JPS6088444A - Formation of three-dimensional wiring - Google Patents

Formation of three-dimensional wiring

Info

Publication number
JPS6088444A
JPS6088444A JP19704783A JP19704783A JPS6088444A JP S6088444 A JPS6088444 A JP S6088444A JP 19704783 A JP19704783 A JP 19704783A JP 19704783 A JP19704783 A JP 19704783A JP S6088444 A JPS6088444 A JP S6088444A
Authority
JP
Japan
Prior art keywords
wiring
electrode
air
gate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19704783A
Other languages
Japanese (ja)
Other versions
JPH0226385B2 (en
Inventor
Yoichi Aono
青野 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19704783A priority Critical patent/JPS6088444A/en
Publication of JPS6088444A publication Critical patent/JPS6088444A/en
Publication of JPH0226385B2 publication Critical patent/JPH0226385B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To greatly simplify the process required to form the titled wiring being air-insulated by a method wherein a photo resist itself which can be easily treated in the process of photolithography is used as a spacer member. CONSTITUTION:A gate electrode 22, source electrodes 23, and a drain electrode 24 are formed on a GaAs substrate 20, a positive resist 27 being provided so as to cover a gate supply wiring 224, and a quality-changing layer 28 containing a large amount of fluorine atoms being then formed by CF4 plasma treatment. A thick film wiring 29 is formed by Au plating, a supply metallic film 30 being formed by evaporation, and a cross-over electrode 32 being then formed by Au plating. The quality-changing layer is removed by O2 plasma treatment, and the photo resist is removed with a resist releaser, resulting in the completion of an air cross-over structure wherein the wiring 224 and the electrode 32 are air-insulated.

Description

【発明の詳細な説明】 本発明は、半導体装置における立体配線の形成方法に関
し、さらに詳しくは空気絶縁された立体配線の形成方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a three-dimensional wiring in a semiconductor device, and more particularly to a method for forming an air-insulated three-dimensional wiring.

半導体素子、特に化合物半導体であるGaAsを用いた
接合ゲート型電界効果トランジスタ(以下GaAs犯8
FD’I’と称する)は8iバイポラトランジスタの特
性限界を打破するマイクロ波トランジストとして実用化
されている。このようなマイクロ波でのGaAsMB8
FETの出力電力は全ゲート幅を増やすことによって増
加させることができ、る。
Semiconductor elements, especially junction gate field effect transistors using GaAs, a compound semiconductor (hereinafter referred to as GaAs transistors)
(referred to as FD'I') has been put into practical use as a microwave transistor that breaks through the characteristic limits of 8i bipolar transistors. GaAsMB8 in microwave like this
The output power of the FET can be increased by increasing the total gate width.

そのため通常、電力用の0aAs避5FETは第1図(
a)の平面図に示すように櫛型のドレイン電極11およ
びソース電極12を交互に配置し、その間にゲート電極
13を配置する構造がとられている。
Therefore, normally, a 0aAs 5FET for power use is shown in Figure 1 (
As shown in the plan view of a), a structure is adopted in which comb-shaped drain electrodes 11 and source electrodes 12 are alternately arranged, and a gate electrode 13 is arranged between them.

このような構成にするには必然的にソース電極12への
配線121とゲート電極13への給電用配縁131とは
点14のような位置で立体配線(クロスオーバー)され
なければならない。通常これらクロスオーバーは第1図
(b)に第1図(a)のA−A’部の断面を示すように
sio、膜15によp両配線電極間を絶縁する構造がと
られている。
In order to achieve such a configuration, the wiring 121 to the source electrode 12 and the power supply wiring 131 to the gate electrode 13 must necessarily be three-dimensionally wired (crossover) at a position such as point 14. Normally, these crossovers have a structure in which the sio and p wiring electrodes are insulated by a film 15, as shown in FIG. 1(b), which is a cross section taken along the line AA' in FIG. .

しかしながらX帯以上の超高周波になると、これら立体
配線部に生じる寄生容量はFET自身がもつゲート・ソ
ース間空乏層容量Casに比べて無視できなくなり、透
電体損と相俟って利得おるいは帯域特性低下の一因とな
る。立体交差する電極幅を小さくすればある程度を主容
量を低減できるが、配線抵抗の増加しいとは配線電極の
エレクトロマイグレーショ/をきたすので好ましくない
However, at ultra-high frequencies above the X band, the parasitic capacitance generated in these three-dimensional wiring sections cannot be ignored compared to the gate-source depletion layer capacitance Cas of the FET itself, and together with the conductor loss, the gain decreases. is a cause of deterioration of band characteristics. Although the main capacitance can be reduced to some extent by reducing the width of the three-dimensionally intersecting electrodes, an increase in wiring resistance is not preferable because it causes electromigration of the wiring electrodes.

寄生抵抗の増加なしに吾生容量を大幅に低減する方法と
しては、送電体を介さずに立体交差部を空気絶縁する(
エアークロスオーバ構造)のが最も有効である。
One way to significantly reduce the capacitance without increasing parasitic resistance is to insulate the grade-separated intersection with air without using a power transmission body (
Air crossover structure) is the most effective.

これまでにエアークロスオーバー構造をもったデバイス
が幾つか報告されているが、それらの形成方法はいずれ
もエツチングの選択性を主に利用したものである。即ち
、スペーサ材となる金属(一般に鋼が多用されている)
を両配線電極間に電解めっき等で形成した後、スペーサ
材のみを選択的にエツチング除去することによシェアー
クロクロスオーバー構造を得る方法である。
Several devices with air crossover structures have been reported so far, but all of their formation methods mainly utilize etching selectivity. In other words, the metal that becomes the spacer material (steel is commonly used)
In this method, a shear cross-over structure is obtained by forming a spacer material between both wiring electrodes by electrolytic plating or the like, and then selectively removing only the spacer material by etching.

このような従来の方法を用いてGaAsMH8FETの
エアークロスオーバー化を図ろうとした場合。
When attempting to create an air crossover of GaAsMH8FET using such a conventional method.

以下に述べるような問題点を生じる。即ち、1)酸ある
いはアルカリ溶液に弱いGaAsあるいはA[から成る
ゲート電極等を全く侵さずスペーサ材のみを選択的に除
去できるエツチング液が得難い。
This causes problems as described below. Namely, 1) It is difficult to obtain an etching solution that can selectively remove only the spacer material without at all attacking gate electrodes made of GaAs or A, which are sensitive to acid or alkaline solutions.

2)数μmの厚さに形成されたスペーサ材をウェー内で
均一性よく加工することが困難等である。
2) It is difficult to process spacer material formed to a thickness of several μm with good uniformity within the wafer.

本発明の目的は、空気絶縁された新規な立体配線の形成
方法を提供するものである。
An object of the present invention is to provide a novel method for forming air-insulated three-dimensional wiring.

本発明によれば、基板上の第1の配線となる帯状の電極
上に厚膜から成る第1のホトレジスト層を形成し、CF
、グツズ中にさらすことによシ表面に弗素原子を多く含
む変質層を形成する工程、該第1のホトレジスト層をマ
スクとして電解めっきを施すことによシ該第1のホトレ
ジスト善と同程度の厚さの厚膜配素を形成する工程、全
面に給電用の金属膜を被着した後、前記第1の配線との
交差部が開口した第2のホトレジスト層を形成し、再度
電解めっきを施すことによシ前記第1の配線と立体交差
した第2の配線を形成する工程、前記第2のホトレジス
ト層を除去した後、前記第2の配線をマスクとして前記
給電用の金属膜をイオンエツチングあるいは化学エツチ
ングで除去し、さらに露出した前記第1のホトレジスト
層を0.プラズマ処理して変質層を除去し、しかる後有
機溶剤で除去する工程を含むことを特徴とする空気絶縁
された立体配線の形成方法が得られる。
According to the present invention, a first photoresist layer consisting of a thick film is formed on a band-shaped electrode that becomes a first wiring on a substrate, and a CF
, a step of forming an altered layer containing a large amount of fluorine atoms on the surface by exposing it to dirt, and electrolytic plating using the first photoresist layer as a mask. In the step of forming a thick film wiring, after depositing a metal film for power supply on the entire surface, a second photoresist layer with openings at the intersection with the first wiring is formed, and electrolytic plating is performed again. a step of forming a second wiring that intersects the first wiring three-dimensionally by applying ions; after removing the second photoresist layer, using the second wiring as a mask, the metal film for power supply is ionized; The exposed first photoresist layer is removed by etching or chemical etching, and the exposed first photoresist layer is removed by etching or chemical etching. A method for forming an air-insulated three-dimensional wiring is obtained, which includes the steps of removing the altered layer by plasma treatment and then removing it with an organic solvent.

前記本発明によれば、通常のホトリソグツイエ程で簡単
に処理できるホトレジスト自体をスペーサ材として使用
するため、立体配線形成に要する工程が従来法に比べ大
幅に簡略化される。
According to the present invention, since the photoresist itself, which can be easily processed by a normal photolithography process, is used as a spacer material, the steps required for forming three-dimensional wiring are greatly simplified compared to conventional methods.

以下、本発明の一実施例としてGaAsME8FI(T
のエアークロスオーバー化を例にとり詳しく説明する。
Hereinafter, GaAsME8FI (T
This will be explained in detail using an example of air crossover.

第2図、第3図は本発明の一実施例を説明するための図
で、第2図(a)〜(f)は製作工程の要部平面図、第
3図(a)〜(f)は各々第2図におけるA−A’B−
B’ 、 C−C’ 、 D−D’ 、 E−H’ 、
 F−F’の要部断面図を示す。まず櫃初に、半絶縁性
GaAs基板20上にエピタキシャル成長された動作層
21を形成し、この上にショットキーバリア形成用のA
Iから成るゲート電極22、およびAuGeNiから成
るオーム性のソース電極23、ドレイン電極24を通常
の光学露光によシリフトオフ法で形成する(第2図(a
))。次KAlゲート電極22の4MamとfxるSi
O,!25をCVD法によj93000^程度ウメー・
・全面に被着させ、ソースおよびドレイン電極数シ出し
部231,241およびゲート電極域シ出し部221に
窓をあける。次にAIから成るゲートパッド部222と
そこから引き出されるAuから成るボンディング線との
反応を防止するために、例えばTi/Pt 等の反応防
止用電極223を選択的にゲートパッド部222に形成
した後、電解めっきのための給電用金属膜26として1
例えばT i /Au を各々約50OA蒸着する(第
3図(b))。ウェーッ・全面にAZ1375(商品名
)等のポジ型ホトレジスト27を4〜6μmのjqさに
塗布後、ゲート電極22への給電用配線224を選択的
に被覆するようにパターニングを行う(第2図(C)で
斜線を施した領域)。次に120℃、60分程度ベーキ
ングを施した後、CF4ガス圧Q、 3 Torr 、
 RF電力200Wの条件下でCF、プラズマ処理を2
程度夏行って表面に約200Xの弗素原子を多く含む変
質層28を形成する。この変質層28はAZ系レジスト
の溶剤であるn−ブチルアセテート等の有機溶媒やAZ
系レジストのm<*液に不溶であるが、O,プラズマ処
理で容易に除去できる。このCF、プラズマ処理はこの
後のホトプロセス工程においてレジストパターン27が
変形するのを防止する効果をもつものでおる。次に第2
図(d)のf+線部にAuめっきを施すことによシ、ホ
トレジスト層27と同程度の厚さの厚膜配線29を形成
する。後に形成されるクロスオーバー電極の完成後の変
形を防ぐ目的から、厚膜配線29の厚みはホトレジスト
層27と同等かあるいは若干厚めに形成することが望ま
しい。次に全面に前述したと同様の給電用金属膜30を
再度蒸着によって形成した後、A Z 1350J等の
ホトレジスト31を塗布し、第2図(e)の斜線部が選
択的に覆われるようにパターニングを行う。
2 and 3 are diagrams for explaining one embodiment of the present invention, and FIGS. 2(a) to 3(f) are plan views of main parts of the manufacturing process, and FIGS. 3(a) to (f) ) are respectively A-A'B- in Figure 2.
B', C-C', D-D', E-H',
A cross-sectional view of a main part taken along line FF' is shown. First, an active layer 21 is epitaxially grown on a semi-insulating GaAs substrate 20, and an A layer for forming a Schottky barrier is formed on this layer.
A gate electrode 22 made of I, and an ohmic source electrode 23 and a drain electrode 24 made of AuGeNi are formed by a lift-off method using ordinary optical exposure (see FIG. 2(a)).
)). Next, 4Mam and fx Si of KAl gate electrode 22
O,! 25 to about 93,000 yen by CVD method.
- Cover the entire surface, and make windows in the source and drain electrode number protruding parts 231, 241 and the gate electrode area protruding part 221. Next, in order to prevent a reaction between the gate pad portion 222 made of AI and the bonding wire made of Au drawn out from the gate pad portion 222, a reaction prevention electrode 223 made of, for example, Ti/Pt was selectively formed on the gate pad portion 222. After that, 1 is used as a power supply metal film 26 for electrolytic plating.
For example, about 50 OA of each of T i /Au is deposited (FIG. 3(b)). After coating the entire surface with a positive photoresist 27 such as AZ1375 (trade name) to a thickness of 4 to 6 μm, patterning is performed to selectively cover the power supply wiring 224 to the gate electrode 22 (see Fig. 2). (shaded area in (C)). Next, after baking at 120°C for about 60 minutes, the CF4 gas pressure Q, 3 Torr,
CF and plasma treatment under 200W RF power condition.
After about a year, an altered layer 28 containing about 200X of fluorine atoms is formed on the surface. This altered layer 28 is made of an organic solvent such as n-butyl acetate, which is a solvent for AZ resist, or an organic solvent such as AZ resist.
Although it is insoluble in the m<*-based resist solution, it can be easily removed by O, plasma treatment. This CF and plasma treatment has the effect of preventing the resist pattern 27 from being deformed in the subsequent photoprocessing step. Then the second
By applying Au plating to the f+ line portion shown in FIG. 3(d), a thick film wiring 29 having a thickness comparable to that of the photoresist layer 27 is formed. For the purpose of preventing deformation after completion of the cross-over electrode that will be formed later, it is desirable that the thickness of the thick film wiring 29 be equal to or slightly thicker than the photoresist layer 27. Next, a power supply metal film 30 similar to that described above is formed again by vapor deposition over the entire surface, and then a photoresist 31 such as AZ 1350J is applied so that the shaded area in FIG. 2(e) is selectively covered. Perform patterning.

第1斤コ目のホトレジスト27にcl!’、プラズマ処
理を施さない従来法では、段差部の形状が複雑なために
被覆性が劣るのが原因と思われるが、その他にこの2層
目のホトレジスト31のパターニングの際、第1層目の
レジストを溶解して給電用金属膜30が変形あるいはリ
ントオフされてしまい。
cl on the photoresist 27 of the first loaf! ', This is thought to be due to poor coverage due to the complicated shape of the stepped portion in the conventional method that does not involve plasma treatment. The resist is dissolved and the power supply metal film 30 is deformed or lint-off.

後のクロスオーバー電極の形成が困難であった。Later formation of the crossover electrode was difficult.

次にホトレジストN31を、マスクに再&Auめっきを
施して例えば2〜3μm厚のクロスオーバー電極32を
形成する(第3図(e))。次にアセトン等の肩櫨溶剤
でホトレジスト31を除去した後。
Next, photoresist N31 is applied to the mask and re-plated with Au to form a crossover electrode 32 having a thickness of, for example, 2 to 3 μm (FIG. 3(e)). Next, the photoresist 31 is removed using a solvent such as acetone.

クロスオーバーtHim32eマスクとして、Arイオ
ンビームエツチングあるいはI、 :KI:H,0系お
よびH2so、系のエツチング液を用いてクロスオーバ
ー電極32部以外の不要な給電用金属膜32を除去する
。次KO,lJス圧0.5 To r r、 RF屯方
力200W条件下でO,プラズマ処理を2分間程度行っ
て露出したホトレジスト層27よそ面の変質層28を除
去した後、レジスト14I 1m剤(J’−100)を
用いて完全にホトレジスト27を除去し、最後に、前記
同様のエツチング液を用いて選択的に不要な給電用金属
膜26を除去することによシ、第3図(f)に示すよう
なゲート給酸用配線224とクロスオーバー成極32と
が空気絶縁されたエアーを用いItば、従来のようl#
雑i工程を必妥とするスペーサ材の形成を通’+<のホ
トプロセスでtljtiに行なえるため、生腫住、歩留
)及び侶頑度の大幅な向上がOT能となった。
As a crossover tHim32e mask, unnecessary power supply metal film 32 other than the portion of crossover electrode 32 is removed using Ar ion beam etching or I,:KI:H,0-based and H2so-based etching solutions. Next, after removing the altered layer 28 on the exposed side of the photoresist layer 27 by performing O plasma treatment for about 2 minutes under the conditions of KO, lJ gas pressure 0.5 Tor r and RF force 200 W, resist 14I 1 m The photoresist 27 is completely removed using an etching agent (J'-100), and finally, the unnecessary power supply metal film 26 is selectively removed using the same etching solution as described above. If the gate oxygen supply wiring 224 and crossover polarization 32 as shown in FIG.
Since the formation of the spacer material, which requires a miscellaneous process, can be carried out through the photo process, the OT capability has been greatly improved in terms of material size, yield, and hardness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、υ)はそれぞれ一般の電力用GaAs 
−MESFRTの構債?示す平面」凶および要部断面図
で。 11.12.13はそノしそれドレイン、ソース、ゲー
ト電極、15t、1.5i02n灸、121はソースd
己線、131ばゲート配線1411まソース配4J12
1とゲート配線131の立体配線部を示す。 第2図(a)〜(f)、第3 iV (a)〜(f)は
本発明の一天施例計説明するための図で、第2図(a)
〜Cf)は製作工程の黴都平面図、第3図(a)〜(f
)は嶋2図の要部断面図である。 17図において、20・・・・・・半絶縁性(]aAa
基板、21・・・・・・動作1%、22,23,24・
・・・・・そねぞれゲート、ソース、ドレイン′rJL
極、25・・・・・・sho。 II<’−!、、 26 、30・・・・・・給電用金
属J模、27.31・・・・・・ポジ型ホトレジスト、
28・・・・・・変質層、29・・・・・・厚膜配線、
32・・・・・・クロスオーバー′#tI’A、221
゜231.241・・・・・・それぞれStO,膜25
に聞けらむたゲート、ソース、ドレイン電極用の窓、2
22・・・・・・ゲートパッド、223・・・・・・反
応防止、用@属;便、224・・・・・・ゲート@筒用
配線を示す。 萬 7 図 (θ2 31 tb) 箔 Z 図 ζI) te) (C) (f) 萬 3 (a) 1 【Iりノ (1) 図 td+ (e) (f)
Figure 1 (a) and υ) are respectively GaAs for general power use.
-MESFRT’s debt structure? Shown in plane and cross-sectional view of main parts. 11.12.13 is the drain, source, gate electrode, 15t, 1.5i02n moxibustion, 121 is the source d
self line, 131, gate wiring 1411, source wiring 4J12
1 and a three-dimensional wiring section of gate wiring 131. Figures 2 (a) to (f) and 3 (a) to (f) are diagrams for explaining the one-day embodiment of the present invention, and Figure 2 (a)
~Cf) is a plan view of the manufacturing process, Figures 3(a) to (f)
) is a sectional view of the main part of Figure 2. In Figure 17, 20... Semi-insulating (]aAa
Board, 21... Operation 1%, 22, 23, 24...
・・・・・・Gate, source, drain'rJL
Extreme, 25...sho. II<'-! ,, 26, 30...Metal J model for power supply, 27.31...Positive photoresist,
28...Altered layer, 29...Thick film wiring,
32...Crossover'#tI'A, 221
゜231.241...StO, film 25 respectively
Windows for gate, source, and drain electrodes, 2
22...Gate pad, 223...Reaction prevention, use@group; stool, 224...Gate@tube wiring. 7 Figure (θ2 31 tb) Foil Z Figure ζI) te) (C) (f) 3 (a) 1 [I Rino (1) Figure td+ (e) (f)

Claims (2)

【特許請求の範囲】[Claims] (1)基板上の第1の配線の上に表面に弗素原子を多く
含む第1のホトレジスト層を形成する工程と、該第1の
ホトレジスト層をマスクとしてこれと同程度の厚さの第
2の配置を形成する工程と、前記第1の配線との交差部
が開口した第2のホトレジスト層を形成する工程と、前
記第1の配線と立体交差した第2の配線を形成する工程
と、前記第2のホトレジスト層を除去した後、さらに露
出させた前記第1のホトレジスト層を除去する工程とを
さむことを特徴とする空気絶縁された立体配線の形成方
法。
(1) Forming a first photoresist layer containing a large amount of fluorine atoms on the surface of the first wiring on the substrate, and using the first photoresist layer as a mask to form a second photoresist layer with a similar thickness. a step of forming a second photoresist layer having openings at intersections with the first wiring; and a step of forming a second wiring that three-dimensionally intersects with the first wiring; A method for forming an air-insulated three-dimensional wiring, comprising the step of removing the exposed first photoresist layer after removing the second photoresist layer.
(2)第1および第2のホトレジスト層がポジ型のレジ
ストである特許請求の範囲第(1)項に記載の立体配線
の形成方法。
(2) The method for forming three-dimensional wiring according to claim (1), wherein the first and second photoresist layers are positive resists.
JP19704783A 1983-10-21 1983-10-21 Formation of three-dimensional wiring Granted JPS6088444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19704783A JPS6088444A (en) 1983-10-21 1983-10-21 Formation of three-dimensional wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19704783A JPS6088444A (en) 1983-10-21 1983-10-21 Formation of three-dimensional wiring

Publications (2)

Publication Number Publication Date
JPS6088444A true JPS6088444A (en) 1985-05-18
JPH0226385B2 JPH0226385B2 (en) 1990-06-08

Family

ID=16367825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19704783A Granted JPS6088444A (en) 1983-10-21 1983-10-21 Formation of three-dimensional wiring

Country Status (1)

Country Link
JP (1) JPS6088444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240744A (en) * 1985-08-19 1987-02-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of integrated circuit wirings
JP2005302351A (en) * 2004-04-07 2005-10-27 Dainippon Printing Co Ltd Light-emitting device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115065A (en) * 1978-02-28 1979-09-07 Mitsubishi Electric Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115065A (en) * 1978-02-28 1979-09-07 Mitsubishi Electric Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240744A (en) * 1985-08-19 1987-02-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of integrated circuit wirings
JP2005302351A (en) * 2004-04-07 2005-10-27 Dainippon Printing Co Ltd Light-emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0226385B2 (en) 1990-06-08

Similar Documents

Publication Publication Date Title
JP2637937B2 (en) Method for manufacturing field effect transistor
GB2222308A (en) A method of producing a semiconductor device
JPS6088444A (en) Formation of three-dimensional wiring
JPH05275373A (en) Manufacture of compound semiconductor device
JPH03165526A (en) Manufacture of field effect transistor
JP2825284B2 (en) Method for manufacturing semiconductor device
JPS6088445A (en) Formation of three-dimensional wiring
JPH0684950A (en) Manufacture of field effect transistor
JPS609171A (en) Manufacture of semiconductor device
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
JPS62274675A (en) Manufacture of field-effect transistor
JPH0226386B2 (en)
JPS58135678A (en) Manufacture of field effect transistor
JPH01168069A (en) Manufacture of semiconductor device
JPH02156544A (en) Manufacture of gaas mesfet
JPH0653246A (en) Manufacture of field effect transistor
JPS58112373A (en) Manufacture of gaas ic
JPH02113583A (en) Manufacture of semiconductor device
JPS6314478A (en) Manufacture of field-effect transistor
JPH0311652A (en) Integrated circuit and its manufacture
JPH01171278A (en) Manufacture of semiconductor device
JPH02150064A (en) Electrode structure for gallium arsenide field effect transistor
JPH0831844A (en) Fabrication of semiconductor device
JPS613466A (en) Manufacture of semiconductor device
JPS617668A (en) Manufacture of semiconductor device