of the surface of a single crystal III-V compound semiconductor substrate.
After forming a first film made of a III-V compound semiconductor, a III film is formed on the surface of the first film and the surface of the compound semiconductor substrate.
Forming a group V compound semiconductor film by a growth method,
This can be achieved by removing the compound semiconductor film grown on the surface of the first film and the first film.

〔作用〕[Action]

前記第3図のように、従来は成長速度のパターン依存
性を避けるためにn+層を全面に被着し、不要なn+層を除
去した場合、後に大きな段差が残り、高集積ICに適用す
るには不適当であつた。
Conventionally, as shown in FIG. 3, in order to avoid the pattern dependence of the growth rate, an n + layer is deposited on the entire surface and an unnecessary n + layer is removed. It was unsuitable for application.

そこで、第2図(c)に示すように、絶縁膜3の上に
も多結晶GaAs膜4を介してn+GaAs層を5と同時に成長
し、然る後にエツチング除去することによつて、第2図
(e)に示すように、LSIの全面にわたつて平坦なウエ
ハを得ることができる。
Therefore, as shown in FIG. 2 (c), an n + GaAs layer 5 is simultaneously grown on the insulating film 3 via the polycrystalline GaAs film 4 and then removed by etching. As shown in FIG. 2E, a flat wafer can be obtained over the entire surface of the LSI.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図,第4図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS.

GaAs LSIの主要部をなすGaAs MESFETの断面図を第1
図(a)に示す。また同図(b)は同一部分の平面図で
ある。
Cross section of GaAs MESFET, the main part of GaAs LSI
It is shown in FIG. FIG. 2B is a plan view of the same part.

第2図はこのMFSFETの製造工程を説明するための図で
ある。まず、同図(a)に示すように、半絶縁性GaAs基
板1にFET活性層6を形成後、耐熱性ゲート電極2を形
成する。ゲート電極にはWSiを用い、スパツタ法で被着
した後、フオトリソグラフイ法を用いてドライエツチン
グにより下降する。その上に3000Åの厚さのSiO2膜3を
CVD法により形成し、さらにその上に多結晶GaAs層を厚
さ500Å,三温度蒸着法あるいは分子線エピタキシ法に
より形成する(同図(b))。
FIG. 2 is a view for explaining a manufacturing process of the MFSFET. First, as shown in FIG. 1A, after forming an FET active layer 6 on a semi-insulating GaAs substrate 1, a heat-resistant gate electrode 2 is formed. The gate electrode is made of WSi, is deposited by a sputter method, and is then lowered by dry etching using a photolithography method. On top of this, a 3000 mm thick SiO 2 film 3
A polycrystalline GaAs layer is formed thereon by a CVD method, and a polycrystalline GaAs layer having a thickness of 500 mm is formed by a three-temperature evaporation method or a molecular beam epitaxy method (FIG. 2B).

次に、ウエハのうちFETとなる以外の部分(第1図
(b)の4の部分)をフオト・レジストでおおい、FET
部分の多結晶GaAs層をエツチング除去する。さらにFET
のソース・ドレインとなる部分にリアクテイブ・イオン
・エツチング(RIE)によりSiO2膜3に穴を開け、GaAs
基板1を露出する。この時ゲート電極2の周囲には第2
図(b)に示すようにn+層とケート電極とを分離するた
めのSiO2側壁7が残る。
Next, a portion of the wafer other than the FET (portion 4 in FIG. 1 (b)) is covered with a photo-resist, and the FET is covered.
Part of the polycrystalline GaAs layer is removed by etching. Further FET
A hole is formed in the SiO 2 film 3 by reactive ion etching (RIE) at a portion serving as a source / drain of the GaAs.
The substrate 1 is exposed. At this time, the second around the gate electrode 2
As shown in FIG. 2B, the SiO 2 side wall 7 for separating the n + layer and the gate electrode remains.

次に、この上にMO・CVD法(有機金属気相成長法)を
用いてn+GaAs層5を成長する。
Next, an n + GaAs layer 5 is grown thereon by MO / CVD (metal organic chemical vapor deposition).

このとき、MO・CVD法の選択成長性を利用し、ソース
・ドレイン窓内および多結晶GaAs層上にはGaAsがする
が、SiO2上およびWSi上にはGaAsが成長しなおように、M
O・CVD法の成長条件を設定する。本実施例では、基板温
度を640℃に、GaとAsの流量比を1:10に設定し選択成長
させた。但し、第1図(a)からわかるように成長しな
い部分はFETのゲートおよび素子周辺の一部であり、そ
の面積はウェハ面積全体に比べて十分に小さい。したが
つてGaAsの成長速度にパターン依存性が現われることは
なく、ウエハ全面にわたつて均一な厚さの成長層を得る
ことができる(第2図(c))。
At this time, GaAs is formed in the source / drain windows and on the polycrystalline GaAs layer by utilizing the selective growth property of the MO / CVD method, but GaAs is grown on SiO 2 and WSi.
Set the growth conditions for the O-CVD method. In the present embodiment, selective growth was performed with the substrate temperature set to 640 ° C. and the flow ratio of Ga and As set to 1:10. However, as can be seen from FIG. 1 (a), the portion that does not grow is a part around the gate and the element of the FET, and its area is sufficiently smaller than the entire wafer area. Accordingly, the growth rate of GaAs does not depend on the pattern, and a growth layer having a uniform thickness can be obtained over the entire surface of the wafer (FIG. 2 (c)).

この後第2図(d)に示すように、FET部分をフォト
レジスト8でおおい、不要な部分のGaAs(符号4とその
上の符号5の層)をエツチングにより除去すれば第2図
(e)に示すような平坦なFETが得られる。この時フオ
トレジスト8のパターンを不要なGaAs層から少し離れた
パターンとすれば、フオトリソグラフイの際の合わせず
れにより境界にGaAs層が残ることもなく、すべて除去す
ることができる。
Thereafter, as shown in FIG. 2 (d), the FET portion is covered with a photoresist 8 and unnecessary portions of GaAs (reference numeral 4 and the reference numeral 5) are removed by etching. A flat FET as shown in FIG. At this time, if the pattern of the photoresist 8 is a pattern slightly separated from the unnecessary GaAs layer, the GaAs layer can be completely removed without leaving the GaAs layer at the boundary due to misalignment during photolithography.

以上の工程により第2図(e)に示すように、従来例
(第3図)に比べてはるかに平坦性の良好な集積回路が
実現でき、LSIに応用するのに適している。
By the above steps, as shown in FIG. 2 (e), an integrated circuit having much better flatness than the conventional example (FIG. 3) can be realized, which is suitable for application to LSI.

〔発明の効果〕〔The invention's effect〕

本発明によれば、GaAs LSIがn+−GaAs選択成長技術を
用いて製作できるようになり、従来イオン打込みで形成
していた、n+層の抵抗に比べて約1/10の低抵抗化が実現
でき、これによつて、FETのソースの直列抵抗を約1/5に
改善できた。そのため従来より約2倍高速なメモリ素子
を得ることができた。また、これはn+GaAs選択成長層の
セルフ・アラインによつて改善されたFETの特性である
が、従来のイオン打込みでは800℃の熱処理によつて短
ゲート効果の劣化,シヨツトバリアの劣化がみられてい
たものが、選択成長により劣化が少なくなり、著しく性
能を向上することができた。
According to the present invention, a GaAs LSI can be manufactured using the n + -GaAs selective growth technology, and the resistance is reduced to about 1/10 of the resistance of the n + layer, which is conventionally formed by ion implantation. Thus, the series resistance of the FET source was improved to about 1/5. Therefore, a memory element approximately twice as fast as the conventional one could be obtained. In addition, this is the FET characteristics improved by the self-alignment of the n + GaAs selective growth layer. However, in the conventional ion implantation, the short gate effect and the shot barrier deteriorate due to the heat treatment at 800 ° C. However, the deterioration was reduced by the selective growth, and the performance was significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の断面図、および上面図、第
2図は本発明の一実施例のFETの製造工程断面図、第3
図は従来法により形成したFETの断面図である。 1……半絶縁性GaAs基板結晶、2……WSiゲート電極、
3……SiO2絶縁膜、4……多結晶GaAs層、5……MOCVD
選択成長n+層、6……FETの活性層、7……ゲート側壁
酸化膜、8……フオトレジスト。
FIG. 1 is a cross-sectional view and a top view of one embodiment of the present invention, FIG. 2 is a cross-sectional view of a manufacturing process of an FET of one embodiment of the present invention, and FIG.
The figure is a cross-sectional view of an FET formed by a conventional method. 1 ... Semi-insulating GaAs substrate crystal, 2 ... WSi gate electrode,
3 ... SiO 2 insulating film, 4 ... polycrystalline GaAs layer, 5 ... MOCVD
Selective growth n + layer, 6 ... FET active layer, 7 ... Gate sidewall oxide film, 8 ... Photoresist.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/337 - 21/338 H01L 27/095 H01L 27/098 H01L 29/775 - 29/778 H01L 29/80 - 29/812──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 21/337-21/338 H01L 27/095 H01L 27/098 H01L 29/775-29/778 H01L 29 / 80-29/812

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単結晶III−V族化合物半導体基板表面の
一部に絶縁膜を形成する工程と、該絶縁膜表面に第1の
膜を形成する工程と、該第1の膜表面および上記化合物
半導体基板表面上にIII−V族化合物半導体膜を成長法
により形成する工程と、上記第1の膜表面上の上記化合
物半導体膜および上記第1の膜を除去する工程を有し、
上記第1の膜は多結晶III−V族化合物半導体からなる
ことを特徴とする半導体集積回路の製造方法。
A step of forming an insulating film on a part of the surface of the single crystal III-V compound semiconductor substrate; a step of forming a first film on the surface of the insulating film; A step of forming a group III-V compound semiconductor film on the surface of the compound semiconductor substrate by a growth method, and a step of removing the compound semiconductor film and the first film on the surface of the first film;
A method of manufacturing a semiconductor integrated circuit, wherein the first film is made of a polycrystalline group III-V compound semiconductor.
【請求項2】上記第1の膜は上記絶縁膜表面の上記化合
物半導体基板との境界により内側にのみ形成することを
特徴とする請求項1記載の半導体集積回路の製造方法。
2. The method of manufacturing a semiconductor integrated circuit according to claim 1, wherein said first film is formed only inside the boundary of said insulating film surface with said compound semiconductor substrate.
JP63112424A 1988-05-11 1988-05-11 Method for manufacturing semiconductor integrated circuit Expired - Fee Related JP2796303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63112424A JP2796303B2 (en) 1988-05-11 1988-05-11 Method for manufacturing semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63112424A JP2796303B2 (en) 1988-05-11 1988-05-11 Method for manufacturing semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH01283970A JPH01283970A (en) 1989-11-15
JP2796303B2 true JP2796303B2 (en) 1998-09-10

Family

ID=14586297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63112424A Expired - Fee Related JP2796303B2 (en) 1988-05-11 1988-05-11 Method for manufacturing semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2796303B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208795A1 (en) * 1985-07-12 1987-01-21 International Business Machines Corporation Method of fabricating a self-aligned metal-semiconductor FET

Also Published As

Publication number Publication date
JPH01283970A (en) 1989-11-15

Similar Documents

Publication Publication Date Title
US4711858A (en) Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer
KR0166958B1 (en) Planarized heterostructures and fabrication method thereof
US4426767A (en) Selective epitaxial etch planar processing for gallium arsenide semiconductors
US4997779A (en) Method of making asymmetrical gate field effect transistor
JP3396579B2 (en) N-type HIGFET and method
US4587709A (en) Method of making short channel IGFET
US5192701A (en) Method of manufacturing field effect transistors having different threshold voltages
JP2796303B2 (en) Method for manufacturing semiconductor integrated circuit
EP0338251B1 (en) Method of manufacturing metal-semiconductor field effect transistors
JPH0473296B2 (en)
JP2714034B2 (en) Method for manufacturing compound semiconductor integrated circuit
JP3035917B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPH0492439A (en) Manufacture of semiconductor integrated circuit device
JPH04241453A (en) Semiconductor device and manufacture thereof
JPH0219622B2 (en)
JPH05275464A (en) Manufacture of compound semiconductor integrated circuit device
JPH0547797A (en) Fabrication of field effect transistor
JPH0439773B2 (en)
JPH0521467A (en) Manufacture of field-effect transistor
JPH0346239A (en) Manufacture of semiconductor device
JPS59193070A (en) Manufacture of schottky gate field effect transistor
JPS61152079A (en) Manufacture of schottky gate type fet
JPH05235050A (en) Manufacture of semiconductor integrated circuit device
JPH028454B2 (en)
JPS6234156B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees